Conjugation Inhibitors and Their Potential Use to Prevent Dissemination of Antibiotic Resistance Genes in Bacteria. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
952201.0000Conjugation Inhibitors and Their Potential Use to Prevent Dissemination of Antibiotic Resistance Genes in Bacteria. Antibiotic resistance has become one of the most challenging problems in health care. Bacteria conjugation is one of the main mechanisms whereby bacteria become resistant to antibiotics. Therefore, the search for specific conjugation inhibitors (COINs) is of interest in the fight against the spread of antibiotic resistances in a variety of laboratory and natural environments. Several compounds, discovered as COINs, are promising candidates in the fight against plasmid dissemination. In this review, we survey the effectiveness and toxicity of the most relevant compounds. Particular emphasis has been placed on unsaturated fatty acid derivatives, as they have been shown to be efficient in preventing plasmid invasiveness in bacterial populations. Biochemical and structural studies have provided insights concerning their potential molecular targets and inhibitory mechanisms. These findings open a new avenue in the search of new and more effective synthetic inhibitors. In this pursuit, the use of structure-based drug design methods will be of great importance for the screening of ligands and binding sites of putative targets.201729255449
943510.9999Why are bacteria refractory to antimicrobials? The incidence of antibiotic resistance in pathogenic bacteria is rising. Antibiotic resistance can be achieved via three distinct routes: inactivation of the drug, modification of the target of action, and reduction in the concentration of drug that reaches the target. It has long been recognized that specific antibiotic resistance mechanisms can be acquired through mutation of the bacterial genome or by gaining additional genes through horizontal gene transfer. Recent attention has also brought to light the importance of different physiological states for the survival of bacteria in the presence of antibiotics. It is now apparent that bacteria have complex, intrinsic resistance mechanisms that are often not detected in the standard antibiotic sensitivity tests performed in clinical laboratories. The development of resistance in bacteria found in surface-associated aggregates or biofilms, owing to these intrinsic mechanisms, is paramount.200212354553
424420.9999Molecular mechanisms of antibiotic resistance. Antibiotic-resistant bacteria that are difficult or impossible to treat are becoming increasingly common and are causing a global health crisis. Antibiotic resistance is encoded by several genes, many of which can transfer between bacteria. New resistance mechanisms are constantly being described, and new genes and vectors of transmission are identified on a regular basis. This article reviews recent advances in our understanding of the mechanisms by which bacteria are either intrinsically resistant or acquire resistance to antibiotics, including the prevention of access to drug targets, changes in the structure and protection of antibiotic targets and the direct modification or inactivation of antibiotics.201525435309
956230.9999Fight against antimicrobial resistance. Antimicrobial and antibiotic resistance is ever increasing and the fight against it is a battle that can never be won. Nevertheless, some possibilities exist to improve this situation, at least in part. The present review article discusses some approaches that can be used to control microbial resistance. Possible strategies are (1) designing new vaccines against resistant bacterial strains; (2) investigation of the potential of both traditional and non-traditional sources of natural substances for use as new antibiotics; (3) search for genes specifying biosynthesis of antibiotics; (4) use of forgotten natural compounds and their transformation, and (5) investigation of new antibiotic targets in pathogenic bacteria. Particular attention is paid to the search for new compounds that would be able to inhibit pathogenic bacteria resistant to existing antibiotics.201830126284
959840.9999Strategies and molecular tools to fight antimicrobial resistance: resistome, transcriptome, and antimicrobial peptides. The increasing number of antibiotic resistant bacteria motivates prospective research toward discovery of new antimicrobial active substances. There are, however, controversies concerning the cost-effectiveness of such research with regards to the description of new substances with novel cellular interactions, or description of new uses of existing substances to overcome resistance. Although examination of bacteria isolated from remote locations with limited exposure to humans has revealed an absence of antibiotic resistance genes, it is accepted that these genes were both abundant and diverse in ancient living organisms, as detected in DNA recovered from Pleistocene deposits (30,000 years ago). Indeed, even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Bacteria can exhibit different strategies for resistance against antibiotics. New genetic information may lead to the modification of protein structure affecting the antibiotic carriage into the cell, enzymatic inactivation of drugs, or even modification of cellular structure interfering in the drug-bacteria interaction. There are still plenty of new genes out there in the environment that can be appropriated by putative pathogenic bacteria to resist antimicrobial agents. On the other hand, there are several natural compounds with antibiotic activity that may be used to oppose them. Antimicrobial peptides (AMPs) are molecules which are wide-spread in all forms of life, from multi-cellular organisms to bacterial cells used to interfere with microbial growth. Several AMPs have been shown to be effective against multi-drug resistant bacteria and have low propensity to resistance development, probably due to their unique mode of action, different from well-known antimicrobial drugs. These substances may interact in different ways with bacterial cell membrane, protein synthesis, protein modulation, and protein folding. The analysis of bacterial transcriptome may contribute to the understanding of microbial strategies under different environmental stresses and allows the understanding of their interaction with novel AMPs.201324427156
952050.9999Role of Natural Product in Modulation of Drug Transporters and New Delhi Metallo-β Lactamases. A rapid growth in drug resistance has brought options for treating antimicrobial resistance to a halt. Bacteria have evolved to accumulate a multitude of genes that encode resistance for a single drug within a single cell. Alternations of drug transporters are one of the causes for the development of resistance in drug interactions. Conversely, the production of enzymes also inactivates most antibiotics. The discovery of newer classes of antibiotics and drugs from natural products is urgently needed. Alternative medicines play an integral role in countries across the globe but many require validation for treatment strategies. It is essential to explore this chemical diversity in order to find novel drugs with specific activities which can be used as alternative drug targets. This review describes the interaction of drugs with resistant pathogens with a special focus on natural product-derived efflux pump and carbapenemase inhibitors.201930987566
943660.9999Phenotypic Resistance to Antibiotics. The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented.201327029301
424570.9999Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. In recent years, we have seen antimicrobial resistance rapidly emerge at a global scale and spread from one country to the other faster than previously thought. Superbugs and multidrug-resistant bacteria are endemic in many parts of the world. There is no question that the widespread use, overuse, and misuse of antimicrobials during the last 80 years have been associated with the explosion of antimicrobial resistance. On the other hand, the molecular pathways behind the emergence of antimicrobial resistance in bacteria were present since ancient times. Some of these mechanisms are the ancestors of current resistance determinants. Evidently, there are plenty of putative resistance genes in the environment, however, we cannot yet predict which ones would be able to be expressed as phenotypes in pathogenic bacteria and cause clinical disease. In addition, in the presence of inhibitory and sub-inhibitory concentrations of antibiotics in natural habitats, one could assume that novel resistance mechanisms will arise against antimicrobial compounds. This review presents an overview of antimicrobial resistance mechanisms, and describes how these have evolved and how they continue to emerge. As antimicrobial strategies able to bypass the development of resistance are urgently needed, a better understanding of the critical factors that contribute to the persistence and spread of antimicrobial resistance may yield innovative perspectives on the design of such new therapeutic targets.202031659373
948780.9999Molecular mechanisms of antibiotic resistance revisited. Antibiotic resistance is a global health emergency, with resistance detected to all antibiotics currently in clinical use and only a few novel drugs in the pipeline. Understanding the molecular mechanisms that bacteria use to resist the action of antimicrobials is critical to recognize global patterns of resistance and to improve the use of current drugs, as well as for the design of new drugs less susceptible to resistance development and novel strategies to combat resistance. In this Review, we explore recent advances in understanding how resistance genes contribute to the biology of the host, new structural details of relevant molecular events underpinning resistance, the identification of new resistance gene families and the interactions between different resistance mechanisms. Finally, we discuss how we can use this information to develop the next generation of antimicrobial therapies.202336411397
942190.9999The neglected intrinsic resistome of bacterial pathogens. Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature.200818286176
9523100.9999Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. The intrinsic antibiotic resistome is a naturally occurring phenomenon that predates antibiotic chemotherapy and is present in all bacterial species. In addition to the intrinsic resistance mediated by the bacterial outer membrane and active efflux, studies have shown that a surprising number of additional genes and genetic loci also contribute to this phenotype. Antibiotic resistance is rife in both the clinic and the environment; novel therapeutic strategies need to be developed in order to prevent a major global clinical threat. The possibility of inhibiting elements comprising the intrinsic resistome in bacterial pathogens offers the promise for repurposing existing antibiotics against intrinsically resistant bacteria.201323499305
4238110.9999Biocide tolerance in bacteria. Biocides have been employed for centuries, so today a wide range of compounds showing different levels of antimicrobial activity have become available. At the present time, understanding the mechanisms of action of biocides has also become an important issue with the emergence of bacterial tolerance to biocides and the suggestion that biocide and antibiotic resistance in bacteria might be linked. While most of the mechanisms providing antibiotic resistance are agent specific, providing resistance to a single antimicrobial or class of antimicrobial, there are currently numerous examples of efflux systems that accommodate and, thus, provide tolerance to a broad range of structurally unrelated antimicrobials, both antibiotics and biocides. If biocide tolerance becomes increasingly common and it is linked to antibiotic resistance, not only resistant (even multi-resistant) bacteria could be passed along the food chain, but also there are resistance determinants that can spread and lead to the emergence of new resistant microorganisms, which can only be detected and monitored when the building blocks of resistance traits are understood on the molecular level. This review summarizes the main advances reached in understanding the mechanism of action of biocides, the mechanisms of bacterial resistance to both biocides and antibiotics, and the incidence of biocide tolerance in bacteria of concern to human health and the food industry.201323340387
9563120.9999Do we need new antibiotics? The search for new targets and new compounds. Resistance to antibiotics and other antimicrobial compounds continues to increase. There are several possibilities for protection against pathogenic microorganisms, for instance, preparation of new vaccines against resistant bacterial strains, use of specific bacteriophages, and searching for new antibiotics. The antibiotic search includes: (1) looking for new antibiotics from nontraditional or less traditional sources, (2) sequencing microbial genomes with the aim of finding genes specifying biosynthesis of antibiotics, (3) analyzing DNA from the environment (metagenomics), (4) re-examining forgotten natural compounds and products of their transformations, and (5) investigating new antibiotic targets in pathogenic bacteria.201021086099
4243130.9999Action and resistance mechanisms of antibiotics: A guide for clinicians. Infections account for a major cause of death throughout the developing world. This is mainly due to the emergence of newer infectious agents and more specifically due to the appearance of antimicrobial resistance. With time, the bacteria have become smarter and along with it, massive imprudent usage of antibiotics in clinical practice has resulted in resistance of bacteria to antimicrobial agents. The antimicrobial resistance is recognized as a major problem in the treatment of microbial infections. The biochemical resistance mechanisms used by bacteria include the following: antibiotic inactivation, target modification, altered permeability, and "bypass" of metabolic pathway. Determination of bacterial resistance to antibiotics of all classes (phenotypes) and mutations that are responsible for bacterial resistance to antibiotics (genetic analysis) are helpful. Better understanding of the mechanisms of antibiotic resistance will help clinicians regarding usage of antibiotics in different situations. This review discusses the mechanism of action and resistance development in commonly used antimicrobials.201729109626
9420140.9999The intrinsic resistance of bacteria. Antibiotic resistance is often considered to be a trait acquired by previously susceptible bacteria, on the basis of which can be attributed to the horizontal acquisition of new genes or the occurrence of spontaneous mutation. In addition to acquired resistance, bacteria have a trait of intrinsic resistance to different classes of antibiotics. An intrinsic resistance gene is involved in intrinsic resistance, and its presence in bacterial strains is independent of previous antibiotic exposure and is not caused by horizontal gene transfer. Recently, interest in intrinsic resistance genes has increased, because these gene products not only may provide attractive therapeutic targets for development of novel drugs that rejuvenate the activity of existing antibiotics, and but also might predict future emergence of resistant pathogens if they become mobilized. In the present review, we summarize the conventional examples of intrinsic resistance, including the impermeability of cellular envelopes, the activity of multidrug efflux pumps or lack of drug targets. We also demonstrate that transferases and enzymes involved in basic bacterial metabolic processes confer intrinsic resistance in Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. We present as well information on the cryptic intrinsic resistance genes that do not confer resistance to their native hosts but are capable of conferring resistance when their expression levels are increased and the activation of the cryptic genes. Finally, we discuss that intrinsic genes could be the origin of acquired resistance, especially in the genus Acinetobacter.201627806928
4241150.9999Mechanisms of antimicrobial resistance and implications for epidemiology. The development of antibacterial agents has provided a means of treating bacterial diseases which were, previously, often fatal in both man and animal and thus represents one of the major advances of the 20th century. However, the efficacy of these agents is increasingly being compromised by the development of bacterial resistance to the drugs currently available for therapeutic use. Bacterial resistance can be combated in two ways. New drugs to which bacteria are susceptible can be developed and policies to contain the development and spread of resistance can be implemented. Both strategies require an understanding of the mechanisms of drug resistance, its epidemiology and the role of environmental factors in promoting resistance. Over the past thirty years our knowledge of bacterial resistance has increased dramatically mainly due to new technology that has become available. Bacteria are able to resist antibacterials by a variety of mechanisms: for example, altering the target to decrease susceptibility to the antibacterial, inactivating or destroying the drug, reducing drug transport into the cell or metabolic bypass. These drug resistance determinants are mediated via one of two distinct genetic mechanisms, a mutation in the bacterial chromosome or by a transmissible element; either a plasmid or a transposon. Significant differences exist between these two types of drug resistance as transmissible resistance, which is mainly plasmid-mediated, permits intraspecies and even interspecies transfer to occur. In contrast, chromosomal resistance can only be passed on to progeny. Transmissible antibacterial resistance is the major cause of concern as it can lead to the rapid spread of antibacterial resistance and has proven difficult, if not impossible, to eradicate. Furthermore, plasmids and transposons can code for multiple antibiotic resistance as well as virulence genes. Antibacterials for which transferable resistance has been identified include most commonly used antibacterials such as beta-lactams, aminoglycosides, macrolides, sulphonamides, tetracyclines, chloramphenicol and trimethoprim. One notable exception is the 4-quinolones for which plasmid-mediated resistance has yet to be identified.19938212509
9492160.9999The Search for 'Evolution-Proof' Antibiotics. The effectiveness of antibiotics has been widely compromised by the evolution of resistance among pathogenic bacteria. It would be restored by the development of antibiotics to which bacteria cannot evolve resistance. We first discuss two kinds of 'evolution-proof' antibiotic. The first comprises literally evolution-proof antibiotics to which bacteria cannot become resistant by mutation or horizontal gene transfer. The second category comprises agents to which resistance may arise, but so rarely that it does not become epidemic. The likelihood that resistance to a novel agent will spread is evaluated here by a simple model that includes biological and therapeutic parameters governing the evolution of resistance within hosts and the transmission of resistant strains between hosts. This model leads to the conclusion that epidemic spread is unlikely if the frequency of mutations that confer resistance falls below a defined minimum value, and it identifies potential targets for intervention to prevent the evolution of resistance. Whether or not evolution-proof antibiotics are ever found, searching for them is likely to improve the deployment of new and existing agents by advancing our understanding of how resistance evolves.201829191398
4249170.9999Detection of essential genes in Streptococcus pneumoniae using bioinformatics and allelic replacement mutagenesis. Although the emergence and spread of antimicrobial resistance in major bacterial pathogens for the past decades poses a growing challenge to public health, discovery of novel antimicrobial agents from natural products or modification of existing antibiotics cannot circumvent the problem of antimicrobial resistance. The recent development of bacterial genomics and the availability of genome sequences allow the identification of potentially novel antimicrobial agents. The cellular targets of new antimicrobial agents must be essential for the growth, replication, or survival of the bacterium. Conserved genes among different bacterial genomes often turn out to be essential (1, 2). Thus, the combination of comparative genomics and the gene knock-out procedure can provide effective ways to identify the essential genes of bacterial pathogens (3). Identification of essential genes in bacteria may be utilized for the development of new antimicrobial agents because common essential genes in diverse pathogens could constitute novel targets for broad-spectrum antimicrobial agents.200818392984
9677180.9999Inhibiting conjugation as a tool in the fight against antibiotic resistance. Antibiotic resistance, especially in gram-negative bacteria, is spreading globally and rapidly. Development of new antibiotics lags behind; therefore, novel approaches to the problem of antibiotic resistance are sorely needed and this commentary highlights one relatively unexplored target for drug development: conjugation. Conjugation is a common mechanism of horizontal gene transfer in bacteria that is instrumental in the spread of antibiotic resistance among bacteria. Most resistance genes are found on mobile genetic elements and primarily spread by conjugation. Furthermore, conjugative elements can act as a reservoir to maintain antibiotic resistance in the bacterial population even in the absence of antibiotic selection. Thus, conjugation can spread antibiotic resistance quickly between bacteria of the microbiome and pathogens when selective pressure (antibiotics) is introduced. Potential drug targets include the plasmid-encoded conjugation system and the host-encoded proteins important for conjugation. Ideally, a conjugation inhibitor will be used alongside antibiotics to prevent the spread of resistance to or within pathogens while not acting as a growth inhibitor itself. Inhibiting conjugation will be an important addition to our arsenal of strategies to combat the antibiotic resistance crisis, allowing us to extend the usefulness of antibiotics.201930343487
9517190.9999Better together-Salmonella biofilm-associated antibiotic resistance. Salmonella poses a serious threat to public health and socioeconomic development worldwide because of its foodborne pathogenicity and antimicrobial resistance. This biofilm-planktonic lifestyle enables Salmonella to interfere with the host and become resistant to drugs, conferring inherent tolerance to antibiotics. The complex biofilm structure makes bacteria tolerant to harsh conditions due to the diversity of physiological, biochemical, environmental, and molecular factors constituting resistance mechanisms. Here, we provide an overview of the mechanisms of Salmonella biofilm formation and antibiotic resistance, with an emphasis on less-studied molecular factors and in-depth analysis of the latest knowledge about upregulated drug-resistance-associated genes in bacterial aggregates. We classified and extensively discussed each group of these genes encoding transporters, outer membrane proteins, enzymes, multiple resistance, metabolism, and stress response-associated proteins. Finally, we highlighted the missing information and studies that need to be undertaken to understand biofilm features and contribute to eliminating antibiotic-resistant and health-threatening biofilms.202337401756