Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens: Klebsiella pneumoniae. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
957301.0000Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens: Klebsiella pneumoniae. Members of the family Enterobacteriaceae, such as Klebsiella pneumoniae, are considered both serious and urgent public health threats. Biofilms formed by these health care-associated pathogens can lead to negative and costly health outcomes. The global spread of antibiotic resistance, coupled with increased tolerance to antimicrobial treatments in biofilm-associated bacteria, highlights the need for novel strategies to overcome treatment hurdles. Bacteriophages (phages), or viruses that infect bacteria, have reemerged as one such potential strategy. Virulent phages are capable of infecting and killing their bacterial hosts, in some cases producing depolymerases that are able to hydrolyze biofilms. Phage therapy does have its limitations, however, including potential narrow host ranges, development of bacterial resistance to infection, and the potential spread of phage-encoded virulence genes. That being said, advances in phage isolation, screening, and genome sequencing tools provide an upside in overcoming some of these limitations and open up the possibilities of using phages as effective biofilm control agents.202033118486
980510.9998Molecular mechanisms of multidrug resistance in clinically relevant enteropathogenic bacteria (Review). Multidrug resistant (MDR) enteropathogenic bacteria are a growing problem within the clinical environment due to their acquired tolerance to a wide range of antibiotics, thus causing severe illnesses and a tremendous economic impact in the healthcare sector. Due to its difficult treatment, knowledge and understanding of the molecular mechanisms that confer this resistance are needed. The aim of the present review is to describe the mechanisms of antibiotic resistance from a genomic perspective observed in bacteria, including naturally acquired resistance. The present review also discusses common pharmacological and alternative treatments used in cases of infection caused by MDR bacteria, thus covering necessary information for the development of novel antimicrobials and adjuvant molecules inhibiting bacterial proliferation.202236561977
979420.9998Antibiotic resistance in developing countries. During the past decade there have been major changes in the susceptibility of bacteria that cause various infections. Resistance to anti-infective agents, including antibiotics, is worldwide, both in developed and developing countries. Almost all bacterial species can develop resistance to anti-infective agents and resistance can readily be transferred among bacteria by transmissible elements (plasmids). Measures to prevent the emergence of resistance must be implemented urgently. A multiplicity of factors drive antibiotic resistance and solutions require the collaboration of governmental agencies, pharmaceutical companies, healthcare providers and consumers. Knowledge of resistance patterns and of the ways by which resistance is overcome is vital to the future of antimicrobial chemotherapy.200111434528
408930.9998Genetic mechanisms of antibiotic resistance and virulence in Acinetobacter baumannii: background, challenges and future prospects. With the advent of the multidrug-resistant era, many opportunistic pathogens including the species Acinetobacter baumannii have gained prominence and pose a major global threat to clinical health care. Pathogenicity in bacteria is genetically regulated by a complex network of transcription and virulence factors and a brief overview of the major investigations on comprehending these processes over the past few decades in A. baumanni are compiled here. Many investigators have employed genome sequencing techniques to identify the regions that contribute to antibiotic resistance and comparative genomics to study sequence similarities to understand evolutionary trends of resistance gene transfers between isolates. A summary of these studies given here provides an insight into the invasion and successful colonization of the species. The individual roles played by different genes, regulators & promoters, enzymes, metal ions as well as mobile elements in influencing antibiotic resistance are briefly discussed. Precautionary measures and prospects for developing future strategies by exploring promising new research targets in effective control of multidrug resistant A. baumannii are also analyzed.202032303957
980440.9998Antimicrobial Peptides as an Alternative for the Eradication of Bacterial Biofilms of Multi-Drug Resistant Bacteria. Bacterial resistance is an emergency public health problem worldwide, compounded by the ability of bacteria to form biofilms, mainly in seriously ill hospitalized patients. The World Health Organization has published a list of priority bacteria that should be studied and, in turn, has encouraged the development of new drugs. Herein, we explain the importance of studying new molecules such as antimicrobial peptides (AMPs) with potential against multi-drug resistant (MDR) and extensively drug-resistant (XDR) bacteria and focus on the inhibition of biofilm formation. This review describes the main causes of antimicrobial resistance and biofilm formation, as well as the main and potential AMP applications against these bacteria. Our results suggest that the new biomacromolecules to be discovered and studied should focus on this group of dangerous and highly infectious bacteria. Alternative molecules such as AMPs could contribute to eradicating biofilm proliferation by MDR/XDR bacteria; this is a challenging undertaking with promising prospects.202235336016
432950.9998Bacterial resistance: new threats, new challenges. Bacterial resistance remains a major concern. Recently, genetic transfers from saprophytic, non-pathogenic, species to pathogenic S. pneumoniae and N. meningitidis have introduced multiple changes in the penicillin target molecules, leading to rapidly growing penicillin resistance. In enterobacteriaceae, a succession of minute mutations has generated new beta-lactamases with increasingly expanded spectrum, now covering practically all available beta-lactam antibiotics. Resistance emerges in the hospital environment but also, and increasingly, in the community bacteria. Widespread resistance is probably associated with antibiotic use, abuse and misuse but direct causality links are difficult to establish. In some countries as in some hospitals, unusual resistance profiles seem to correspond to unusual antibiotic practices. For meeting the resistance challenge, no simple solutions are available, but combined efforts may help. For improving the situation, the following methods can be proposed. At the world level, a better definition of appropriate antibiotic policies should be sought, together with strong education programmes on the use of antibiotics and the control of cross-infections, plus controls on the strategies used by pharmaceutical companies for promoting antibiotics. At various local levels, accurate guidelines should be adapted to each institution and there should be regularly updated formularies using scientific, and not only economic, criteria; molecular technologies for detecting subtle epidemic variations and emergence of new genes should be developed and regular information on the resistance profiles should be available to all physicians involved in the prevention and therapy of infections.19938149138
943960.9998Antimicrobial resistance, mechanisms and its clinical significance. Antimicrobial agents play a key role in controlling and curing infectious disease. Soon after the discovery of the first antibiotic, the challenge of antibiotic resistance commenced. Antimicrobial agents use different mechanisms against bacteria to prevent their pathogenesis and they can be classified as bactericidal or bacteriostatic. Antibiotics are one of the antimicrobial agents which has several classes, each with different targets. Consequently, bacteria are endlessly using methods to overcome the effectivity of the antibiotics by using distinct types of mechanisms. Comprehending the mechanisms of resistance is vital for better understanding and to continue use of current antibiotics. Which also helps to formulate synthetic antimicrobials to overcome the current mechanism of resistance. Also, encourage in prudent use and misuse of antimicrobial agents. Thus, decline in treatment costs and in the rate of morbidity and mortality. This review will be concentrating on the mechanism of actions of several antibiotics and how bacteria develop resistance to them, as well as the method of acquiring the resistance in several bacteria and how can a strain be resistant to several types of antibiotics. This review also analyzes the prevalence, major clinical implications, clinical causes of antibiotic resistance. Further, it evaluates the global burden of antimicrobial resistance, identifies various challenges and strategies in addressing the issue. Finally, put forward certain recommendations to prevent the spread and reduce the rate of resistance growth.202032201008
979670.9998Bacteriophage therapy to combat MDR non-fermenting Gram-negative bacteria causing nosocomial infections: recent progress and challenges. Clinicians face significant challenges in managing nosocomial infections, primarily due to antimicrobial resistance in multidrug-resistant bacteria. Regardless of the availability of a wide range of antimicrobials in the market, resistance is escalating rampantly with every passing day, which has become a global concern. Hence, it is essential to discover new and more efficient techniques to eliminate pathogens from healthcare settings. Along with eliminating pathogenic bacteria, mitigating their antimicrobial resistance with novel methods is very essential. Recently, bacteriophages have re-emerged as a promising therapeutic alternative to treat serious infections caused by bacterial pathogens. Bacteriophages were discovered for the first time a century ago, but their usage has recently regained more attention in treating bacterial pathogens. Bacteriophages also help in mitigating the worldwide problem of antibiotic resistance, particularly augmented by Gram-negative bacteria. This review discussed the advancements in the usage of bacteriophages in combating the antimicrobial resistance of multidrug-resistant Gram-negative bacteria, with a prime focus on Acinetobacter baumannii, Pseudomonas aeruginosa, and Burkholderia cepacia complex (Bcc), which are renowned non-fermenting Gram-negative bacteria (NFGNB) pathogens. Additionally, the effects of single phage, phage cocktails, and combination therapy with antibiotics on bacterial biofilms and polymicrobial biofilms are also discussed.202540478338
955880.9998Antimicrobial Resistance: Enzymes, Proteins, and Computational Resources. Antimicrobial resistance (AMR) is an important health concern rooted in antibiotic misuse and overuse, resulting in drug-resistant bacteria. However, resistance to these antimicrobials developed as soon as they were administered. Several variables lead to the progression of antimicrobial resistance (AMR), making it a multifaceted challenge for healthcare systems worldwide, such as erroneous diagnosis, inappropriate prescription, incomplete treatment, and many more. Getting an in-depth idea about the mechanism underlying AMR development is essential to overcome this. This review aims to provide information on how various enzymes or proteins aid in the antimicrobial resistance mechanisms and also highlight the clinical perspective of AMR, emphasizing its growing impact on patient outcomes, and incorporate the latest recent data from the World Health Organisation (WHO), underscoring the global urgency of the AMR crisis, with specific attention to trends observed in recent years. Additionally, it is intended to provide ideas about inhibitors that can inhibit the mechanism of antibiotic resistance and also to provide an idea about numerous computational resources available that can be employed to predict genes and/or proteins and enzymes involved in various antibiotic resistance mechanisms.202540770471
667890.9998Bacteriophage Therapy to Combat Microbial Infections and Antimicrobial Resistance. Antimicrobial resistance (AMR) is a global issue; however, in lower resource settings, uncontrolled measures and uncontrolled use of antibiotics in human, animal, and agricultural practices have increased their prevalence in developing countries. Various mechanisms have been implicated to explain the AMR, like the circulation of the plasmid carrying antibiotic resistance genes (ARG), mutation in target genes (intrinsic and plasmid), overexpression of efflux pumps, underexpression of porins, etc. Various therapeutic strategies used to combat AMR exist, such as nonantibiotic approaches (vaccinations or immunotherapy, nano-derived treatments, and bacteriophage therapy), Anti-plasmid and plasmid curing approaches, combinatorial approaches (combination of antibiotics as well as a combination of two different approaches), and plant-based therapeutics. In this focused review, we have discussed the potential use of bacteriophage-based therapy to combat AMR and biofilm formation through multifaceted ways, including lysis of the drug-resistant bacteria, targeting the pili of AMR plasmids conjugation systems, and use of phage-derived lytic proteins. Phages can also be used to decontaminate surfaces in healthcare settings, prevent bacterial contamination in food (meat and dairy), and control bacterial populations in environmental settings, such as water and soil. Therefore, the bacteriophages-based approach served as a dual sword and could not only prevent the spread of infectious diseases but also manage the AMR.202540757460
9565100.9998Finding drug targets in microbial genomes. In this era of genomic science, knowledge about biological function is integrated increasingly with DNA sequence data. One area that has been significantly impacted by this accumulation of information is the discovery of drugs to treat microbial infections. Genome sequencing and bioinformatics is driving the discovery and development of novel classes of broad-spectrum antimicrobial compounds, and could enable medical science to keep pace with the increasing resistance of bacteria, fungi and parasites to current antimicrobials. This review discusses the use of genomic information in the rapid identification of target genes for antimicrobial drug discovery.200111522517
9560110.9998The History of Colistin Resistance Mechanisms in Bacteria: Progress and Challenges. Since 2015, the discovery of colistin resistance genes has been limited to the characterization of new mobile colistin resistance (mcr) gene variants. However, given the complexity of the mechanisms involved, there are many colistin-resistant bacterial strains whose mechanism remains unknown and whose exploitation requires complementary technologies. In this review, through the history of colistin, we underline the methods used over the last decades, both old and recent, to facilitate the discovery of the main colistin resistance mechanisms and how new technological approaches may help to improve the rapid and efficient exploration of new target genes. To accomplish this, a systematic search was carried out via PubMed and Google Scholar on published data concerning polymyxin resistance from 1950 to 2020 using terms most related to colistin. This review first explores the history of the discovery of the mechanisms of action and resistance to colistin, based on the technologies deployed. Then we focus on the most advanced technologies used, such as MALDI-TOF-MS, high throughput sequencing or the genetic toolbox. Finally, we outline promising new approaches, such as omics tools and CRISPR-Cas9, as well as the challenges they face. Much has been achieved since the discovery of polymyxins, through several innovative technologies. Nevertheless, colistin resistance mechanisms remains very complex.202133672663
9800120.9998Regulation of beta-lactamase induction in gram-negative bacteria: a key to understanding the resistance puzzle. Infections caused by drug-resistant microorganisms have posed a medical challenge since the advent of antimicrobial therapy. With the emergence of resistant strains, new antibiotics were available and introduced with great success until this decade. The appearance of multiresistant microorganisms pose a real and immediate public health concern. Are we entering into the post-antibiotic era? Will we return to pre-antimicrobial-era conditions, with morbidity and mortality resulting from untreatable infectious complications? The race to stay ahead of multiresistance involves not only continued drug development and selective use but elucidation of bacterial regulation of resistance. One way to ensure continued success of antimicrobial therapy is the identification of new bacterial targets--genes and their products involved in regulating or mediating resistance. Discussion will focus on one well-defined resistance mechanism in Gram-negative bacteria, the chromosomally located amp operon, responsible for one mechanism of beta-lactam resistance.19947723996
9438130.9998The challenge of antibiotic resistance: need to contemplate. "Survival of the fittest " holds good for men and animals as also for bacteria. A majority of bacteria in nature are nonpathogenic, a large number of them, live as commensals on our body leading a symbiotic existence. A limited population of bacteria which has became pathogenic was also sensitive to antibiotics to begin with. It is the man made antibiotic pressure, which has led to the emergence and spread of resistant genes amongst bacteria. Despite the availability of a large arsenal of antibiotics, the ability of bacteria to become resistant to antibacterial agents is amazing. This is more evident in the hospital settings where the antibiotic usage is maximum. The use of antibiotics is widespread in clinical medicine, agriculture, aquaculture, veterinary practice, poultry and even in household products. The major reason for this is the inappropriate use of antibiotics due to a lack of uniform policy and disregard to hospital infection control practices. The antibiotic cover provided by newer antibiotics has been an important factor responsible for the emergence of multi-drug resistant bacteria. Bacterial infections increase the morbidity and mortality, increase the cost of treatment, and prolong hospital stay adding to the economical burden on the nation. The problem is further compounded by the lack of education and " over the counter " availability of antibiotics in developing countries. Antibiotic resistance is now all pervasive with the developed world as much vulnerable to the problem. Despite advancement in medical technology for diagnosis and patient care, a person can still die of an infection caused by a multi-drug resistant bacteria. It is time to think, plan and formulate a strong antibiotic policy to address the burgeoning hospital infection.200515756040
9806140.9998Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. The discovery of antibiotics has created a turning point in medical interventions to pathogenic infections, but unfortunately, each discovery was consistently followed by the emergence of resistance. The rise of multidrug-resistant bacteria has generated a great challenge to treat infections caused by bacteria with the available antibiotics. Today, research is active in finding new treatments for multidrug-resistant pathogens. In a step to guide the efforts, the WHO has published a list of the most dangerous bacteria that are resistant to current treatments and requires the development of new antibiotics for combating the resistance. Among the list are various Gram-positive bacteria that are responsible for serious healthcare and community-associated infections. Methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and drug-resistant Streptococcus pneumoniae are of particular concern. The resistance of bacteria is an evolving phenomenon that arises from genetic mutations and/or acquired genomes. Thus, antimicrobial resistance demands continuous efforts to create strategies to combat this problem and optimize the use of antibiotics. This article aims to provide a review of the most critical resistant Gram-positive bacterial pathogens, their mechanisms of resistance, and the new treatments and approaches reported to circumvent this problem.202032586045
9574150.9998Treatment of E. coli Infections with T4-Related Bacteriophages Belonging to Class Caudoviricetes: Selecting Phage on the Basis of Their Generalized Transduction Capability. The problem of the multidrug resistance of pathogenic bacteria is a serious concern, one which only becomes more pressing with every year that passes, motivating scientists to look for new therapeutic agents. In this situation, phage therapy, i.e., the use of phages to combat bacterial infections, is back in the spotlight of research interest. Bacterial viruses are highly strain-specific towards their hosts, which makes them particularly valuable for targeting pathogenic variants amidst non-pathogenic microflora, represented by such commensals of animals and humans as E. coli, S. aureus, etc. However, selecting phages for the treatment of bacterial infections is a complex task. The prospective candidates should meet a number of criteria; in particular, the selected phage must not contain potentially dangerous genes (e.g., antibiotic resistance genes, genes of toxins and virulence factors etc.)-or be capable of transferring them from their hosts. This work introduces a new approach to selecting T4-related coliphages; it allows one to identify strains which may be safer in terms of involvement in the horizontal gene transfer. The approach is based on the search for genes that reduce the frequency of genetic transduction.202540431712
9518160.9998Relevance of the Adjuvant Effect between Cellular Homeostasis and Resistance to Antibiotics in Gram-Negative Bacteria with Pathogenic Capacity: A Study of Klebsiella pneumoniae. Antibiotic resistance has become a global issue. The most significant risk is the acquisition of these mechanisms by pathogenic bacteria, which can have a severe clinical impact and pose a public health risk. This problem assumes that bacterial fitness is a constant phenomenon and should be approached from an evolutionary perspective to develop the most appropriate and effective strategies to contain the emergence of strains with pathogenic potential. Resistance mechanisms can be understood as adaptive processes to stressful conditions. This review examines the relevance of homeostatic regulatory mechanisms in antimicrobial resistance mechanisms. We focus on the interactions in the cellular physiology of pathogenic bacteria, particularly Gram-negative bacteria, and specifically Klebsiella pneumoniae. From a clinical research perspective, understanding these interactions is crucial for comprehensively understanding the phenomenon of resistance and developing more effective drugs and treatments to limit or attenuate bacterial sepsis, since the most conserved adjuvant phenomena in bacterial physiology has turned out to be more optimized and, therefore, more susceptible to alterations due to pharmacological action.202438927157
9576170.9998Review on Multiple Facets of Drug Resistance: A Rising Challenge in the 21st Century. With the advancements of science, antibiotics have emerged as an amazing gift to the human and animal healthcare sectors for the treatment of bacterial infections and other diseases. However, the evolution of new bacterial strains, along with excessive use and reckless consumption of antibiotics have led to the unfolding of antibiotic resistances to an excessive level. Multidrug resistance is a potential threat worldwide, and is escalating at an extremely high rate. Information related to drug resistance, and its regulation and control are still very little. To interpret the onset of antibiotic resistances, investigation on molecular analysis of resistance genes, their distribution and mechanisms are urgently required. Fine-tuned research and resistance profile regarding ESKAPE pathogen is also necessary along with other multidrug resistant bacteria. In the present scenario, the interaction of bacterial infections with SARS-CoV-2 is also crucial. Tracking and in-silico analysis of various resistance mechanisms or gene/s are crucial for overcoming the problem, and thus, the maintenance of relevant databases and wise use of antibiotics should be promoted. Creating awareness of this critical situation among individuals at every level is important to strengthen the fight against this fast-growing calamity. The review aimed to provide detailed information on antibiotic resistance, its regulatory molecular mechanisms responsible for the resistance, and other relevant information. In this article, we tried to focus on the correlation between antimicrobial resistance and the COVID-19 pandemic. This study will help in developing new interventions, potential approaches, and strategies to handle the complexity of antibiotic resistance and prevent the incidences of life-threatening infections.202134940513
9440180.9998The Case against Antibiotics and for Anti-Virulence Therapeutics. Although antibiotics have been indispensable in the advancement of modern medicine, there are downsides to their use. Growing resistance to broad-spectrum antibiotics is leading to an epidemic of infections untreatable by first-line therapies. Resistance is exacerbated by antibiotics used as growth factors in livestock, over-prescribing by doctors, and poor treatment adherence by patients. This generates populations of resistant bacteria that can then spread resistance genes horizontally to other bacterial species, including commensals. Furthermore, even when antibiotics are used appropriately, they harm commensal bacteria leading to increased secondary infection risk. Effective antibiotic treatment can induce bacterial survival tactics, such as toxin release and increasing resistance gene transfer. These problems highlight the need for new approaches to treating bacterial infection. Current solutions include combination therapies, narrow-spectrum therapeutics, and antibiotic stewardship programs. These mediate the issues but do not address their root cause. One emerging solution to these problems is anti-virulence treatment: preventing bacterial pathogenesis instead of using bactericidal agents. In this review, we discuss select examples of potential anti-virulence targets and strategies that could be developed into bacterial infection treatments: the bacterial type III secretion system, quorum sensing, and liposomes.202134683370
9801190.9998Problems and changing patterns of resistance with gram-negative bacteria. Throughout the antibiotic era, the emergence of drug-resistant bacteria has paralleled the development of new antimicrobial agents. As a result of selection pressures and invasive techniques that prolong the lives of seriously ill hospital patients, gram-negative bacilli have become the dominant causes of nosocomial infection. These microorganisms produce a diversity of antibiotic-inactivating enzymes. Moreover, the cell envelope of gram-negative bacteria provides a series of barriers that keep antibiotics from reaching their targets. Resistance factors can be transmitted among bacteria of different genera and species, thus conferring multidrug resistance. These problems continue to challenge scientists to better understand resistance mechanisms and to develop new compounds to circumvent them.19853909311