Antibiotic use in developing countries. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
957001.0000Antibiotic use in developing countries. Antimicrobials have been used successfully for over 6 decades, but genes expressing resistance to them have emerged in strains of bacteria and have disseminated through the global ecosystem to reach infecting microorganisms, produce disease, and seriously interfere with therapy, allowing infections to progress and kill despite antibiotic administration. The upsurge in prevalence of such resistance genes in the bacterial population that colonize and infect humans involves two processes, emergence and dissemination, in both of which there have been contributions from the developing world, where resistance is common and increasing. The emergence of pneumococcal isolates noted in Papua New Guinea and later in South Africa that 1 decade later spread to most of the world and the intercontinental spread between the United States and Venezuela of a new gentamicin resistance gene carried on an epidemic plasmid are examples of the ability of bacteria to travel freely, without regard to borders. Complex societal issues such as the misuse of antibiotics by physicians, pharmacists, and the public; the suboptimal quality of the drugs (emergence); and conditions such as crowding, lack of hygiene, poor or nonexistent hospital infection control practices, or insufficient surveillance (dissemination) play a largely unmeasured role that requires study and solutions. In the meantime, we may intervene to delay the emergence of resistance and to limit its spread by promoting the judicious use of antibiotics both at the local level as well as from multinational organized cooperative efforts. Education and improvement of surveillance and socioeconomic conditions are integral parts of any solution strategy.200010879571
956910.9999The global epidemic nature of antimicrobial resistance and the need to monitor and manage it locally. An antimicrobial agent may be used for years before a gene expressing resistance to it emerges in a strain of bacteria somewhere. Progeny of that strain, or of others to which the gene is transferred, may then disseminate preferentially through global networks of bacterial populations on people or animals treated with that agent or with other agents as the gene becomes linked to genes expressing resistance to them. Over 100 resistance genes-varying in their frequency of emergence, vectors, linkages, and pathways-have thus emerged, reemerged, converged, and disseminated irregularly through the world's bacterial ecosystems over the last 60 years to reach infecting strains and block treatment of infection. We may delay emergence by using agents less and retard dissemination by good hygiene, infection control measures, and avoidance of agents that select for resistance genes in contiguous populations. Local monitoring and management of resistance appear essential because of the intricacies of tracing and targeting the problems at each place and because national or global surveillance and strategy develop from local information and understanding.19978994775
943820.9999The challenge of antibiotic resistance: need to contemplate. "Survival of the fittest " holds good for men and animals as also for bacteria. A majority of bacteria in nature are nonpathogenic, a large number of them, live as commensals on our body leading a symbiotic existence. A limited population of bacteria which has became pathogenic was also sensitive to antibiotics to begin with. It is the man made antibiotic pressure, which has led to the emergence and spread of resistant genes amongst bacteria. Despite the availability of a large arsenal of antibiotics, the ability of bacteria to become resistant to antibacterial agents is amazing. This is more evident in the hospital settings where the antibiotic usage is maximum. The use of antibiotics is widespread in clinical medicine, agriculture, aquaculture, veterinary practice, poultry and even in household products. The major reason for this is the inappropriate use of antibiotics due to a lack of uniform policy and disregard to hospital infection control practices. The antibiotic cover provided by newer antibiotics has been an important factor responsible for the emergence of multi-drug resistant bacteria. Bacterial infections increase the morbidity and mortality, increase the cost of treatment, and prolong hospital stay adding to the economical burden on the nation. The problem is further compounded by the lack of education and " over the counter " availability of antibiotics in developing countries. Antibiotic resistance is now all pervasive with the developed world as much vulnerable to the problem. Despite advancement in medical technology for diagnosis and patient care, a person can still die of an infection caused by a multi-drug resistant bacteria. It is time to think, plan and formulate a strong antibiotic policy to address the burgeoning hospital infection.200515756040
432930.9999Bacterial resistance: new threats, new challenges. Bacterial resistance remains a major concern. Recently, genetic transfers from saprophytic, non-pathogenic, species to pathogenic S. pneumoniae and N. meningitidis have introduced multiple changes in the penicillin target molecules, leading to rapidly growing penicillin resistance. In enterobacteriaceae, a succession of minute mutations has generated new beta-lactamases with increasingly expanded spectrum, now covering practically all available beta-lactam antibiotics. Resistance emerges in the hospital environment but also, and increasingly, in the community bacteria. Widespread resistance is probably associated with antibiotic use, abuse and misuse but direct causality links are difficult to establish. In some countries as in some hospitals, unusual resistance profiles seem to correspond to unusual antibiotic practices. For meeting the resistance challenge, no simple solutions are available, but combined efforts may help. For improving the situation, the following methods can be proposed. At the world level, a better definition of appropriate antibiotic policies should be sought, together with strong education programmes on the use of antibiotics and the control of cross-infections, plus controls on the strategies used by pharmaceutical companies for promoting antibiotics. At various local levels, accurate guidelines should be adapted to each institution and there should be regularly updated formularies using scientific, and not only economic, criteria; molecular technologies for detecting subtle epidemic variations and emergence of new genes should be developed and regular information on the resistance profiles should be available to all physicians involved in the prevention and therapy of infections.19938149138
433340.9999New trends in regulatory rules and surveillance of antimicrobial resistance in bacteria of animal origin. Since the introduction in the 1940s of antibiotics as drugs against bacterial infections in human and then veterinary medicine, two major events have caused a shift in the antibiotherapy era: (1) the emergence of resistant bacteria and (2) the awareness of the limits of new drug development. It rapidly became urgent to set up measures in order to evaluate the importance of resistant bacteria and their origin as well as to limit the dissemination of resistant vectors (bacteria and bacterial genes). This led to the establishment of guidelines and regulatory rules necessary for risk assessment and clearly dependent upon monitoring and research organisations. At a veterinary level, the possible dissemination of multiresistant bacteria from animals to humans, through feeding, urged various national European and international institutions to give general recommendations to monitor and contain the emergence and diffusion of resistant strains. This paper gives an overview of the evolution of regulatory rules and monitoring systems dealing with multiresistant bacteria.200111432426
420050.9999Antibiotic resistance: are we all doomed? Antibiotic resistance is a growing and worrying problem associated with increased deaths and suffering for people. Overall, there are only two factors that drive antimicrobial resistance, and both can be controlled. These factors are the volumes of antimicrobials used and the spread of resistant micro-organisms and/or the genes encoding for resistance. The One Health concept is important if we want to understand better and control antimicrobial resistance. There are many things we can do to better control antimicrobial resistance. We need to prevent infections. We need to have better surveillance with good data on usage patterns and resistance patterns available across all sectors, both human and agriculture, locally and internationally. We need to act on these results when we see either inappropriate usage or resistance levels rising in bacteria that are of concern for people. We need to ensure that food and water sources do not spread multi-resistant micro-organisms or resistance genes. We need better approaches to restrict successfully what and how antibiotics are used in people. We need to restrict the use of 'critically important' antibiotics in food animals and the entry of these drugs into the environment. We need to ensure that 'One Health' concept is not just a buzz word but implemented. We need to look at all sectors and control not only antibiotic use but also the spread and development of antibiotic resistant bacteria - both locally and internationally.201526563691
667660.9998Genomic interplay in bacterial communities: implications for growth promoting practices in animal husbandry. The discovery of antibiotics heralded the start of a "Golden Age" in the history of medicine. Over the years, the use of antibiotics extended beyond medical practice into animal husbandry, aquaculture and agriculture. Now, however, we face the worldwide threat of diseases caused by pathogenic bacteria that are resistant to all existing major classes of antibiotic, reflecting the possibility of an end to the antibiotic era. The seriousness of the threat is underscored by the severely limited production of new classes of antibiotics. Evolution of bacteria resistant to multiple antibiotics results from the inherent genetic capability that bacteria have to adapt rapidly to changing environmental conditions. Consequently, under antibiotic selection pressures, bacteria have acquired resistance to all classes of antibiotics, sometimes very shortly after their introduction. Arguably, the evolution and rapid dissemination of multiple drug resistant genes en-masse across microbial pathogens is one of the most serious threats to human health. In this context, effective surveillance strategies to track the development of resistance to multiple antibiotics are vital to managing global infection control. These surveillance strategies are necessary for not only human health but also for animal health, aquaculture and plant production. Shortfalls in the present surveillance strategies need to be identified. Raising awareness of the genetic events that promote co-selection of resistance to multiple antimicrobials is an important prerequisite to the design and implementation of molecular surveillance strategies. In this review we will discuss how lateral gene transfer (LGT), driven by the use of low-dose antibiotics in animal husbandry, has likely played a significant role in the evolution of multiple drug resistance (MDR) in Gram-negative bacteria and has complicated molecular surveillance strategies adopted for predicting imminent resistance threats.201425161648
419970.9998Resistance in bacteria of the food chain: epidemiology and control strategies. Bacteria have evolved multiple mechanisms for the efficient evolution and spread of antimicrobial resistance. Modern food production facilitates the emergence and spread of resistance through the intensive use of antimicrobial agents and international trade of both animals and food products. The main route of transmission between food animals and humans is via food products, although other modes of transmission, such as direct contact and through the environment, also occur. Resistance can spread as resistant pathogens or via transferable genes in different commensal bacteria, making quantification of the transmission difficult. The exposure of humans to antimicrobial resistance from food animals can be controlled by either limiting the selective pressure from antimicrobial usage or by limiting the spread of the bacteria/genes. A number of control options are reviewed, including drug licensing, removing financial incentives, banning or restricting the use of certain drugs, altering prescribers behavior, improving animal health, improving hygiene and implementing microbial criteria for certain types of resistant pathogens for use in the control of trade of both food animals and food.200818847409
420180.9998Antimicrobial Resistance on Farms: A Review Including Biosecurity and the Potential Role of Disinfectants in Resistance Selection. Resistance to therapeutic antimicrobial agents is recognized as a growing problem for both human and veterinary medicine, and the need to address the issue in both of these linked domains is a current priority in public policy. Efforts to limit antimicrobial resistance (AMR) on farms have so far focused on control of the supply and use of antimicrobial drugs, plus husbandry measures to reduce infectious disease. In the United Kingdom and some other countries, substantial progress has been made recently against targets on agricultural antimicrobial drug use. However, evidence suggests that resistant pathogenic and commensal bacteria can persist and spread within and between premises despite declining or zero antimicrobial drug use. Reasons for this are likely complex and varied but may include: bacterial adaptations to ameliorate fitness costs associated with maintenance and replication of resistance genes and associated proteins, horizontal transmission of genetic resistance determinants between bacteria, physical transfer of bacteria via movement (of animals, workers, and equipment), ineffective cleaning and disinfection, and co-selection of resistance to certain drugs by use of other antimicrobials, heavy metals, or biocides. Areas of particular concern for public health include extended-spectrum cephalosporinases and fluoroquinolone resistance among Enterobacteriaceae, livestock-associated methicillin-resistant Staphylococcus aureus, and the emergence of transmissible colistin resistance. Aspects of biosecurity have repeatedly been identified as risk factors for the presence of AMR on farm premises, but there are large gaps in our understanding of the most important risk factors and the most effective interventions. The present review aims to summarize the present state of knowledge in this area, from a European perspective.201933336931
979490.9998Antibiotic resistance in developing countries. During the past decade there have been major changes in the susceptibility of bacteria that cause various infections. Resistance to anti-infective agents, including antibiotics, is worldwide, both in developed and developing countries. Almost all bacterial species can develop resistance to anti-infective agents and resistance can readily be transferred among bacteria by transmissible elements (plasmids). Measures to prevent the emergence of resistance must be implemented urgently. A multiplicity of factors drive antibiotic resistance and solutions require the collaboration of governmental agencies, pharmaceutical companies, healthcare providers and consumers. Knowledge of resistance patterns and of the ways by which resistance is overcome is vital to the future of antimicrobial chemotherapy.200111434528
4197100.9998Antibiotic-resistant bacteria: a challenge for the food industry. Antibiotic-resistant bacteria were first described in the 1940s, but whereas new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. At present, the paucity of new antimicrobials coming into the market has led to the problem of antibiotic resistance fast escalating into a global health crisis. Although the selective pressure exerted by the use of antibiotics (particularly overuse or misuse) has been deemed the major factor in the emergence of bacterial resistance to these antimicrobials, concerns about the role of the food industry have been growing in recent years and have been raised at both national and international levels. The selective pressure exerted by the use of antibiotics (primary production) and biocides (e.g., disinfectants, food and feed preservatives, or decontaminants) is the main driving force behind the selection and spread of antimicrobial resistance throughout the food chain. Genetically modified (GM) crops with antibiotic resistance marker genes, microorganisms added intentionally to the food chain (probiotic or technological) with potentially transferable antimicrobial resistance genes, and food processing technologies used at sub-lethal doses (e.g., alternative non-thermal treatments) are also issues for concern. This paper presents the main trends in antibiotic resistance and antibiotic development in recent decades, as well as their economic and health consequences, current knowledge concerning the generation, dissemination, and mechanisms of antibacterial resistance, progress to date on the possible routes for emergence of resistance throughout the food chain and the role of foods as a vehicle for antibiotic-resistant bacteria. The main approaches to prevention and control of the development, selection, and spread of antibacterial resistance in the food industry are also addressed.201323035919
4064110.9998Antimicrobial resistance. The development of antimicrobial drugs, and particularly of antibiotics, has played a considerable role in substantially reducing the morbidity and mortality rates of many infectious diseases. However, the fact that bacteria can develop resistance to antibiotics has produced a situation where antimicrobial agents are losing their effectiveness because of the spread and persistence of drug-resistant organisms. To combat this, more and more antibiotics with increased therapeutic and prophylactic action will need to be developed.This article is concerned with antibiotic resistance in bacteria which are pathogenic to man and animals. The historical background is given, as well as some information on the present situation and trends of antibiotic resistance to certain bacteria in different parts of the world. Considerable concern is raised over the use of antibiotics in man and animals. It is stated that antibiotic resistance in human pathogens is widely attributed to the "misuse" of antibiotics for treatment and prophylaxis in man and to the administration of antibiotics to animals for a variety of purposes (growth promotion, prophylaxis, or therapy), leading to the accumulation of resistant bacteria in their flora. Factors favouring the development of resistance are discussed.19836603914
4063120.9998The 2000 Garrod lecture. Factors impacting on the problem of antibiotic resistance. Antibiotic resistance has become a major clinical and public health problem within the lifetime of most people living today. Confronted by increasing amounts of antibiotics over the past 60 years, bacteria have responded to the deluge with the propagation of progeny no longer susceptible to them. While it is clear that antibiotics are pivotal in the selection of bacterial resistance, the spread of resistance genes and of resistant bacteria also contributes to the problem. Selection of resistant forms can occur during or after antimicrobial treatment; antibiotic residues can be found in the environment for long periods of time after treatment. Besides antibiotics, there is the mounting use of other agents aimed at destroying bacteria, namely the surface antibacterials now available in many household products. These too enter the environment. The stage is thus set for an altered microbial ecology, not only in terms of resistant versus susceptible bacteria, but also in terms of the kinds of microorganisms surviving in the treated environment. We currently face multiresistant infectious disease organisms that are difficult and, sometimes, impossible to treat successfully. In order to curb the resistance problem, we must encourage the return of the susceptible commensal flora. They are our best allies in reversing antibiotic resistance.200211751763
4115130.9998Antibiotic Use for Growth Promotion in Animals: Ecologic and Public Health Consequences. Antibiotics have successfully treated infectious diseases in man, animals and agricultural plants. However, one consequence of usage at any level, subtherapeutic or therapeutic, has been selection of microorganisms resistant to these valuable agents. Today clinicians worldwide face singly resistant and multiply resistant bacteria which complicate treatment of even common infectious agents. This situation calls for a critical evaluation of the numerous ways in which antibiotics are being used so as to evaluate benefits and risks. About half of the antibiotics produced in the United States arc used in animals, chiefly in subtherapeutic amounts for growth promotion. This usage is for prolonged periods leading to selection of multiply-resistant bacteria which enter a common environmental pool. From there, resistance determinants from different sources spread from one bacterium to another, from one animal host to another, from one area to another. The same resistance determinants have been traced to many different genera associated with humans, animals and foods where they pose a continued threat to public health. Since alternative measures for growth promotion, such as antimicrobials which are not used for human therapy and which do not select for multiple-resistances are available, their use, instead of antibiotics, would remove a major factor contributing to the environmental pool of transferable resistance genes.198730965484
4072140.9998A horizontal transmission of genetic information and its importance for development of antibiotics resistance. Genetic information is transmitted among organisms through two pathways - vertically from generation to generation (from parents to progeny) and horizontally (laterally) by direct exchange of genetic material across species barriers. These are primarily prokaryotes, in which the exchange of genes or whole gene segments by horizontal transmission is quite common. They can dynamically and in a relatively short time generate highly diverse genomes, which does not allow the vertical transmission. As a result, prokaryotes can rapidly acquire new properties such as virulence and pathogenicity as well as resistance to toxins, including antibiotics, by which they increase their adaptability. Therefore, reinfection-resistant microorganisms are always more difficult to treat than infections caused by non-resistant bacteria. Antibiotic resistance today is a global problem of health care service. Not only does the number of diseases caused by resistant pathogenic strains of bacteria increase, but also the cost of treatment increases disproportionately, the length of hospitalization is prolonged, and mortality is often rising. Therefore, when indicating antibiotic therapy, it is important to keep in mind that both overuse and abuse of antibiotics contribute to the spread of antibiotic resistance genes. This is equally true for antibiotic applications in veterinary medicine, agriculture, including aquacultures, or in the food industry. Keywords: horizontal transmission of genetic information, endosymbiosis, antibiotic resistance, risks of the emergence and spread of antibiotic resistance, prevention of antibiotic resistance.201830441943
4198150.9998Antimicrobial resistance in bacteria from food-producing animals. risk management tools and strategies. The application of antimicrobial agents has proved to be the main risk factor for development, selection and spread of antimicrobial resistance. This link applies to the use of antimicrobial agents in human and in veterinary medicine. Furthermore, antimicrobial-resistant bacteria and resistant genes can be transmitted from animals to humans either by direct contact or via the food chain. In this context, risk management has to be discussed regarding prevention and control of the already existing antimicrobial resistance. One of the primary risk management measures in order to control the development and spread of antimicrobial resistances is by regulating the use of antimicrobial agents and subjecting their use to guidelines. Thereby, the occurrence of antimicrobial resistant bacteria in the human and veterinary habitat can be controlled to a certain degree. There is little information about past attempts to prevent the development of resistances or to control them, and even less is known about the effectiveness or the cost intensiveness of such efforts. Most of the strategies focus on preventing and controlling antimicrobial resistance by means of the reduction or limitation of the use of antimicrobial agents in food-producing animals.200415525378
9452160.9998Bacteriophages in the Control of Aeromonas sp. in Aquaculture Systems: An Integrative View. Aeromonas species often cause disease in farmed fish and are responsible for causing significant economic losses worldwide. Although vaccination is the ideal method to prevent infectious diseases, there are still very few vaccines commercially available in the aquaculture field. Currently, aquaculture production relies heavily on antibiotics, contributing to the global issue of the emergence of antimicrobial-resistant bacteria and resistance genes. Therefore, it is essential to develop effective alternatives to antibiotics to reduce their use in aquaculture systems. Bacteriophage (or phage) therapy is a promising approach to control pathogenic bacteria in farmed fish that requires a heavy understanding of certain factors such as the selection of phages, the multiplicity of infection that produces the best bacterial inactivation, bacterial resistance, safety, the host's immune response, administration route, phage stability and influence. This review focuses on the need to advance phage therapy research in aquaculture, its efficiency as an antimicrobial strategy and the critical aspects to successfully apply this therapy to control Aeromonas infection in fish.202235203766
4069170.9998Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.202134360847
6678180.9998Bacteriophage Therapy to Combat Microbial Infections and Antimicrobial Resistance. Antimicrobial resistance (AMR) is a global issue; however, in lower resource settings, uncontrolled measures and uncontrolled use of antibiotics in human, animal, and agricultural practices have increased their prevalence in developing countries. Various mechanisms have been implicated to explain the AMR, like the circulation of the plasmid carrying antibiotic resistance genes (ARG), mutation in target genes (intrinsic and plasmid), overexpression of efflux pumps, underexpression of porins, etc. Various therapeutic strategies used to combat AMR exist, such as nonantibiotic approaches (vaccinations or immunotherapy, nano-derived treatments, and bacteriophage therapy), Anti-plasmid and plasmid curing approaches, combinatorial approaches (combination of antibiotics as well as a combination of two different approaches), and plant-based therapeutics. In this focused review, we have discussed the potential use of bacteriophage-based therapy to combat AMR and biofilm formation through multifaceted ways, including lysis of the drug-resistant bacteria, targeting the pili of AMR plasmids conjugation systems, and use of phage-derived lytic proteins. Phages can also be used to decontaminate surfaces in healthcare settings, prevent bacterial contamination in food (meat and dairy), and control bacterial populations in environmental settings, such as water and soil. Therefore, the bacteriophages-based approach served as a dual sword and could not only prevent the spread of infectious diseases but also manage the AMR.202540757460
4081190.9998Factors promoting and limiting antimicrobial resistance in the environment - Existing knowledge gaps. The dissemination of multidrug-resistant bacteria strains and genes carrying antibiotic resistance is currently considered to be one of the most important global problem. The WHO calls for the need to contain the spread of Antimicrobial Resistance (AMR) from all possible sources. There have been many international actions grouping scientists studying this phenomenon, and quite a lot of scientific projects devoted to this problem have already been carried out. As well, so far several strategies have been developed that can inhibit the AMR spread. In this mini-review, we highlight overlooked aspects that seem to be crucial for creating a comprehensive picture of AMR, especially in the context of One Health approach.202236204635