# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 960 | 0 | 1.0000 | Beta-lactamase genes in bacteria from food animals, retail meat, and human surveillance programs in the United States from 2002 to 2021. The spread of beta-lactamase-producing bacteria is a global public-health concern. This study aimed to explore the distribution of beta-lactamases reported in three sampling sources (cecal, retail meat, and human) collected as part of integrated surveillance in the United States. We retrieved and analyzed data from the United States National Antimicrobial Resistance Monitoring Systems (NARMS) from 2002 to 2021. A total of 115 beta-lactamase genes were detected in E. coli, Salmonella enterica, Campylobacter, Shigella and Vibrio: including 35 genes from cecal isolates, 32 genes from the retail meat isolates, and 104 genes from the human isolates. Three genes in E. coli (bla(CMY-2,)bla(TEM-1A), and bla(TEM-1B)), 6 genes in Salmonella enterica (bla(CARB-2), bla(CMY-2), bla(CTXM-65), bla(TEM-1A), bla(TEM-1B), and bla(HERA-3)), and 2 genes in Campylobacter spp. (bla(OXA-61) and bla(OXA-449)) have been detected across food animals (cattle, chicken, swine, and turkey) and humans over the study period. bla(CTXM-55) has been detected in E. coli isolates from the four food animal sources while bla(CTXM-15) and bla(CTXM-27) were found only in cattle and swine. In Salmonella enterica, bla(CTXM-2), bla(CTXM-9), bla(CTXM-14), bla(CTXM-15), bla(CTXM-27), bla(CTXM-55), and bla(NDM-1) were only detected among human isolates. bla(OXAs) and bla(CARB) were bacteria-specific and the only beta-lactamase genes detected in Campylobacter spp. and Vibrio spp respectively. The proportions of beta-lactamase genes detected varies from bacteria to bacteria. This study provided insights on the beta-lactamase genes detected in bacteria in food animals and humans in the United States. This is necessary for better understanding the molecular epidemiology of clinically important beta-lactamases in one health interface. | 2024 | 38325128 |
| 1104 | 1 | 0.9998 | Predominance of Multidrug-Resistant Gram-Negative Bacteria Isolated from Supermarket Retail Seafood in Japan. Reports have documented antimicrobial usage in aquaculture, and the aquatic ecosystem can be considered a genetic storage site for antibiotic-resistant bacteria. This study assessed the prevalence of antimicrobial resistance (AMR) among Gram-negative bacteria recovered from retail seafood in Hiroshima, Japan. A total of 412 bacteria were isolated and screened for the presence of β-lactamases, acquired carbapenemases, and mobile colistin-resistance (mcr) genes. Forty-five (10.9%) isolates were dominated by Morganella (28%), Proteus (22%), Aeromonas (14%), Citrobacter (8%), and Escherichia (8%) and carried AMR genes. The identified AMR genes included those encoded in integrons (19), aac(6՛)-Ib (11), bla(TEM-1) (7), bla(CTX-M-like) (12), bla(CTX-M-65) (2), bla(SHV-12) (1), bla(SHV-27) (1), bla(OXA-10) (1), bla(OXA-2) (1), and mcr (2). The most common clinical resistances were against ampicillin, colistin, sulfamethoxazole/trimethoprim, tetracycline, and ciprofloxacin. Multidrug resistance (MDR) occurred in 27 (60%) AMR isolates, and multiple antibiotic resistance indices ranged from 0.2 to 0.8. A conjugation experiment showed that 10 of the 11 selected MDR strains harbored conjugable plasmids, although PCR-based replicon typing described seven strains as untypable. IncF replicon was identified in MDR extended-spectrum β-lactamase-producing Escherichia coli of the pathogenic B2 phylogroup. Our findings suggest that retail seafood harbors MDR bacteria of human interest that require strict resistance surveillance in the seafood production continuum. | 2023 | 38138079 |
| 943 | 2 | 0.9998 | Occurrence, Antimicrobial Resistance Profile, and Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Minced Meat at Local Markets in Thailand. Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli exhibits strong multidrug resistance (MDR) to ampicillin and third-generation cephalosporins. This study examined the occurrence, antimicrobial susceptibility, and molecular genetic features of ESBL-producing E. coli isolates from three commonly consumed minced meat varieties, namely pork, chicken, and beef. In total, 150 samples were collected from 10 local markets in Thailand. ESBL-producing E. coli was identified in 78 samples (52%), and minced chicken meat was most contaminated (79.17%). The isolates exhibited potential susceptibility to amikacin (96.16%) and carbapenems (91-95%). However, ESBL-producing E. coli displayed strong resistance to ampicillin and cefpodoxime (100%) and high MDR to 3-5 antibiotic classes (94.87%). Most presumptive ESBL producers harbored ESBL resistance genes (97.44%), most commonly bla(TEM) (78.21%). Indeed, our results demonstrated that raw minced meat has a high occurrence of ESBL-producing E. coli harboring ESBL resistance genes, highlighting the importance of implementation of sanitary handling practices to reduce microbial contamination in commercial meat as well as the need for consumer education on safe handling and cooking of meat products. | 2022 | 34941425 |
| 961 | 3 | 0.9998 | Predominance of CTX-M-15 among ESBL Producers from Environment and Fish Gut from the Shores of Lake Victoria in Mwanza, Tanzania. Extended-Spectrum Beta-Lactamase (ESBL)-producing bacteria are a common cause of healthcare and community-associated infections worldwide. The distribution of such isolates in the environment and their presence in fish as a result of sewage contamination is not well-studied. Here we examined fish and environmental samples from Mwanza city for the presence of ESBL-producing bacteria. From 196 fish sampled from local markets, 26 (13.3%) contained lactose-fermenting ESBL-producing bacteria, while 39/73 (53.4%) environmental samples from the same area were ESBL producers. Antibiotic resistance genes, multi locus sequence types (MLST) and plasmid replicon types in 24 selected isolates from both populations were identified with whole genome sequencing using Illumina MiSeq. Nine of eleven sequenced fish isolates had the bla(CTX-M-15) gene whereas 12/13 from environment carried bla(CTX-M-15). Antibiotic resistance genes encoding resistance to sulfonamides (sul1/sul2), tetracyclines [tet(A)/tet(B)] fluoroquinolones [e.g., aac(6')-Ib-cr, qnrS1], aminoglycosides [e.g., aac(3)-lld, strB, strA,] and trimethoprim (e.g., dfrA14) were detected. E. coli sequence type ST-38 (2) and ST-5173 (2) were detected in isolates both from the environment and fish. IncY plasmids carrying bla(CTX-M-15), qnrS1, strA, and strB were detected in five environmental E. coli isolates and in one E. coli isolate from fish. Our data indicate spillage of resistant environmental isolates into Lake Victoria through the sewage system. Persistence of bla(CTX-M-15) in the Mwanza city environment is complex, and involves both clonal spread of resistant strains as well as dissemination by commonly occurring IncY plasmids circulating in isolates present in humans, the environment as well as in the food chain. | 2016 | 27990135 |
| 903 | 4 | 0.9998 | Carbapenemase and ESBL genes with class 1 integron among fermenting and nonfermenting bacteria isolated from water sources from India. The present study was aimed to detect the carbapenemase, extended-spectrum β-lactamase (ESBL), and intI1 gene of class 1 integron among fermenting (n = 61) and nonfermenting (n = 10) bacterial isolates recovered from water samples (n = 128). Isolates were identified by 16S rRNA sequencing. These isolates showed reduced-susceptibility to third-generation cephalosporins and carbapenems. The isolates varied in number and size of plasmids (2 kb to >20 kb). Plasmid DNA screening showed 5·6, 7, 11·2 and 26·7% prevalence of bla(KPC) , bla(NDM) , bla(SHV) and bla(TEM) genes respectively. Diverse bla(NDM) (bla(NDM-1) and bla(NDM-4) ) and bla(SHV) subtypes (bla(SHV-2) and bla(SHV-11) ) were recorded, unlike the single allelic bla(KPC) (bla(KPC-2) ) and bla(TEM) (bla(TEM-1) ) gene. Of the total 27 bla-gene-producing bacterial isolates, seven isolates co-harboured the carbapenemase genes (bla(NDM) or bla(KPC) or the both) along with the ESBL genes (bla(SHV) or bla(TEM) ). The intI1 gene of class 1 integron was detected among 12 (44·4%) of ESBL- and/or carbapenemase-harbouring isolates. Gene transferability was seen among four of the 10 Enterobacteriaceae donors. Carbapenemases and ESBLs with class 1 integron among aquatic environmental isolates raise the serious issue of the biosecurity and health of the ecosystem. SIGNIFICANCE AND IMPACT OF THE STUDY: Anthropologically affected and polluted environment harbours the resistance threats, where a diverse bacterial species maintain, develop and exchange genetic determinants that constitute a risk to human and ecological health. The antimicrobial resistance (AMR) in Enterobacteriaceae and non-Enterobacteriaceae bacteria caused the failure of the therapy of last resort (carbapenems) and thus lead to life-threatening infections affecting public health. Surveillance and monitoring of AMR could be important for epidemiological, diagnostic testing and control of pathogens. This is a point-prevalence study reporting the comparative occurrence and co-occurrence of carbapenemase and extended-spectrum β-lactamase genes among fermenting and nonfermenting bacteria isolated from the aquatic environment in India. | 2020 | 31587338 |
| 1100 | 5 | 0.9998 | Characterization of ESBL-producing Escherichia spp. and report of an mcr-1 colistin-resistance Escherichia fergusonni strain from minced meat in Pamplona, Colombia. Foods of animal origin are increasingly considered a source of extended spectrum β-lactamase (ESBL) producing bacteria which can disseminate throughout the food chain and become a health concern for humans. This work aimed to evaluate the occurrence of ESBL-producing Escherichia coli in 100 retail minced meat samples taken in markets in Pamplona, Colombia. A total of 19 ESBL-producing isolates were obtained, 18 identified as E. coli and one as E. fergusonii. Fifteen isolates (78.9 %) carried bla(CTX-M) and bla(TEM) genes, one (5.2 %) bla(SHV) and bla(TEM) genes, one isolate (5.2 %) carried bla(CTX-M) and one (5.2 %) bla(SHV) alone. The majority of CTX-M-positive E. coli isolates carried the bla(CTX-M-15) gene (13 isolates), being the bla(CTX-M-9), bla(CTX-M-2), and bla(CTX-M-8) (one isolate each) also detected. Two SHV-positive isolates presented the bla(SHV-5) and bla(SHV-12) allele. The isolate identified as E. fergusonii was positive for bla(CTX-M-65) gene and mcr-1 gene. Sixteen isolates (84.2 %) belonged to phylogroups A and B1 and grouped together in the phylogenetic tree obtained by MLST; phylogroups E and F were also detected. Transfer of ESBL resistance was demonstrated for the E. fergusonii isolate. Whole genome sequencing of this isolate revealed the presence of plasmids carrying additional resistance genes. This investigation showed the high prevalence of ESBL-producing E. coli in retail samples of minced meat. Also, the isolation of a strain of E. fergusonii is an additional concern, as some resistance genes are located in mobile elements, which can be transmitted to other bacteria. These evidences support the increasing public health concern considering the spreading of resistance genes through the food chain. | 2023 | 36931145 |
| 944 | 6 | 0.9998 | Fecal shedding of extended-spectrum beta-lactamase-producing Enterobacterales in cats admitted to an animal shelter. OBJECTIVES: The objective of this study was to evaluate shedding of extended-spectrum beta-lactamase (ESBL)-producing bacteria in cats admitted to an animal shelter. METHODS: Fecal samples were collected from cats admitted to an animal shelter between 12 June and 23 August 2018. Selective enrichment culture for ESBL-producing bacteria was performed and isolates were speciated and tested for selected ESBL genes using PCR. RESULTS: ESBL-producing Enterobacterales were identified in fecal samples from 2/87 (2.3%; 95% confidence interval 0.6-8.0) cats. One isolate was an Escherichia coli that possessed bla(CTX-M-1), bla(CMY-2) and bla(TEM) genes. The other was Enterobacter cloacae possessing bla(CTX-M-1) and bla(CMY-2). CONCLUSIONS AND RELEVANCE: While the study sample size and prevalence rate for ESBL-producing bacteria were low, these data document that cats admitted to similar shelters could harbor these agents. The risk posed by ESBL-producing bacterium shedding in cats, both to cats and other species, is currently unclear. However, these findings support the need for more investigation of interspecies transmission of ESBL-producing bacteria and ESBL genes, as well as the importance of antimicrobial stewardship and routine infection control measures. | 2022 | 35133182 |
| 2638 | 7 | 0.9998 | Prevalence and mechanisms of extended-spectrum cephalosporin resistance in clinical and fecal Enterobacteriaceae isolates from dogs in Ontario, Canada. There is little information on the genetic basis of resistance to the critically important extended-spectrum cephalosporins (ESCs) in Enterobacteriaceae from dogs in Canada. This study assessed the frequency of ESC resistance in Enterobacteriaceae isolated from dogs in Ontario and the distribution of major ESC resistance genes in these bacteria. A total of 542 Enterobacteriaceae were isolated from 506 clinical samples from two diagnostic laboratories in Ontario. Eighty-eight ESC-resistant Enterobacteriaceae and 217 Escherichia coli were isolated from 234 fecal samples from dogs collected at leash-free dog parks. These fecal isolates were tested for ESC resistance along with the clinical isolates. Isolates with reduced ESC susceptibility were screened for bla(CMY), bla(CTX-M), and bla(SHV), and all CTX-M-positive isolates underwent whole-genome sequencing. The prevalence of ESC resistance in clinical Enterobacteriaceae was 10.4%. The average frequency of fecal carriage of ESC-resistant Enterobacteriaceae in healthy dogs was 26.5%. The majority of ESC-resistant isolates were E. coli and the other major Enterobacteriaceae carrying ESC resistance genes were Klebsiella pneumoniae and Proteus mirabilis. The results show that the same ESC resistance genes can be found in clinical and fecal Enterobacteriaceae in dogs. The identified E. coli sequence types (including ST131 and ST648) and CTX-M variants (including CTX-M-14, -15, and -27) support the hypothesis of transfer of resistant bacteria between humans and dogs. CTX-M-1 was frequently found in canine fecal Enterobacteriaceae, while it is still rare in human Enterobacteriaceae in Canada, thus suggesting transfer of resistant bacteria to dogs from food animals or other sources. | 2018 | 29292008 |
| 1017 | 8 | 0.9998 | Evaluation of canine raw food products for the presence of extended-spectrum beta-lactamase- and carbapenemase-producing bacteria of the order Enterobacterales. OBJECTIVE: To assess the potential contamination of commercial raw dog food products with bacteria of the Enterobacterales order that produce extended spectrum beta-lactamase (ESBL) and carbapenemase enzymes, determine risk factors for contamination, and understand isolate genetic diversity. SAMPLES: A total of 200 canine raw food products. METHODS: Products were cultured on selective chromogenic agar following enrichment steps. Whole-genome sequencing was performed for isolates that were confirmed to produce an ESBL. Isolates were characterized by antimicrobial resistance genes, and multilocus sequences typing, and compared to other isolates in the NCBI database for clonality. Preservation method and protein sources were assessed as potential risk factors for contamination with ESBL and carbapenemase-producing bacteria of the Enterobacterales order. RESULTS: No carbapenemase-producing Enterobacterales (CPE) were identified, but ESBL-producing Enterobacterales bacteria were isolated from 20/200 products (10.0%; 95% CI, 7.3 to 16.5%), all of which were frozen. Pork-derived protein source products were 8.1 times (P = .001; 95% CI, 2.53 to 26.2) more likely to carry ESBL-producing Enterobacterales bacteria than other protein sources. WGS analysis confirmed the presence of ESBL genes in a total of 25 distinct isolates (19 Escherichia coli, 5 Klebsiella pneumoniae, and 1 Citrobacter braakii). Genes encoding CTX-M type ESBL enzymes were the most common (24/25 isolates, 96.0%) with blaCTX-M-27 being the most common allele (8/25, 32.0%). CLINICAL RELEVANCE: Frozen, raw food products may serve as a route of transmission of ESBL-producing Enterobacterales bacteria to companion animals. Veterinarians should advise owners about the risks of raw food diets, including potential exposure to antimicrobial-resistant bacteria. | 2022 | 35895774 |
| 1018 | 9 | 0.9998 | Antimicrobial Resistance and Prevalence of Extended Spectrum β-Lactamase-Producing Escherichia coli from Dogs and Cats in Northeastern China from 2012 to 2021. (1) Background: there has been a growing concern about pet-spread bacterial zoonosis in recent years. This study aimed to investigate the trend in drug-resistance of canine Escherichia coli isolates in northeast China between 2012-2021 and the differences in drug-resistance of E. coli of different origins in 2021. (2) Methods: E. coli were isolated from feces or anal swab samples from dogs and cats, and their antibiotic susceptibility profiles and phylogenetic grouping were identified. PCR was applied on the extended spectrum β-lactamase (ESBL) E. coli for antibiotic resistance genes. (3) Results: five hundred and fifty-four E. coli isolates were detected in 869 samples (63.75%). The multidrug resistance (MDR) rates of E. coli in pet dogs showed a decreasing trend, but working dogs showed the opposite trend. Resistance genes bla(CTX-M) and bla(CTX-M+TEM) were dominant among the ESBL producers (n = 219). The consistency between the resistance phenotypes and genes was high except for fluoroquinolone-resistant ESBL E. coli. All ESBL E. coli-carrying bla(NDM) were isolated from working dogs, and one of the strains carried mcr-1 and bla(NDM-4). Phylogroup B2 was the dominant group in pet cats, and more than half of the isolates from companion cats were ESBL E. coli. (4) Conclusions: the measures taken to reduce resistance in China were beginning to bear fruit. Companion cats may be more susceptible to colonization by ESBL E. coli. The problem of resistant bacteria in working dogs and pet cats warrants concern. | 2022 | 36358160 |
| 1096 | 10 | 0.9998 | Investigation of urban birds as source of β-lactamase-producing Gram-negative bacteria in Marseille city, France. BACKGROUND: We investigate here the presence of multidrug-resistant bacteria isolated from stool samples of yellow-legged gulls and chickens (n = 136) in urban parks and beaches of Marseille, France. Bacterial isolation was performed on selective media, including MacConkey agar with ceftriaxone and LBJMR medium. Antibiotic resistance genes, including extended-spectrum β-lactamases (ESBL) (i.e. bla(CTX-M), bla(TEM) and bla(SHV)), carbapenemases (bla(KPC), bla(VIM), bla(NDM), bla(OXA-23), bla(OXA-24), bla(OXA-48) and bla(OXA-58)) and colistin resistance genes (mcr-1 to mcr-5) were screened by real-time PCR and standard PCR and sequenced when found. RESULTS: Of the 136 stools samples collected, seven ESBL-producing Gram-negative bacteria (BGN) and 12 colistin-resistant Enterobacteriaceae were isolated. Among them, five ESBL-producing Escherichia coli and eight colistin-resistant Hafnia alvei strains were identified. Four bla(TEM-1) genes were detected in yellow-legged gulls and chickens. Three CTX-M-15 genes were detected in yellow-legged gulls and pigeons, and one CTX-M-1 in a yellow-legged gull. No mcr-1 to mcr-5 gene were detected in colistin-resistant isolates. Genotyping of E. coli strains revealed four different sequence types already described in humans and animals and one new sequence type. CONCLUSIONS: Urban birds, which are believed to have no contact with antibiotics appear as potential source of ESBL genes. Our findings highlight the important role of urban birds in the proliferation of multidrug-resistant bacteria and also the possible zoonotic transmission of such bacteria from wild birds to humans. | 2019 | 31672159 |
| 1139 | 11 | 0.9998 | Prevalence of Antimicrobial Resistance in Select Bacteria From Retail Seafood-United States, 2019. In 2019, the United States National Antimicrobial Resistance Monitoring System (NARMS) surveyed raw salmon, shrimp, and tilapia from retail grocery outlets in eight states to assess the prevalence of bacterial contamination and antimicrobial resistance (AMR) in the isolates. Prevalence of the targeted bacterial genera ranged among the commodities: Salmonella (0%-0.4%), Aeromonas (19%-26%), Vibrio (7%-43%), Pseudomonas aeruginosa (0.8%-2.3%), Staphylococcus (23%-30%), and Enterococcus (39%-66%). Shrimp had the highest odds (OR: 2.8, CI: 2.0-3.9) of being contaminated with at least one species of these bacteria, as were seafood sourced from Asia vs. North America (OR: 2.7; CI: 1.8-4.7) and Latin America and the Caribbean vs. North America (OR: 1.6; CI: 1.1-2.3) and seafood sold at the counter vs. sold frozen (OR: 2.1; CI: 1.6-2.9). Isolates exhibited pan-susceptibility (Salmonella and P. aeruginosa) or low prevalence of resistance (<10%) to most antimicrobials tested, with few exceptions. Seafood marketed as farm-raised had lower odds of contamination with antimicrobial resistant bacteria compared to wild-caught seafood (OR: 0.4, CI: 0.2-0.7). Antimicrobial resistance genes (ARGs) were detected for various classes of medically important antimicrobials. Clinically relevant ARGs included carbapenemases (bla (IMI-2), bla (NDM-1)) and extended spectrum β-lactamases (ESBLs; bla (CTX-M-55)). This population-scale study of AMR in seafood sold in the United States provided the basis for NARMS seafood monitoring, which began in 2020. | 2022 | 35814688 |
| 956 | 12 | 0.9998 | Detection of Extended-Spectrum Beta-Lactamase-Producing and Carbapenem-Resistant Bacteria from Mink Feces and Feed in the United States. Antibiotic-resistant infections caused by extended-spectrum β-lactamases (ESBLs) and carbapenemases are increasing worldwide. Bacteria resistant to extended-spectrum cephalosporins and last resort carbapenems have been reported from food animals and their environments. Other concentrated nonfood-producing animals such as mink farming can be a reservoir of bacteria resistant to these critically important antibiotics. The objective of this study was to determine the prevalence of ESBL-producing bacteria and carbapenem-resistant (CR) bacteria from mink fecal (n = 42) and feed (n = 8) samples obtained from a commercial mink farm in the United States. The most prevalent ESBL-producing bacteria identified from the fecal samples were Escherichia coli (93%), Klebsiella pneumoniae (76%), and Proteus species (88%). E. coli (100%) and K. pneumoniae (75%) were also the most prevalent ESBL-producing bacteria identified from feed samples. All ESBL E. coli isolates were resistant to penicillin and most cephem beta-lactam antibiotics. Among the ESBL E. coli isolates, co-resistance was observed to ciprofloxacin (33%) and gentamicin (28%) indicating multidrug resistance. ESBL E. coli isolates predominantly carried bla(CTX-M-14) and bla(CTX-M-15) genes. Although all feed K. pneumoniae isolates carried bla(CTX-M-9), all fecal K. pneumoniae isolates carried bla(SHV). CR Pseudomonas species (7%), Hafnia alvei (24%), and Myroides odoratimimus (9.5%) were detected from fecal samples. H. alvei (37.5%) was the only CR bacteria detected from the feed samples. All CR isolates were polymerase chain reaction negative for the tested carbapenemases that are commonly reported, which may indicate intrinsic rather than acquired resistance. This study indicates that mink production can be a reservoir for bacteria resistant to the highest priority critically important antibiotics for human health. | 2021 | 33978469 |
| 953 | 13 | 0.9997 | Distribution of resistance genes encoding ESBLs in Enterobacteriaceae isolated from biological samples in health centers in Ouagadougou, Burkina Faso. OBJECTIVE: Resistance to antibiotics most especially third generation cephalosporins has assumed a worrisome dimension globally. Genes conferring these resistance which are mediated by enzymes known as extended spectrum beta-lactamases (ESBLs) are now wide spread among several Enterobacteriaceae species. However there is paucity of data regarding the distribution of these genes in Burkina Faso. Hence this prospective study aims to determine the prevalence and distribution of ESBL encoding genes in ESBL producing Enterobacteriaceae strains isolated from clinical samples of patients attending the three major hospitals in Ouagadougou Burkina Faso. RESULTS: ESBL-encoding genes were assayed in 187 ESBL producing Enterobacteriaceae strains. Among these isolates, the prevalence of ESBL-producing strains with blaTEM, blaSHV and blaCTX-M genes were 26.2% (49/187), 5.9% (11/187) and 40.1% (75/187) respectively. The association of ESBL encoding genes with health centers was statistically significant (p = 0.0209). Approximately 39.6% of E. coli harbored CTX-M and Klebsiella spp. 5.9%. This study demonstrates the dissemination of TEM, SHV and CTX-M genes in ESBL producing Enterobacteriaceae strains in Ouagadougou. Continuous spread of these bacteria poses great public health risk, thus increased surveillance and regulation of antibiotics use is imperative in Burkina Faso. | 2018 | 30005695 |
| 951 | 14 | 0.9997 | Analyses of Extended-Spectrum-β-Lactamase, Metallo-β-Lactamase, and AmpC-β-Lactamase Producing Enterobacteriaceae from the Dairy Value Chain in India. The consumption of milk contaminated with antibiotic-resistant bacteria poses a significant health threat to humans. This study aimed to investigate the prevalence of Enterobacteriaceae producing β-lactamases (ESBL, MBL, and AmpC) in cow and buffalo milk samples from two Indian states, Haryana and Assam. A total of 401 milk samples were collected from dairy farmers and vendors in the specified districts. Microbiological assays, antibiotic susceptibility testing, and PCR-based genotyping were employed to analyze 421 Gram-negative bacterial isolates. The overall prevalence of β-lactamase genes was 10% (confidence interval (CI) (7-13)), with higher rates in Haryana (13%, CI (9-19)) compared to Assam (7%, CI (4-11)). The identified β-lactamase genes in isolates were bla(CMY), bla(MOX), bla(FOX), bla(EBC), and bla(DHA), associated with AmpC production. Additionally, bla(CTX-M1), bla(SHV), and bla(TEM) were detected as ESBL producers, while bla(VIM), bla(IMP), bla(SPM), bla(SIM), and bla(GIM) were identified as MBL producers. Notably, Shigella spp. were the dominant β-lactamase producers among identified Enterobacteriaceae. This study highlights the presence of various prevalent β-lactamase genes in milk isolates, indicating the potential risk of antimicrobial-resistant bacteria in dairy products. The presence of β-lactam resistance raises concern as this could restrict antibiotic options for treatment. The discordance between genotypic and phenotypic methods emphasizes the necessity for comprehensive approaches that integrate both techniques to accurately assess antibiotic resistance. Urgent collaborative action incorporating rational and regulated use of antibiotics across the dairy value chain is required to address the global challenge of β-lactam resistance. | 2023 | 37760745 |
| 1009 | 15 | 0.9997 | The resistance patterns and molecular characteristics of ESBL/AmpC-producing Escherichia coli from captive panda ecosystem in China. Escherichia coli (E. coli) plays an important ecological role, and is a useful bioindicator to recognize the evolution of resistance in human, animal and environment. Recently, extended-spectrum β-lactamases (ESBL) producing E.coli has posed a threat to public health. Generally, captive healthy giant pandas are not exposed to antibiotics; however, they still acquire antimicrobial resistant bacteria. In order to understand whether there is an exchange of resistance genes within the ecosystems of captive giant pandas, this study explored resistance characteristics of 330 commensal E. coli isolates from feces of giant pandas, the surroundings, and breeders. Isolates from different sources showed similar resistance phenotype, and ESBL/AmpC-producing isolates showed more profound resistance to antibiotics than non-ESBL/AmpC-producing isolates (P<0.05). Furthermore, the occurrence of broad-spectrum β-lactamase related resistance genes and colistin resistance genes was detected, and isolates phylogenetic typing and multilocus sequence typing (MLST) were applied in this study. Seven different β-lactamase resistance genes (bla(CTX-M-55), bla(CTX-M-15), bla(CTX-M-27), bla(CTX-M-65), bla(TEM-1), bla(OXA-1) and bla(CMY)) and mcr-1 were found in 68 ESBL/AmpC-producing isolates. bla(CTX-M-55) (48.53 %) was found the most predominant resistance genes, followed by bla(TEM-1) (19.12 %) and bla(CTX-M-27) (16.18 %). Nonetheless, bla(CTX-M-55) was commonly detected in the isolates from giant pandas (63.16 %), the surroundings (43.48 %), and breeders (33.33 %). However, there were no carbapenemase genes detected in this study. mcr-1 was harbored in only one isolate from giant panda. Forty-five tansconjugants were successfully obtained in the conjugation experiments. The presence of antimicrobial resistance and related resistance genes tested were observed in the transconjugants. The results indicated that 52.63 % of the isolates from giant panda 73.91 % of the isolates from surroundings, and 100 % of the isolates from breeders were phylogroup A. Total of 27 sequence types (ST) were recognized from the isolate by MLST and found that ST48 (19/68; 27.94 %) was the predominant ST type, especially in the isolates from giant pandas and the surroundings. In conclusion, commensal ESBL/AmpC-producing E. coli becomes a reservoir of ESBL resistance genes, which is a potential threaten to health of giant pandas. The interaction between giant pandas, surroundings and breeders contribute to development of resistant phenotypes and genotypes which might transfer across species or the surroundings easily; hence, strict monitoring based on a "One Health" approach is recommended. | 2024 | 38728939 |
| 1049 | 16 | 0.9997 | Multiple Antibiotic-Resistant, Extended Spectrum-β-Lactamase (ESBL)-Producing Enterobacteria in Fresh Seafood. Members of the family Enterobacteriaceae include several human pathogens that can be acquired through contaminated food and water. In this study, the incidence of extended spectrum β-lactamase (ESBL)-producing enterobacteria was investigated in fresh seafood sold in retail markets. The ESBL-positive phenotype was detected in 169 (78.60%) isolates, with Escherichia coli being the predominant species (53), followed by Klebsiella oxytoca (27), and K. pneumoniae (23). More than 90% of the isolates were resistant to third generation cephalosporins, cefotaxime, ceftazidime, and cefpodoxime. Sixty-five percent of the isolates were resistant to the monobactam drug aztreonam, 40.82% to ertapenem, and 31.36% to meropenem. Resistance to at least five antibiotics was observed in 38.46% of the isolates. Polymerase Chain Reaction (PCR) analysis of ESBL-encoding genes detected bla(CTX), bla(SHV), and bla(TEM) genes in 76.92%, 63.3%, and 44.37% of the isolates, respectively. Multiple ESBL genes were detected in majority of the isolates. The recently discovered New Delhi metallo-β-lactamase gene (bla(NDM-1)) was detected in two ESBL⁺ isolates. Our study shows that secondary contamination of fresh seafood with enteric bacteria resistant to multiple antibiotics may implicate seafood as a potential carrier of antibiotic resistant bacteria and emphasizes an urgent need to prevent environmental contamination and dissemination of such bacteria. | 2017 | 28867789 |
| 1157 | 17 | 0.9997 | Isolation and Molecular Characterization of Antimicrobial Resistant Escherichia coli from Healthy Broilers in Retail Chicken Outlets of Hotspot Cities in Southern India. E. coli is one of the first commensal bacteria to colonize the chicken gut. It may act as a source for the spread of antibiotic resistance to human via the food chain and contamination of the environment. Isolation and characterization of such E. coli from commercial broilers in retail outlets of Southern India were carried out. Eighty-three E. coli isolates (76.9%) were obtained from cloacal/meat swabs (108 samples). Phenotypically, 78.3% of isolates were ESBL producers, 69.9% were fluoroquinolone-resistant, and 6% were carbapenemase producers. Genotypically, the blaSHV, blaTEM, and blaCTX-M were present in 48.2%, 43.4%, and 10.8% of the isolates, respectively. These isolates also carried fluoroquinolone-resistant genes viz qnrB (31.3%) and qnrS (34.9%) but not carbapenemase genes. Overall, ESBL were identified in 72.3% of isolates and fluoroquinolone-resistance genes in 51.8%. Strikingly, 53% of the isolates were multidrug-resistant, with both ESBL and fluoroquinolone-resistant genes. The study revealed the presence of MDR E. coli strains in broiler meat at retail outlets indicating the potential public health risks. | 2025 | 40778947 |
| 1011 | 18 | 0.9997 | Mechanisms of cephalosporin resistance in indicator Escherichia coli isolated from food animals. Resistance to β-lactams is considered one of the major global problems and recently it became the most frequently studied topic in the area of antimicrobial resistance. The study was focused on phenotypic and genetic characterisation of commensal Escherichia coli (E. coli), including those producing cephalosporinases, isolated from gut flora of healthy slaughter animals. E. coli were cultured simultaneously on MacConkey agar (MCA) and cefotaxime supplemented MCA. The isolates were confirmed with ONPG and indol tube tests as well as PCR targeting uspA gene. Microbroth dilution method was applied for determination of Minimal Inhibitory Concentrations and interpreted according to EUCAST epidemiological cut-off values. Cephalosporin resistance phenotypes were defined by E-tests (BioMerieux) and relevant gene amplicons from selected strains were sequenced. A total of 298 E. coli isolates with cephalosporin resistance (ESC) found in 99 ones, were obtained from 318 cloacal or rectal swabs deriving from broilers, layers, turkeys, pigs and cattle. Both extended spectrum β-lactamase (ESBL) and ampC-cephalosporinase resistance phenotypes were noted in all tested animal species but cattle. At least one of the analysed genes was identified in 90 out of 99 cephalosporin-resistant isolates: bla(TEM) (n=44), bla(CMY) (n=38), bla(CTX-M) (n=33) and bla(SHV) (n=12). None of the phenotypes was identified in nine isolates. Sequencing of PCR products showed occurrence of ESBL-genes: bla(CTX-M-1/-61), bla(SHV-12), bla(TEM-1,-52/-92,-135) and ampC-gene bla(CMY-2). They were located on numerous and diverse plasmids and resistance transferability was proved by electroporation of bla(SHV-12) and bla(CTX-M-1/-61) located on X1 plasmids. Detection of cephalosporin resistant E. coli confirms the existence of resistance genes reservoir in farm animals and their possible spread (i.e. via IncX1 plasmids) to other bacteria including human and animal pathogens. The identified genetic background indicates on ecological aspects of selection and dissemination of cephalosporin resistance in E. coli isolated from food-producing animals rather than its potential role for public health threats. | 2016 | 26869096 |
| 1048 | 19 | 0.9997 | Characterizing the co-existence of metallo-β-lactamase-producing and extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in community wastewater samples of Dhaka, Bangladesh. Escherichia coli and Klebsiella pneumoniae isolates with multiple antibiotic-resistance genes in wastewater pose serious public health risks, as they can potentially contaminate the food and water supply. The main aim of this study was to isolate and identify E. coli and K. pneumoniae from community wastewater samples, and determine their antibiotic-resistance profiles and their antibiotic-resistant genes. From the northern part of Dhaka, Bangladesh, 36 wastewater samples were collected across 11 different areas, which were then serially diluted, and cultured using selective media. Isolates were identified via polymerase chain reaction. Out of the 197 isolates identified, E. coli and K. pneumoniae accounted for 55.8% (n = 110) and 44.2% (n = 87), respectively. Antibiotic susceptibility tests revealed multidrug resistance (MDR) in 30% of E. coli and 35.56% of K. pneumoniae isolates. Among E. coli, the prevalence of antibiotic-resistance genes included bla(NDM-1) (8.9%), bla(SHV) (13.9%), and bla(CTX-M) (7.6%). In K. pneumoniae, the percentages were bla(NDM-1) (12.8%), bla(SHV) (4.3%), and bla(CTX-M) (5.0%). Co-existence of multiple antibiotic-resistance genes was observed in 4.54% of E. coli isolates (n = 5) and 5.74% of K. pneumoniae isolates (n = 5). This suggests the escalating issue of infectious species becoming increasingly resistant to antibiotics in wastewater systems. | 2025 | 40298266 |