# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9508 | 0 | 1.0000 | Nisin and class IIa bacteriocin resistance among Listeria and other foodborne pathogens and spoilage bacteria. Food safety has been an important issue globally due to increasing foodborne diseases and change in food habits. To inactivate foodborne pathogens, various novel technologies such as biopreservation systems have been studied. Bacteriocins are ribosomally synthesized peptides or proteins with antimicrobial activity produced by different groups of bacteria, but the bacteriocins produced by many lactic acid bacteria offer potential applications in food preservation. The use of bacteriocins in the food industry can help reduce the addition of chemical preservatives as well as the intensity of heat treatments, resulting in foods that are more naturally preserved. However, the development of highly tolerant and/or resistant strains may decrease the efficiency of bacteriocins as biopreservatives. Several mechanisms of bacteriocin resistance development have been proposed among various foodborne pathogens. The acquiring of resistance to bacteriocins can significantly affect physiological activity profile of bacteria, alter cell-envelope lipid composition, and also modify the antibiotic susceptibility/resistance profile of bacteria. This article presents a brief review on the scientific research about the various possible mechanisms involved in the development of resistance to nisin and Class IIa bacteriocins among the foodborne pathogens. | 2011 | 21417775 |
| 9507 | 1 | 0.9999 | Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Huge demand of safe and natural preservatives has opened new area for intensive research on bacteriocins to unravel the novel range of antimicrobial compounds that could efficiently fight off the food-borne pathogens. Since food safety has become an increasingly important international concern, the application of bacteriocins from lactic acid bacteria that target food spoilage/pathogenic bacteria without major adverse effects has received great attention. Different modes of actions of these bacteriocins have been suggested and identified, like pore-forming, inhibition of cell-wall/nucleic acid/protein synthesis. However, development of resistance in the food spoilage and pathogenic bacteria against these bacteriocins is a rising concern. Emergence and spread of mutant strains resistant to bacteriocins is hampering food safety. It has spurred an interest to understand the bacteriocin resistance phenomenon displayed by the food pathogens, which will be helpful in mitigating the resistance problem. Therefore, present review is focused on the different resistance mechanisms adopted by food pathogens to overcome bacteriocin. | 2019 | 30610901 |
| 4223 | 2 | 0.9999 | Use of Probiotic Bacteria and Bacteriocins as an Alternative to Antibiotics in Aquaculture. In addition to their use in human medicine, antimicrobials are also used in food animals and aquaculture, and their use can be categorized as therapeutic against bacterial infections. The use of antimicrobials in aquaculture may involve a broad environmental application that affects a wide variety of bacteria, promoting the spread of bacterial resistance genes. Probiotics and bacteriocins, antimicrobial peptides produced by some types of lactic acid bacteria (LAB), have been successfully tested in aquatic animals as alternatives to control bacterial infections. Supplementation might have beneficial impacts on the intestinal microbiota, immune response, development, and/or weight gain, without the issues associated with antibiotic use. Thus, probiotics and bacteriocins represent feasible alternatives to antibiotics. Here, we provide an update with respect to the relevance of aquaculture in the animal protein production sector, as well as the present and future challenges generated by outbreaks and antimicrobial resistance, while highlighting the potential role of probiotics and bacteriocins to address these challenges. In addition, we conducted data analysis using a simple linear regression model to determine whether a linear relationship exists between probiotic dose added to feed and three variables of interest selected, including specific growth rate, feed conversion ratio, and lysozyme activity. | 2022 | 36144306 |
| 4224 | 3 | 0.9998 | The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. A considerable number of strains belonging to different species of Enterococcus are highly competitive due to their resistance to wide range of pH and temperature. Their competitiveness is also owed to their ability to produce bacteriocins recognized for their wide-range effectiveness on pathogenic and spoilage bacteria. Enterococcal bacteriocins have attracted great research interest as natural antimicrobial agents in the food industry, and as a potential drug candidate for replacing antibiotics in order to treat multiple drugs resistance pathogens. However, the prevalence of virulence factors and antibiotic-resistance genes and the ability to cause disease could compromise their application in food, human and animal health. From the current regulatory point of view, the genus Enterococcus is neither recommended for the QPS list nor have GRAS status. Although recent advances in molecular biology and the recommended methods for the safety evaluation of Enterococcus strains allowed the distinction between commensal and clinical clades, development of highly adapted methods and legislations are still required. In the present review, we evaluate some aspects of Enterococcus spp. related to their probiotic properties and safety concerns as well as the current and potential application in food systems and treatment of infections. The regulatory status of commensal Enterococcus candidates for food, feed, probiotic use, and recommended methods to assess and ensure their safety are also discussed. | 2018 | 30123208 |
| 9506 | 4 | 0.9998 | Nisin resistance in Gram-positive bacteria and approaches to circumvent resistance for successful therapeutic use. Antibiotic resistance among bacterial pathogens is one of the most worrying problems in health systems today. To solve this problem, bacteriocins from lactic acid bacteria, especially nisin, have been proposed as an alternative for controlling multidrug-resistant bacteria. Bacteriocins are antimicrobial peptides that have activity mainly against Gram-positive strains. Nisin is one of the most studied bacteriocins and is already approved for use in food preservation. Nisin is still not approved for human clinical use, but many in vitro studies have shown its therapeutic effectiveness, especially for the control of antibiotic-resistant strains. Results from in vitro studies show the emergence of nisin-resistant bacteria after exposure to nisin. Considering that nisin has shown promising results for clinical use, studies to elucidate nisin-resistant mechanisms and the development of approaches to circumvent nisin-resistance are important. Thus, the objectives of this review are to identify the Gram-positive bacterial strains that have shown resistance to nisin, describe their resistance mechanisms and propose ways to overcome the development of nisin-resistance for its successful clinical application. | 2021 | 33689548 |
| 9416 | 5 | 0.9998 | Mechanisms of bacterial resistance and response to bile. Enteric bacteria are resistant to the bactericidal effects of intestinal bile, but these resistance mechanisms are not completely understood. It is becoming increasingly apparent that enteric bacteria have evolved to utilize bile as a signal for the temporal production of virulence factors and other adaptive mechanisms. A greater understanding of the resistance and response of bacteria to bile may assist the development of novel therapeutic, prevention, and diagnostic strategies to treat enteric and extraintestinal infections. | 2000 | 10962274 |
| 9682 | 6 | 0.9998 | Effect of Probiotics on Host-Microbiota in Bacterial Infections. Diseases caused by bacteria cause millions of deaths every year. In addition, the problem of resistance to antibiotics is so serious that it threatens the achievements of modern medicine. This is a very important global problem as some bacteria can also develop persistence. Indeed, the persistence of pathogenic bacteria has evolved as a potent survival strategy to overcome host organisms' defense mechanisms. Additionally, chronic or persistent infections may be caused by persisters which could facilitate antibiotic resistance. Probiotics are considered good bacteria. It has been described that the modulation of gut microbiota by probiotics could have a great potential to counteract the deleterious impact and/or regulate gut microbiota after bacterial infection. Probiotics might provide health benefits through the inhibition of pathogen growth or the replacement of pathogenic bacteria. Bearing in mind that current strategies to avoid bacterial persistence and prevent antibiotic resistance are not effective, other strategies need to be assessed. We have carried out a comprehensive review, which included the reported literature between 2016 and 2021, highlighting the clinical trials that reported the probiotics' potential to regulate gut microbiota after bacterial infection and focusing in particular on the context of antibiotic resistance and persister cells. | 2022 | 36145418 |
| 9425 | 7 | 0.9998 | A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Fruits are among the main natural sources of phenolic compounds (PC). These compounds exert important antioxidant properties primarily associated with the presence of hydroxyl groups in their molecular structure. Additionally, the antibacterial effects of fruit phenolic-rich extracts or individual PC commonly found in fruits have been an emerging research focus in recent years. This review discusses by first time the available literature regarding the inhibitory effects of fruit PC on pathogenic bacteria, including not only their direct effects on bacterial growth and survival, but also their effects on virulence factors and antibiotic resistance, as well as the possible mechanism underlying these inhibitory properties. The results of the retrieved studies show overall that the antibacterial effects of fruit PC vary with the target bacteria, type of PC and length of exposure to these compounds. The type of solvent and procedures used for extraction and fruit cultivar also seem to influence the antibacterial effects of phenolic-rich fruit extracts. Fruit PC have shown wide-spectrum antibacterial properties besides being effective antibiotic resistance modifying agents in pathogenic bacteria and these effects have shown to be associated with interruption of efflux pump expression/function. Furthermore, fruit PC can cause down regulation of a variety of genes associated with virulence features in pathogenic bacteria. Results of available studies indicate the depolarization and alteration of membrane fluidity as mechanisms underlying the inhibition of pathogenic bacteria by fruit PC. These data reveal fruit PC have potential antimicrobial properties, which should be rationally exploited in solutions to control pathogenic bacteria. | 2019 | 30917922 |
| 4220 | 8 | 0.9998 | Whole genome sequencing for the risk assessment of probiotic lactic acid bacteria. Probiotic bacteria exhibit beneficial effects on human and/or animal health, and have been widely used in foods and fermented products for decades. Most probiotics consist of lactic acid bacteria (LAB), which are used in the production of various food products but have also been shown to have the ability to prevent certain diseases. With the expansion of applications for probiotic LAB, there is an increasing concern with regard to safety, as cases with adverse effects, i.e., severe infections, transfer of antimicrobial resistance genes, etc., can occur. Currently, in vitro assays remain the primary way to assess the properties of LAB. However, such methodologies are not meeting the needs of strain risk assessment on a high-throughput scale, in the context of the evolving concept of food safety. Analyzing the complete genetic information, including potential virulence genes and other determinants with a negative impact on health, allows for assessing the safe use of the product, for which whole-genome sequencing (WGS) of individual LAB strains can be employed. Genomic data can also be used to understand subtle differences in the strain level important for beneficial effects, or protect patents. Here, we propose that WGS-based bioinformatics analyses are an ideal and cost-effective approach for the initial in silico microbial risk evaluation, while the technique may also increase our understanding of LAB strains for food safety and probiotic property evaluation. | 2023 | 35694810 |
| 9454 | 9 | 0.9998 | A critical review of antibiotic resistance in probiotic bacteria. Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit upon the host. At present, probiotics are gaining popularity worldwide and are widely used in food and medicine. Consumption of probiotics is increasing with further in-depth research on the relationship between intestinal flora and host health. Most people pay more attention to the function of probiotics but ignore their potential risks, such as infection and antibiotic resistance transfer to pathogenic microbes. Physiological functions, effects and mechanisms of action of probiotics were covered in this review, as well as the antibiotic resistance phenotypes, mechanisms and genes found in probiotics. Typical cases of antibiotic resistance of probiotics were also highlighted, as well as the potential risks (including pathogenicity, infectivity and excessive immune response) and corresponding strategies (dosage, formulation, and administration route). This timely study provides an avenue for further research, development and application of probiotics. | 2020 | 32846610 |
| 9517 | 10 | 0.9998 | Better together-Salmonella biofilm-associated antibiotic resistance. Salmonella poses a serious threat to public health and socioeconomic development worldwide because of its foodborne pathogenicity and antimicrobial resistance. This biofilm-planktonic lifestyle enables Salmonella to interfere with the host and become resistant to drugs, conferring inherent tolerance to antibiotics. The complex biofilm structure makes bacteria tolerant to harsh conditions due to the diversity of physiological, biochemical, environmental, and molecular factors constituting resistance mechanisms. Here, we provide an overview of the mechanisms of Salmonella biofilm formation and antibiotic resistance, with an emphasis on less-studied molecular factors and in-depth analysis of the latest knowledge about upregulated drug-resistance-associated genes in bacterial aggregates. We classified and extensively discussed each group of these genes encoding transporters, outer membrane proteins, enzymes, multiple resistance, metabolism, and stress response-associated proteins. Finally, we highlighted the missing information and studies that need to be undertaken to understand biofilm features and contribute to eliminating antibiotic-resistant and health-threatening biofilms. | 2023 | 37401756 |
| 4225 | 11 | 0.9998 | Safety aspects and implications of regulation of probiotic bacteria in food and food supplements. The application of living bacteria as probiotics in food or food supplements requires a careful safety assessment. This review summarizes key issues concerning the safety aspects of bacteria added to particular products marketed for improvement of general health or treatment of (post)infectious symptoms. The bacteria used in such products should be completely safe; however, it can be challenging to provide evidence for absence of all virulence properties. In some cases, virulence factors have been detected in probiotic bacterial strains, and the implications of these traits for safety assessments are discussed. Horizontal gene transfer can result in acquisition of virulence genes or antimicrobial resistance in probiotic bacteria. Antimicrobial resistance in these bacteria can possibly aid the spread of undesired resistance in intestinal bacterial populations. The relative risk of such gene transfers is considered. The generation of complete bacterial genome sequences can both resolve and create safety issues. Current practices of safety assessment procedures in the United States and the European Union are briefly reviewed and a future outlook is provided. | 2008 | 18724773 |
| 9437 | 12 | 0.9998 | Bacterial resistance to Quaternary Ammonium Compounds (QAC) disinfectants. Control of bacterial diseases has, for many years, been dependent on the use of antibiotics. Due to the high levels of efficacy of antibiotics in the past other disease control options have, to a large extent, been neglected. Mankind is now facing an increasing problem with antibiotic resistance. In an effort to retain some antibiotics for human use, there are moves afoot to limit or even ban the use of antibiotics in animal production. The use of antibiotics as growth promoters have been banned in the European Union and the USA. The potential ban on the use of antibiotics to treat diseases in production animals creates a dilemma for man-suffer significant problem with bacterial infection or suffer from a severe shortage of food! There are other options for the control of bacterial diseases. These include vaccine development, bacteriophage therapy, and improved biosecurity. Vaccine development against bacterial pathogens, particularly opportunistic pathogens, is often very challenging, as in many cases the molecular basis of the virulence is not always clearly understood. This is particularly true for Escherichia coli. Biosecurity (disinfection) has been a highly neglected area in disease control. With the ever-increasing problems with antibiotic resistance-the focus should return to improvements in biosecurity. As with antibiotics, bacteria also have mechanisms for resistance to disinfectants. To ensure that we do not replace one set of problems (increasing antibiotic resistance) with another (increasing resistance to disinfectants) we need to fully understand the modes of action of disinfectants and how the bacteria develop resistance to these disinfectants. Molecular studies have been undertaken to relate the presence of QAC resistance genes in bacteria to their levels of sensitivity to different generations of QAC-based products. The mode of action of QAC on bacteria has been studied using NanoSAM technology, where it was revealed that the QAC causes disruption of the bacterial cell wall and leaking of the cytoplasm out of the cells. Our main focus is on the control of bacterial and viral diseases in the poultry industry in a post-antibiotic era, but the principles remain similar for disease control in any veterinary field as well as in human medicine. | 2014 | 24595606 |
| 4222 | 13 | 0.9998 | Conjugal Transfer of Antibiotic Resistances in Lactobacillus spp. Lactic acid bacteria (LAB) are a heterogeneous group of bacteria which are Gram-positive, facultative anaerobes and non-motile, non-spore forming, with varied shapes from cocci to coccobacilli and bacilli. Lactobacillus is the largest and most widely used bacterial species amongst LAB in fermented foods and beverages. The genus is a common member of human gut microbiome. Several species are known to provide benefits to the human gut via synergistic interactions with the gut microbiome and their ability to survive the gut environment. This ability to confer positive health effects provide them a status of generally recognized as safe (GRAS) microorganisms. Due to their various beneficial characteristics, other factors such as their resistance acquisition were overlooked. Overuse of antibiotics has made certain bacteria develop resistance against these drugs. Antibiotic resistance was found to be acquired mainly through conjugation which is a type of lateral gene transfer. Several in vitro methods of conjugation have been discussed previously depending on their success to transfer resistance. In this review, we have addressed methods that are employed to study the transfer of resistance genes using the conjugation phenomenon in lactobacilli. | 2021 | 34076710 |
| 9436 | 14 | 0.9997 | Phenotypic Resistance to Antibiotics. The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented. | 2013 | 27029301 |
| 9431 | 15 | 0.9997 | Biofilms and antimicrobial resistance. The pathogenesis of many orthopaedic infections is related to the presence of microorganisms in biofilms. I examine the emerging understanding of the mechanisms of biofilm-associated antimicrobial resistance. Biofilm-associated resistance to antimicrobial agents begins at the attachment phase and increases as the biofilm ages. A variety of reasons for the increased antimicrobial resistance of microorganisms in biofilms have been postulated and investigated. Although bacteria in biofilms are surrounded by an extracellular matrix that might physically restrict the diffusion of antimicrobial agents, this does not seem to be a predominant mechanism of biofilm-associated antimicrobial resistance. Nutrient and oxygen depletion within the biofilm cause some bacteria to enter a nongrowing (ie, stationary) state, in which they are less susceptible to growth-dependent antimicrobial killing. A subpopulation of bacteria might differentiate into a phenotypically resistant state. Finally, some organisms in biofilms have been shown to express biofilm-specific antimicrobial resistance genes that are not required for biofilm formation. Overall, the mechanism of biofilm-associated antimicrobial resistance seems to be multifactorial and may vary from organism to organism. Techniques that address biofilm susceptibility testing to antimicrobial agents may be necessary before antimicrobial regimens for orthopaedic prosthetic device-associated infections can be appropriately defined in research and clinical settings. Finally, a variety of approaches are being defined to overcome biofilm-associated antimicrobial resistance. | 2005 | 16056024 |
| 9563 | 16 | 0.9997 | Do we need new antibiotics? The search for new targets and new compounds. Resistance to antibiotics and other antimicrobial compounds continues to increase. There are several possibilities for protection against pathogenic microorganisms, for instance, preparation of new vaccines against resistant bacterial strains, use of specific bacteriophages, and searching for new antibiotics. The antibiotic search includes: (1) looking for new antibiotics from nontraditional or less traditional sources, (2) sequencing microbial genomes with the aim of finding genes specifying biosynthesis of antibiotics, (3) analyzing DNA from the environment (metagenomics), (4) re-examining forgotten natural compounds and products of their transformations, and (5) investigating new antibiotic targets in pathogenic bacteria. | 2010 | 21086099 |
| 4252 | 17 | 0.9997 | Extreme antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance. | 2011 | 22919572 |
| 4251 | 18 | 0.9997 | Extreme antimicrobial Peptide and polymyxin B resistance in the genus burkholderia. Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance. | 2011 | 21811491 |
| 8467 | 19 | 0.9997 | The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. One of the most varied species of lactic acid bacteria is Lactiplantibacillus plantarum (Lb. plantarum), formerly known as Lactobacillus plantarum. It is one of the most common species of bacteria found in foods, probiotics, dairy products, and beverages. Studies related to genomic mapping and gene locations of Lb. plantarum have shown the novel findings of its new strains along with their non-pathogenic or non-antibiotic resistance genes. Safe strains obtained with new technologies are a pioneer in the development of new probiotics and starter cultures for the food industry. However, the safety of Lb. plantarum strains and their bacteriocins should also be confirmed with in vivo studies before being employed as food additives. Many of the Lb. plantarum strains and their bacteriocins are generally safe in terms of antibiotic resistance genes. Thus, they provide a great opportunity for improving the nutritional composition, shelf life, antioxidant activity, flavour properties and antimicrobial activities in the food industry. Moreover, since some Lb. plantarum strains have the ability to reduce undesirable compounds such as aflatoxins, they have potential use in maintaining food safety and preventing food spoilage. This review emphasizes the impacts of Lb. plantarum strains on fermented foods, along with novel approaches to their genomic mapping and safety aspects. | 2022 | 35456875 |