# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9554 | 0 | 1.0000 | A multi-label learning framework for predicting antibiotic resistance genes via dual-view modeling. The increasing prevalence of antibiotic resistance has become a global health crisis. For the purpose of safety regulation, it is of high importance to identify antibiotic resistance genes (ARGs) in bacteria. Although culture-based methods can identify ARGs relatively more accurately, the identifying process is time-consuming and specialized knowledge is required. With the rapid development of whole genome sequencing technology, researchers attempt to identify ARGs by computing sequence similarity from public databases. However, these computational methods might fail to detect ARGs due to the low sequence identity to known ARGs. Moreover, existing methods cannot effectively address the issue of multidrug resistance prediction for ARGs, which is a great challenge to clinical treatments. To address the challenges, we propose an end-to-end multi-label learning framework for predicting ARGs. More specifically, the task of ARGs prediction is modeled as a problem of multi-label learning, and a deep neural network-based end-to-end framework is proposed, in which a specific loss function is introduced to employ the advantage of multi-label learning for ARGs prediction. In addition, a dual-view modeling mechanism is employed to make full use of the semantic associations among two views of ARGs, i.e. sequence-based information and structure-based information. Extensive experiments are conducted on publicly available data, and experimental results demonstrate the effectiveness of the proposed framework on the task of ARGs prediction. | 2022 | 35272349 |
| 4002 | 1 | 0.9998 | Targeting bioinformatics tools to study the dissemination and spread of antibiotic resistant genes in the environment and clinical settings. Antibiotic resistance has expanded as a result of the careless use of antibiotics in the medical field, the food industry, agriculture, and other industries. By means of genetic recombination between commensal and pathogenic bacteria, the microbes obtain antibiotic resistance genes (ARGs). In bacteria, horizontal gene transfer (HGT) is the main mechanism for acquiring ARGs. With the development of high-throughput sequencing, ARG sequence analysis is now feasible and widely available. Preventing the spread of AMR in the environment requires the implementation of ARGs mapping. The metagenomic technique, in particular, has helped in identifying antibiotic resistance within microbial communities. Due to the exponential growth of experimental and clinical data, significant investments in computer capacity, and advancements in algorithmic techniques, the application of machine learning (ML) algorithms to the problem of AMR has attracted increasing attention over the past five years. The review article sheds a light on the application of bioinformatics for the antibiotic resistance monitoring. The most advanced tool currently being employed to catalog the resistome of various habitats are metagenomics and metatranscriptomics. The future lies in the hands of artificial intelligence (AI) and machine learning (ML) methods, to predict and optimize the interaction of antibiotic-resistant compounds with target proteins. | 2025 | 39552541 |
| 9557 | 2 | 0.9998 | Antimicrobial Resistance Profile by Metagenomic and Metatranscriptomic Approach in Clinical Practice: Opportunity and Challenge. The burden of bacterial resistance to antibiotics affects several key sectors in the world, including healthcare, the government, and the economic sector. Resistant bacterial infection is associated with prolonged hospital stays, direct costs, and costs due to loss of productivity, which will cause policy makers to adjust their policies. Current widely performed procedures for the identification of antibiotic-resistant bacteria rely on culture-based methodology. However, some resistance determinants, such as free-floating DNA of resistance genes, are outside the bacterial genome, which could be potentially transferred under antibiotic exposure. Metagenomic and metatranscriptomic approaches to profiling antibiotic resistance offer several advantages to overcome the limitations of the culture-based approach. These methodologies enhance the probability of detecting resistance determinant genes inside and outside the bacterial genome and novel resistance genes yet pose inherent challenges in availability, validity, expert usability, and cost. Despite these challenges, such molecular-based and bioinformatics technologies offer an exquisite advantage in improving clinicians' diagnoses and the management of resistant infectious diseases in humans. This review provides a comprehensive overview of next-generation sequencing technologies, metagenomics, and metatranscriptomics in assessing antimicrobial resistance profiles. | 2022 | 35625299 |
| 9553 | 3 | 0.9998 | A machine learning framework to predict antibiotic resistance traits and yet unknown genes underlying resistance to specific antibiotics in bacterial strains. Recently, the frequency of observing bacterial strains without known genetic components underlying phenotypic resistance to antibiotics has increased. There are several strains of bacteria lacking known resistance genes; however, they demonstrate resistance phenotype to drugs of that family. Although such strains are fewer compared to the overall population, they pose grave emerging threats to an already heavily challenged area of antimicrobial resistance (AMR), where death tolls have reached ~700 000 per year and a grim projection of ~10 million deaths per year by 2050 looms. Considering the fact that development of novel antibiotics is not keeping pace with the emergence and dissemination of resistance, there is a pressing need to decipher yet unknown genetic mechanisms of resistance, which will enable developing strategies for the best use of available interventions and show the way for the development of new drugs. In this study, we present a machine learning framework to predict novel AMR factors that are potentially responsible for resistance to specific antimicrobial drugs. The machine learning framework utilizes whole-genome sequencing AMR genetic data and antimicrobial susceptibility testing phenotypic data to predict resistance phenotypes and rank AMR genes by their importance in discriminating the resistance from the susceptible phenotypes. In summary, we present here a bioinformatics framework for training machine learning models, evaluating their performances, selecting the best performing model(s) and finally predicting the most important AMR loci for the resistance involved. | 2021 | 34015806 |
| 5100 | 4 | 0.9998 | DeepPBI-KG: a deep learning method for the prediction of phage-bacteria interactions based on key genes. Phages, the natural predators of bacteria, were discovered more than 100 years ago. However, increasing antimicrobial resistance rates have revitalized phage research. Methods that are more time-consuming and efficient than wet-laboratory experiments are needed to help screen phages quickly for therapeutic use. Traditional computational methods usually ignore the fact that phage-bacteria interactions are achieved by key genes and proteins. Methods for intraspecific prediction are rare since almost all existing methods consider only interactions at the species and genus levels. Moreover, most strains in existing databases contain only partial genome information because whole-genome information for species is difficult to obtain. Here, we propose a new approach for interaction prediction by constructing new features from key genes and proteins via the application of K-means sampling to select high-quality negative samples for prediction. Finally, we develop DeepPBI-KG, a corresponding prediction tool based on feature selection and a deep neural network. The results show that the average area under the curve for prediction reached 0.93 for each strain, and the overall AUC and area under the precision-recall curve reached 0.89 and 0.92, respectively, on the independent test set; these values are greater than those of other existing prediction tools. The forward and reverse validation results indicate that key genes and key proteins regulate and influence the interaction, which supports the reliability of the model. In addition, intraspecific prediction experiments based on Klebsiella pneumoniae data demonstrate the potential applicability of DeepPBI-KG for intraspecific prediction. In summary, the feature engineering and interaction prediction approaches proposed in this study can effectively improve the robustness and stability of interaction prediction, can achieve high generalizability, and may provide new directions and insights for rapid phage screening for therapy. | 2024 | 39344712 |
| 4298 | 5 | 0.9998 | Genomic and Metagenomic Approaches for Predictive Surveillance of Emerging Pathogens and Antibiotic Resistance. Antibiotic-resistant organisms (AROs) are a major concern to public health worldwide. While antibiotics have been naturally produced by environmental bacteria for millions of years, modern widespread use of antibiotics has enriched resistance mechanisms in human-impacted bacterial environments. Antibiotic resistance genes (ARGs) continue to emerge and spread rapidly. To combat the global threat of antibiotic resistance, researchers must develop methods to rapidly characterize AROs and ARGs, monitor their spread across space and time, and identify novel ARGs and resistance pathways. We review how high-throughput sequencing-based methods can be combined with classic culture-based assays to characterize, monitor, and track AROs and ARGs. Then, we evaluate genomic and metagenomic methods for identifying ARGs and biosynthetic pathways for novel antibiotics from genomic data sets. Together, these genomic analyses can improve surveillance and prediction of emerging resistance threats and accelerate the development of new antibiotic therapies to combat resistance. | 2019 | 31172511 |
| 9744 | 6 | 0.9998 | PARGT: a software tool for predicting antimicrobial resistance in bacteria. With the ever-increasing availability of whole-genome sequences, machine-learning approaches can be used as an alternative to traditional alignment-based methods for identifying new antimicrobial-resistance genes. Such approaches are especially helpful when pathogens cannot be cultured in the lab. In previous work, we proposed a game-theory-based feature evaluation algorithm. When using the protein characteristics identified by this algorithm, called 'features' in machine learning, our model accurately identified antimicrobial resistance (AMR) genes in Gram-negative bacteria. Here we extend our study to Gram-positive bacteria showing that coupling game-theory-identified features with machine learning achieved classification accuracies between 87% and 90% for genes encoding resistance to the antibiotics bacitracin and vancomycin. Importantly, we present a standalone software tool that implements the game-theory algorithm and machine-learning model used in these studies. | 2020 | 32620856 |
| 4100 | 7 | 0.9997 | Mathematical modelling to study the horizontal transfer of antimicrobial resistance genes in bacteria: current state of the field and recommendations. Antimicrobial resistance (AMR) is one of the greatest public health challenges we are currently facing. To develop effective interventions against this, it is essential to understand the processes behind the spread of AMR. These are partly dependent on the dynamics of horizontal transfer of resistance genes between bacteria, which can occur by conjugation (direct contact), transformation (uptake from the environment) or transduction (mediated by bacteriophages). Mathematical modelling is a powerful tool to investigate the dynamics of AMR; however, the extent of its use to study the horizontal transfer of AMR genes is currently unclear. In this systematic review, we searched for mathematical modelling studies that focused on horizontal transfer of AMR genes. We compared their aims and methods using a list of predetermined criteria and used our results to assess the current state of this research field. Of the 43 studies we identified, most focused on the transfer of single genes by conjugation in Escherichia coli in culture and its impact on the bacterial evolutionary dynamics. Our findings highlight the existence of an important research gap in the dynamics of transformation and transduction and the overall public health implications of horizontal transfer of AMR genes. To further develop this field and improve our ability to control AMR, it is essential that we clarify the structural complexity required to study the dynamics of horizontal gene transfer, which will require cooperation between microbiologists and modellers. | 2019 | 31409239 |
| 9567 | 8 | 0.9997 | How to discover new antibiotic resistance genes? Antibiotic resistance (AR) is a worldwide concern and the description of AR have been discovered mainly because of their implications in human medicine. Since the recent burden of whole-genome sequencing of microorganisms, the number of new AR genes (ARGs) have dramatically increased over the last decade. Areas covered: In this review, we will describe the different methods that could be used to characterize new ARGs using classic or innovative methods. First, we will focus on the biochemical methods, then we will develop on molecular methods, next-generation sequencing and bioinformatics approaches. The use of various methods, including cloning, mutagenesis, transposon mutagenesis, functional genomics, whole genome sequencing, metagenomic and functional metagenomics will be reviewed here, outlining the advantages and drawbacks of each method. Bioinformatics softwares used for resistome analysis and protein modeling will be also described. Expert opinion: Biological experiments and bioinformatics analysis are complementary. Nowadays, the ARGs described only account for the tip of the iceberg of all existing resistance mechanisms. The multiplication of the ecosystems studied allows us to find a large reservoir of AR mechanisms. Furthermore, the adaptation ability of bacteria facing new antibiotics promises a constant discovery of new AR mechanisms. | 2019 | 30895843 |
| 4300 | 9 | 0.9997 | A review: antimicrobial resistance data mining models and prediction methods study for pathogenic bacteria. Antimicrobials have paved the way for medical and social development over the last century and are indispensable for treating infections in humans and animals. The dramatic spread and diversity of antibiotic-resistant pathogens have significantly reduced the efficacy of essentially all antibiotic classes and is a global problem affecting human and animal health. Antimicrobial resistance is influenced by complex factors such as resistance genes and dosing, which are highly nonlinear, time-lagged and multivariate coupled, and the amount of resistance data is large and redundant, making it difficult to predict and analyze. Based on machine learning methods and data mining techniques, this paper reviews (1) antimicrobial resistance data storage and analysis techniques, (2) antimicrobial resistance assessment methods and the associated risk assessment methods for antimicrobial resistance, and (3) antimicrobial resistance prediction methods. Finally, the current research results on antimicrobial resistance and the development trend are summarized to provide a systematic and comprehensive reference for the research on antimicrobial resistance. | 2021 | 34522024 |
| 4005 | 10 | 0.9997 | Metagenomic-based surveillance systems for antibiotic resistance in non-clinical settings. The success of antibiotics as a therapeutic agent has led to their ineffectiveness. The continuous use and misuse in clinical and non-clinical areas have led to the emergence and spread of antibiotic-resistant bacteria and its genetic determinants. This is a multi-dimensional problem that has now become a global health crisis. Antibiotic resistance research has primarily focused on the clinical healthcare sectors while overlooking the non-clinical sectors. The increasing antibiotic usage in the environment - including animals, plants, soil, and water - are drivers of antibiotic resistance and function as a transmission route for antibiotic resistant pathogens and is a source for resistance genes. These natural compartments are interconnected with each other and humans, allowing the spread of antibiotic resistance via horizontal gene transfer between commensal and pathogenic bacteria. Identifying and understanding genetic exchange within and between natural compartments can provide insight into the transmission, dissemination, and emergence mechanisms. The development of high-throughput DNA sequencing technologies has made antibiotic resistance research more accessible and feasible. In particular, the combination of metagenomics and powerful bioinformatic tools and platforms have facilitated the identification of microbial communities and has allowed access to genomic data by bypassing the need for isolating and culturing microorganisms. This review aimed to reflect on the different sequencing techniques, metagenomic approaches, and bioinformatics tools and pipelines with their respective advantages and limitations for antibiotic resistance research. These approaches can provide insight into resistance mechanisms, the microbial population, emerging pathogens, resistance genes, and their dissemination. This information can influence policies, develop preventative measures and alleviate the burden caused by antibiotic resistance. | 2022 | 36532424 |
| 4101 | 11 | 0.9997 | What Is the Role of the Environment in the Emergence of Novel Antibiotic Resistance Genes? A Modeling Approach. It is generally accepted that intervention strategies to curb antibiotic resistance cannot solely focus on human and veterinary medicine but must also consider environmental settings. While the environment clearly has a role in transmission of resistant bacteria, its role in the emergence of novel antibiotic resistance genes (ARGs) is less clear. It has been suggested that the environment constitutes an enormous recruitment ground for ARGs to pathogens, but its extent is practically unknown. We have constructed a model framework for resistance emergence and used available quantitative data on relevant processes to identify limiting steps in the appearance of ARGs in human pathogens. We found that in a majority of possible scenarios, the environment would only play a minor role in the emergence of novel ARGs. However, the uncertainty is enormous, highlighting an urgent need for more quantitative data. Specifically, more data is most needed on the fitness costs of ARG carriage, the degree of dispersal of resistant bacteria from the environment to humans, and the rates of mobilization and horizontal transfer of ARGs. This type of data is instrumental to determine which processes should be targeted for interventions to curb development and transmission of ARGs in the environment. | 2021 | 34792330 |
| 4088 | 12 | 0.9997 | Expanding the soil antibiotic resistome: exploring environmental diversity. Antibiotic resistance has largely been studied in the context of failure of the drugs in clinical settings. There is now growing evidence that bacteria that live in the environment (e.g. the soil) are multi-drug-resistant. Recent functional screens and the growing accumulation of metagenomic databases are revealing an unexpected density of resistance genes in the environment: the antibiotic resistome. This challenges our current understanding of antibiotic resistance and provides both barriers and opportunities for antimicrobial drug discovery. | 2007 | 17951101 |
| 9457 | 13 | 0.9997 | Exploring the role of gut microbiota in antibiotic resistance and prevention. BACKGROUND/INTRODUCTION: Antimicrobial resistance (AMR) and the evolution of multiple drug-resistant (MDR) bacteria is of grave public health concern. To combat the pandemic of AMR, it is necessary to focus on novel alternatives for drug development. Within the host, the interaction of the pathogen with the microbiome plays a pivotal role in determining the outcome of pathogenesis. Therefore, microbiome-pathogen interaction is one of the potential targets to be explored for novel antimicrobials. MAIN BODY: This review focuses on how the gut microbiome has evolved as a significant component of the resistome as a source of antibiotic resistance genes (ARGs). Antibiotics alter the composition of the native microbiota of the host by favouring resistant bacteria that can manifest as opportunistic infections. Furthermore, gut dysbiosis has also been linked to low-dosage antibiotic ingestion or subtherapeutic antibiotic treatment (STAT) from food and the environment. DISCUSSION: Colonization by MDR bacteria is potentially acquired and maintained in the gut microbiota. Therefore, it is pivotal to understand microbial diversity and its role in adapting pathogens to AMR. Implementing several strategies to prevent or treat dysbiosis is necessary, including faecal microbiota transplantation, probiotics and prebiotics, phage therapy, drug delivery models, and antimicrobial stewardship regulation. | 2025 | 40096354 |
| 9675 | 14 | 0.9997 | CRISPR-Cas inhibits plasmid transfer and immunizes bacteria against antibiotic resistance acquisition in manure. The horizontal transfer of antibiotic resistance genes among bacteria is a pressing global issue. The bacterial defense system clustered regularly interspaced short palindromic repeats (CRISPR)-Cas acts as a barrier to the spread of antibiotic resistance plasmids, and CRISPR-Cas-based antimicrobials can be effective to selectively deplete antibiotic-resistant bacteria. While significant surveillance efforts monitor the spread of antibiotic-resistant bacteria in the clinical context, a major, often overlooked aspect of the issue is resistance emergence in agriculture. Farm animals are commonly treated with antibiotics, and antibiotic resistance in agriculture is on the rise. Yet, CRISPR-Cas efficacy has not been investigated in this setting. Here, we evaluate the prevalence of CRISPR-Cas in agricultural Enterococcus faecalis strains and its antiplasmid efficacy in an agricultural niche: manure. Analyzing 1,986 E. faecalis genomes from human and animal hosts, we show that the prevalence of CRISPR-Cas subtypes is similar between clinical and agricultural E. faecalis strains. Using plasmid conjugation assays, we found that CRISPR-Cas is a significant barrier against resistance plasmid transfer in manure. Finally, we used a CRISPR-based antimicrobial approach to cure resistant E. faecalis of erythromycin resistance, but this was limited by delivery efficiency of the CRISPR antimicrobial in manure. However, immunization of bacteria against resistance gene acquisition in manure was highly effective. Together, our results show that E. faecalis CRISPR-Cas is prevalent and effective in an agricultural setting and has the potential to be utilized for depleting antibiotic-resistant populations. Our work has broad implications for tackling antibiotic resistance in the increasingly relevant agricultural setting, in line with a One Health approach.IMPORTANCEAntibiotic resistance is a growing global health crisis in human and veterinary medicine. Previous work has shown technologies based on CRISPR-Cas-a bacterial defense system-to be effective in tackling antibiotic resistance. Here we test if CRISPR-Cas is present and effective in agricultural niches, specifically in the ubiquitously present bacterium, Enterococcus faecalis. We show that CRISPR-Cas is both prevalent and functional in manure and has the potential to be used to specifically kill bacteria carrying antibiotic resistance genes. This study demonstrates the utility of CRISPR-Cas-based strategies for control of antibiotic resistance in agricultural settings. | 2024 | 39158272 |
| 9566 | 15 | 0.9997 | Computational resources in the management of antibiotic resistance: Speeding up drug discovery. This article reviews more than 50 computational resources developed in past two decades for forecasting of antibiotic resistance (AR)-associated mutations, genes and genomes. More than 30 databases have been developed for AR-associated information, but only a fraction of them are updated regularly. A large number of methods have been developed to find AR genes, mutations and genomes, with most of them based on similarity-search tools such as BLAST and HMMER. In addition, methods have been developed to predict the inhibition potential of antibiotics against a bacterial strain from the whole-genome data of bacteria. This review also discuss computational resources that can be used to manage the treatment of AR-associated diseases. | 2021 | 33892146 |
| 4052 | 16 | 0.9997 | Functional metagenomics for the investigation of antibiotic resistance. Antibiotic resistance is a major threat to human health and well-being. To effectively combat this problem we need to understand the range of different resistance genes that allow bacteria to resist antibiotics. To do this the whole microbiota needs to be investigated. As most bacteria cannot be cultivated in the laboratory, the reservoir of antibiotic resistance genes in the non-cultivatable majority remains relatively unexplored. Currently the only way to study antibiotic resistance in these organisms is to use metagenomic approaches. Furthermore, the only method that does not require any prior knowledge about the resistance genes is functional metagenomics, which involves expressing genes from metagenomic clones in surrogate hosts. In this review the methods and limitations of functional metagenomics to isolate new antibiotic resistance genes and the mobile genetic elements that mediate their spread are explored. | 2014 | 24556726 |
| 4061 | 17 | 0.9997 | Beyond serial passages: new methods for predicting the emergence of resistance to novel antibiotics. Market launching of a new antibiotic requires knowing in advance its benefits and possible risks, and among them how rapidly resistance will emerge and spread among bacterial pathogens. This information is not only useful from a public health point of view, but also for pharmaceutical industry, in order to reduce potential waste of resources in the development of a compound that might be discontinued at the short term because of resistance development. Most assays currently used for predicting the emergence of resistance are based on culturing the target bacteria by serial passages in the presence of increasing concentrations of antibiotics. Whereas these assays may be valuable for identifying mutations that might cause resistance, they are not useful to establish how fast resistance might appear, neither to address the risk of spread of resistance genes by horizontal gene transfer. In this article, we review recent information pertinent for a more accurate prediction on the emergence and dispersal of antibiotic resistance. | 2011 | 21835695 |
| 5099 | 18 | 0.9997 | A machine learning-based strategy to elucidate the identification of antibiotic resistance in bacteria. Microorganisms, crucial for environmental equilibrium, could be destructive, resulting in detrimental pathophysiology to the human host. Moreover, with the emergence of antibiotic resistance (ABR), the microbial communities pose the century's largest public health challenges in terms of effective treatment strategies. Furthermore, given the large diversity and number of known bacterial strains, describing treatment choices for infected patients using experimental methodologies is time-consuming. An alternative technique, gaining popularity as sequencing prices fall and technology advances, is to use bacterial genotype rather than phenotype to determine ABR. Complementing machine learning into clinical practice provides a data-driven platform for categorization and interpretation of bacterial datasets. In the present study, k-mers were generated from nucleotide sequences of pathogenic bacteria resistant to antibiotics. Subsequently, they were clustered into groups of bacteria sharing similar genomic features using the Affinity propagation algorithm with a Silhouette coefficient of 0.82. Thereafter, a prediction model based on Random Forest algorithm was developed to explore the prediction capability of the k-mers. It yielded an overall specificity of 0.99 and a sensitivity of 0.98. Additionally, the genes and ABR drivers related to the k-mers were identified to explore their biological relevance. Furthermore, a multilayer perceptron model with a hamming loss of 0.05 was built to classify the bacterial strains into resistant and non-resistant strains against various antibiotics. Segregating pathogenic bacteria based on genomic similarities could be a valuable approach for assessing the severity of diseases caused by new bacterial strains. Utilization of this strategy could aid in enhancing our understanding of ABR patterns, paving the way for more informed and effective treatment options. | 2024 | 39816256 |
| 4280 | 19 | 0.9997 | Droplet Microfluidics for High-Throughput Analysis of Antibiotic Susceptibility in Bacterial Cells and Populations. Antibiotic-resistant bacteria are an increasing concern both in everyday life and specialized environments such as healthcare. As the rate of antibiotic-resistant infections rises, so do complications to health and the risk of disability and death. Urgent action is required regarding the discovery of new antibiotics and rapid diagnosis of the resistance profile of an infectious pathogen as well as a better understanding of population and single-cell distribution of the resistance level. High-throughput screening is the major affordance of droplet microfluidics. Droplet screens can be exploited both to look for combinations of drugs that could stop an infection of multidrug-resistant bacteria and to search for the source of resistance via directed-evolution experiments or the analysis of various responses to a drug by genetically identical bacteria. In droplet techniques that have been used in this way for over a decade, aqueous droplets containing antibiotics and bacteria are manipulated both within and outside of the microfluidic devices. The diagnostics problem was approached by producing a series of microfluidic systems with integrated dilution modules for automated preparation of antibiotic concentration gradients, achieving the speed that allowed for high-throughput combinatorial assays. We developed a method for automated emulsification of a series of samples that facilitated measuring the resistance levels of thousands of individual cells encapsulated in droplets and quantifying the inoculum effect, the dependence of resistance level on bacterial cell count. Screening of single cells encapsulated in droplets with varying antibiotic contents has revealed a distribution of resistance levels within populations of clonally identical cells. To be able to screen bacteria from clinical samples, a study of fluorescent dyes in droplets determined that a derivative of a popular viability marker is more suitable for droplet assays. We have developed a detection system that analyzes the growth or death state of bacteria with antibiotics for thousands of droplets per second by measuring the scattering of light hitting the droplets without labeling the cells or droplets. The droplet-based microchemostats enabled long-term evolution of resistance experiments, which will be integrated with high-throughput single-cell assays to better understand the mechanism of resistance acquisition and loss. These techniques underlie automated combinatorial screens of antibiotic resistance in single cells from clinical samples. We hope that this Account will inspire new droplet-based research on the antibiotic susceptibility of bacteria. | 2022 | 35119826 |