# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9518 | 0 | 1.0000 | Relevance of the Adjuvant Effect between Cellular Homeostasis and Resistance to Antibiotics in Gram-Negative Bacteria with Pathogenic Capacity: A Study of Klebsiella pneumoniae. Antibiotic resistance has become a global issue. The most significant risk is the acquisition of these mechanisms by pathogenic bacteria, which can have a severe clinical impact and pose a public health risk. This problem assumes that bacterial fitness is a constant phenomenon and should be approached from an evolutionary perspective to develop the most appropriate and effective strategies to contain the emergence of strains with pathogenic potential. Resistance mechanisms can be understood as adaptive processes to stressful conditions. This review examines the relevance of homeostatic regulatory mechanisms in antimicrobial resistance mechanisms. We focus on the interactions in the cellular physiology of pathogenic bacteria, particularly Gram-negative bacteria, and specifically Klebsiella pneumoniae. From a clinical research perspective, understanding these interactions is crucial for comprehensively understanding the phenomenon of resistance and developing more effective drugs and treatments to limit or attenuate bacterial sepsis, since the most conserved adjuvant phenomena in bacterial physiology has turned out to be more optimized and, therefore, more susceptible to alterations due to pharmacological action. | 2024 | 38927157 |
| 9682 | 1 | 0.9999 | Effect of Probiotics on Host-Microbiota in Bacterial Infections. Diseases caused by bacteria cause millions of deaths every year. In addition, the problem of resistance to antibiotics is so serious that it threatens the achievements of modern medicine. This is a very important global problem as some bacteria can also develop persistence. Indeed, the persistence of pathogenic bacteria has evolved as a potent survival strategy to overcome host organisms' defense mechanisms. Additionally, chronic or persistent infections may be caused by persisters which could facilitate antibiotic resistance. Probiotics are considered good bacteria. It has been described that the modulation of gut microbiota by probiotics could have a great potential to counteract the deleterious impact and/or regulate gut microbiota after bacterial infection. Probiotics might provide health benefits through the inhibition of pathogen growth or the replacement of pathogenic bacteria. Bearing in mind that current strategies to avoid bacterial persistence and prevent antibiotic resistance are not effective, other strategies need to be assessed. We have carried out a comprehensive review, which included the reported literature between 2016 and 2021, highlighting the clinical trials that reported the probiotics' potential to regulate gut microbiota after bacterial infection and focusing in particular on the context of antibiotic resistance and persister cells. | 2022 | 36145418 |
| 4243 | 2 | 0.9999 | Action and resistance mechanisms of antibiotics: A guide for clinicians. Infections account for a major cause of death throughout the developing world. This is mainly due to the emergence of newer infectious agents and more specifically due to the appearance of antimicrobial resistance. With time, the bacteria have become smarter and along with it, massive imprudent usage of antibiotics in clinical practice has resulted in resistance of bacteria to antimicrobial agents. The antimicrobial resistance is recognized as a major problem in the treatment of microbial infections. The biochemical resistance mechanisms used by bacteria include the following: antibiotic inactivation, target modification, altered permeability, and "bypass" of metabolic pathway. Determination of bacterial resistance to antibiotics of all classes (phenotypes) and mutations that are responsible for bacterial resistance to antibiotics (genetic analysis) are helpful. Better understanding of the mechanisms of antibiotic resistance will help clinicians regarding usage of antibiotics in different situations. This review discusses the mechanism of action and resistance development in commonly used antimicrobials. | 2017 | 29109626 |
| 9487 | 3 | 0.9999 | Molecular mechanisms of antibiotic resistance revisited. Antibiotic resistance is a global health emergency, with resistance detected to all antibiotics currently in clinical use and only a few novel drugs in the pipeline. Understanding the molecular mechanisms that bacteria use to resist the action of antimicrobials is critical to recognize global patterns of resistance and to improve the use of current drugs, as well as for the design of new drugs less susceptible to resistance development and novel strategies to combat resistance. In this Review, we explore recent advances in understanding how resistance genes contribute to the biology of the host, new structural details of relevant molecular events underpinning resistance, the identification of new resistance gene families and the interactions between different resistance mechanisms. Finally, we discuss how we can use this information to develop the next generation of antimicrobial therapies. | 2023 | 36411397 |
| 4244 | 4 | 0.9999 | Molecular mechanisms of antibiotic resistance. Antibiotic-resistant bacteria that are difficult or impossible to treat are becoming increasingly common and are causing a global health crisis. Antibiotic resistance is encoded by several genes, many of which can transfer between bacteria. New resistance mechanisms are constantly being described, and new genes and vectors of transmission are identified on a regular basis. This article reviews recent advances in our understanding of the mechanisms by which bacteria are either intrinsically resistant or acquire resistance to antibiotics, including the prevention of access to drug targets, changes in the structure and protection of antibiotic targets and the direct modification or inactivation of antibiotics. | 2015 | 25435309 |
| 9486 | 5 | 0.9999 | Acquired Bacterial Resistance to Antibiotics and Resistance Genes: From Past to Future. The discovery, commercialization, and regular administration of antimicrobial agents have revolutionized the therapeutic paradigm, making it possible to treat previously untreatable and fatal infections. However, the excessive use of antibiotics has led to develop resistance soon after their use in clinical practice, to the point of becoming a global emergency. The mechanisms of bacterial resistance to antibiotics are manifold, including mechanisms of destruction or inactivation, target site modification, or active efflux, and represent the main examples of evolutionary adaptation for the survival of bacterial species. The acquirement of new resistance mechanisms is a consequence of the great genetic plasticity of bacteria, which triggers specific responses that result in mutational adaptation, acquisition of genetic material, or alteration of gene expression, virtually producing resistance to all currently available antibiotics. Understanding resistance processes is critical to the development of new antimicrobial agents to counteract drug-resistant microorganisms. In this review, both the mechanisms of action of antibiotic resistance (AMR) and the antibiotic resistance genes (ARGs) mainly found in clinical and environmental bacteria will be reviewed. Furthermore, the evolutionary background of multidrug-resistant bacteria will be examined, and some promising elements to control or reduce the emergence and spread of AMR will be proposed. | 2025 | 40149034 |
| 9801 | 6 | 0.9999 | Problems and changing patterns of resistance with gram-negative bacteria. Throughout the antibiotic era, the emergence of drug-resistant bacteria has paralleled the development of new antimicrobial agents. As a result of selection pressures and invasive techniques that prolong the lives of seriously ill hospital patients, gram-negative bacilli have become the dominant causes of nosocomial infection. These microorganisms produce a diversity of antibiotic-inactivating enzymes. Moreover, the cell envelope of gram-negative bacteria provides a series of barriers that keep antibiotics from reaching their targets. Resistance factors can be transmitted among bacteria of different genera and species, thus conferring multidrug resistance. These problems continue to challenge scientists to better understand resistance mechanisms and to develop new compounds to circumvent them. | 1985 | 3909311 |
| 9517 | 7 | 0.9999 | Better together-Salmonella biofilm-associated antibiotic resistance. Salmonella poses a serious threat to public health and socioeconomic development worldwide because of its foodborne pathogenicity and antimicrobial resistance. This biofilm-planktonic lifestyle enables Salmonella to interfere with the host and become resistant to drugs, conferring inherent tolerance to antibiotics. The complex biofilm structure makes bacteria tolerant to harsh conditions due to the diversity of physiological, biochemical, environmental, and molecular factors constituting resistance mechanisms. Here, we provide an overview of the mechanisms of Salmonella biofilm formation and antibiotic resistance, with an emphasis on less-studied molecular factors and in-depth analysis of the latest knowledge about upregulated drug-resistance-associated genes in bacterial aggregates. We classified and extensively discussed each group of these genes encoding transporters, outer membrane proteins, enzymes, multiple resistance, metabolism, and stress response-associated proteins. Finally, we highlighted the missing information and studies that need to be undertaken to understand biofilm features and contribute to eliminating antibiotic-resistant and health-threatening biofilms. | 2023 | 37401756 |
| 4245 | 8 | 0.9999 | Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. In recent years, we have seen antimicrobial resistance rapidly emerge at a global scale and spread from one country to the other faster than previously thought. Superbugs and multidrug-resistant bacteria are endemic in many parts of the world. There is no question that the widespread use, overuse, and misuse of antimicrobials during the last 80 years have been associated with the explosion of antimicrobial resistance. On the other hand, the molecular pathways behind the emergence of antimicrobial resistance in bacteria were present since ancient times. Some of these mechanisms are the ancestors of current resistance determinants. Evidently, there are plenty of putative resistance genes in the environment, however, we cannot yet predict which ones would be able to be expressed as phenotypes in pathogenic bacteria and cause clinical disease. In addition, in the presence of inhibitory and sub-inhibitory concentrations of antibiotics in natural habitats, one could assume that novel resistance mechanisms will arise against antimicrobial compounds. This review presents an overview of antimicrobial resistance mechanisms, and describes how these have evolved and how they continue to emerge. As antimicrobial strategies able to bypass the development of resistance are urgently needed, a better understanding of the critical factors that contribute to the persistence and spread of antimicrobial resistance may yield innovative perspectives on the design of such new therapeutic targets. | 2020 | 31659373 |
| 9546 | 9 | 0.9999 | Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria. Bacterial resistance has intensified in recent years due to the uncontrolled use of conventional drugs, and new bacterial strains with multiple resistance have been reported. This problem may be solved by using antimicrobial peptides (AMPs), which fulfill their bactericidal activity without developing much bacterial resistance. The rapid interaction between AMPs and the bacterial cell membrane means that the bacteria cannot easily develop resistance mechanisms. In addition, various drugs for clinical use have lost their effect as a conventional treatment; however, the synergistic effect of AMPs with these drugs would help to reactivate and enhance antimicrobial activity. Their efficiency against multi-resistant and extensively resistant bacteria has positioned them as promising molecules to replace or improve conventional drugs. In this review, we examined the importance of antimicrobial peptides and their successful activity against critical and high-priority bacteria published in the WHO list. | 2021 | 34064302 |
| 9439 | 10 | 0.9999 | Antimicrobial resistance, mechanisms and its clinical significance. Antimicrobial agents play a key role in controlling and curing infectious disease. Soon after the discovery of the first antibiotic, the challenge of antibiotic resistance commenced. Antimicrobial agents use different mechanisms against bacteria to prevent their pathogenesis and they can be classified as bactericidal or bacteriostatic. Antibiotics are one of the antimicrobial agents which has several classes, each with different targets. Consequently, bacteria are endlessly using methods to overcome the effectivity of the antibiotics by using distinct types of mechanisms. Comprehending the mechanisms of resistance is vital for better understanding and to continue use of current antibiotics. Which also helps to formulate synthetic antimicrobials to overcome the current mechanism of resistance. Also, encourage in prudent use and misuse of antimicrobial agents. Thus, decline in treatment costs and in the rate of morbidity and mortality. This review will be concentrating on the mechanism of actions of several antibiotics and how bacteria develop resistance to them, as well as the method of acquiring the resistance in several bacteria and how can a strain be resistant to several types of antibiotics. This review also analyzes the prevalence, major clinical implications, clinical causes of antibiotic resistance. Further, it evaluates the global burden of antimicrobial resistance, identifies various challenges and strategies in addressing the issue. Finally, put forward certain recommendations to prevent the spread and reduce the rate of resistance growth. | 2020 | 32201008 |
| 9516 | 11 | 0.9999 | Genetic Mechanisms of Antibiotic Resistance and the Role of Antibiotic Adjuvants. The ever increasing number of multidrug-resistant microorganism pathogens has become a great and global public health threat. Antibiotic mechanisms of action and the opposing mechanisms of resistance are intimately associated, but comprehension of the biochemical and molecular functions of such drugs is not a simple exercise. Both the environment, and genetic settings contribute to alterations in phenotypic resistance (natural bacterial evolution), and make it difficult to control the emergence and impacts of antibiotic resistance. Under such circumstances, comprehension of how bacteria develop and/or acquire antibiotic resistance genes (ARG) has a critical role in developing propositions to fight against these superbugs, and to search for new drugs. In this review, we present and discuss both general information and examples of common genetic and molecular mechanisms related to antibiotic resistance, as well as how the expression and interactions of ARGs are important to drug resistance. At the same time, we focus on the recent achievements in the search for antibiotic adjuvants, which help combat antibiotic resistance through deactivation of bacterial mechanisms of action such as β-lactamases. Recent advances involving the use of anti-resistance drugs such as: efflux pump inhibitors; anti-virulence drugs; drugs against quorum sensing; and against type II/III secretion systems are revealed. Such antibiotic adjuvants (as explored herein) collaborate against the problems of antibiotic resistance, and may restore or prolong the therapeutic activity of known antibiotics. | 2018 | 29412107 |
| 9488 | 12 | 0.9999 | Minimizing potential resistance: the molecular view. The major contribution of molecular biology to the study of antibiotic resistance has been the elucidation of nearly all biochemical mechanisms of resistance and the routes for dissemination of genetic information among bacteria. In this review, we consider the potential contribution of molecular biology to counteracting the evolution of resistant bacteria. In particular, we emphasize the fact that fundamental approaches have had direct practical effects on minimizing potential resistance: by improving interpretation of resistance phenotypes, by providing more adequate human therapy, by fostering more prudent use of antibiotics, and by allowing the rational design of new drugs that evade existing resistance mechanisms or address unexploited targets. | 2001 | 11524711 |
| 9549 | 13 | 0.9999 | Mechanism of escape from the antibacterial activity of metal-based nanoparticles in clinically relevant bacteria: A systematic review. The emergency of antibiotic-resistant bacteria in severe infections is increasing, especially in nosocomial environments. The ESKAPE group is of special importance in the groups of multi-resistant bacteria due to its high capacity to generate resistance to antibiotics and bactericides. Therefore, metal-based nanomaterials are an attractive alternative to combat them because they have been demonstrated to damage biomolecules in the bacterial cells. However, there is a concern about bacteria developing resistance to NPs and their harmful effects due to environmental accumulation. Therefore, this systematic review aims to report the clinically relevant bacteria that have developed resistance to the NPs. According to the results of this systematic review, various mechanisms to counteract the antimicrobial activity of various NP types have been proposed. These mechanisms can be grouped into the following categories: production of extracellular compounds, metal efflux pumps, ROS response, genetic changes, DNA repair, adaptative morphogenesis, and changes in the plasma membrane. | 2024 | 37907198 |
| 9683 | 14 | 0.9999 | Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria. | 2013 | 23554414 |
| 4089 | 15 | 0.9999 | Genetic mechanisms of antibiotic resistance and virulence in Acinetobacter baumannii: background, challenges and future prospects. With the advent of the multidrug-resistant era, many opportunistic pathogens including the species Acinetobacter baumannii have gained prominence and pose a major global threat to clinical health care. Pathogenicity in bacteria is genetically regulated by a complex network of transcription and virulence factors and a brief overview of the major investigations on comprehending these processes over the past few decades in A. baumanni are compiled here. Many investigators have employed genome sequencing techniques to identify the regions that contribute to antibiotic resistance and comparative genomics to study sequence similarities to understand evolutionary trends of resistance gene transfers between isolates. A summary of these studies given here provides an insight into the invasion and successful colonization of the species. The individual roles played by different genes, regulators & promoters, enzymes, metal ions as well as mobile elements in influencing antibiotic resistance are briefly discussed. Precautionary measures and prospects for developing future strategies by exploring promising new research targets in effective control of multidrug resistant A. baumannii are also analyzed. | 2020 | 32303957 |
| 9441 | 16 | 0.9998 | Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. BACKGROUND: Antibiotic resistance is currently the most serious global threat to the effective treatment of bacterial infections. Antibiotic resistance has been established to adversely affect both clinical and therapeutic outcomes, with consequences ranging from treatment failures and the need for expensive and safer alternative drugs to the cost of higher rates of morbidity and mortality, longer hospitalization, and high-healthcare costs. The search for new antibiotics and other antimicrobials continues to be a pressing need in humanity's battle against bacterial infections. Antibiotic resistance appears inevitable, and there is a continuous lack of interest in investing in new antibiotic research by pharmaceutical industries. This review summarized some new strategies for tackling antibiotic resistance in bacteria. METHODS: To provide an overview of the recent research, we look at some new strategies for preventing resistance and/or reviving bacteria's susceptibility to already existing antibiotics. RESULTS: Substantial pieces of evidence suggest that antimicrobials interact with host immunity, leading to potent indirect effects that improve antibacterial activities and may result in more swift and complete bactericidal effects. A new class of antibiotics referred to as immuno-antibiotics and the targeting of some biochemical resistance pathway components including inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria can be considered as new emerging strategies to combat antibiotic resistance in bacteria. CONCLUSION: This review highlighted and discussed immuno-antibiotics and inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria as new weapons against antibiotic resistance in bacteria. | 2022 | 35949048 |
| 9544 | 17 | 0.9998 | Nano-Strategies to Fight Multidrug Resistant Bacteria-"A Battle of the Titans". Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria. | 2018 | 30013539 |
| 9522 | 18 | 0.9998 | Conjugation Inhibitors and Their Potential Use to Prevent Dissemination of Antibiotic Resistance Genes in Bacteria. Antibiotic resistance has become one of the most challenging problems in health care. Bacteria conjugation is one of the main mechanisms whereby bacteria become resistant to antibiotics. Therefore, the search for specific conjugation inhibitors (COINs) is of interest in the fight against the spread of antibiotic resistances in a variety of laboratory and natural environments. Several compounds, discovered as COINs, are promising candidates in the fight against plasmid dissemination. In this review, we survey the effectiveness and toxicity of the most relevant compounds. Particular emphasis has been placed on unsaturated fatty acid derivatives, as they have been shown to be efficient in preventing plasmid invasiveness in bacterial populations. Biochemical and structural studies have provided insights concerning their potential molecular targets and inhibitory mechanisms. These findings open a new avenue in the search of new and more effective synthetic inhibitors. In this pursuit, the use of structure-based drug design methods will be of great importance for the screening of ligands and binding sites of putative targets. | 2017 | 29255449 |
| 9805 | 19 | 0.9998 | Molecular mechanisms of multidrug resistance in clinically relevant enteropathogenic bacteria (Review). Multidrug resistant (MDR) enteropathogenic bacteria are a growing problem within the clinical environment due to their acquired tolerance to a wide range of antibiotics, thus causing severe illnesses and a tremendous economic impact in the healthcare sector. Due to its difficult treatment, knowledge and understanding of the molecular mechanisms that confer this resistance are needed. The aim of the present review is to describe the mechanisms of antibiotic resistance from a genomic perspective observed in bacteria, including naturally acquired resistance. The present review also discusses common pharmacological and alternative treatments used in cases of infection caused by MDR bacteria, thus covering necessary information for the development of novel antimicrobials and adjuvant molecules inhibiting bacterial proliferation. | 2022 | 36561977 |