Genetic linkage and horizontal gene transfer, the roots of the antibiotic multi-resistance problem. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
948101.0000Genetic linkage and horizontal gene transfer, the roots of the antibiotic multi-resistance problem. Bacteria carrying resistance genes for many antibiotics are moving beyond the clinic into the community, infecting otherwise healthy people with untreatable and frequently fatal infections. This state of affairs makes it increasingly important that we understand the sources of this problem in terms of bacterial biology and ecology and also that we find some new targets for drugs that will help control this growing epidemic. This brief and eclectic review takes the perspective that we have too long thought about the problem in terms of treatment with or resistance to a single antibiotic at a time, assuming that dissemination of the resistance gene was affected by simple vertical inheritance. In reality antibiotic resistance genes are readily transferred horizontally, even to and from distantly related bacteria. The common agents of bacterial gene transfer are described and also one of the processes whereby nonantibiotic chemicals, specifically toxic metals, in the environment can select for and enrich bacteria with antibiotic multiresistance. Lastly, some speculation is offered on broadening our perspective on this problem to include drugs directed at compromising the ability of the mobile elements themselves to replicate, transfer, and recombine, that is, the three "infrastructure" processes central to the movement of genes among bacteria.200617127524
949410.9999Within-Host Mathematical Models of Antibiotic Resistance. Mathematical models have been used to study the spread of infectious diseases from person to person. More recently studies are developing within-host modeling which provides an understanding of how pathogens-bacteria, fungi, parasites, or viruses-develop, spread, and evolve inside a single individual and their interaction with the host's immune system.Such models have the potential to provide a more detailed and complete description of the pathogenesis of diseases within-host and identify other influencing factors that may not be detected otherwise. Mathematical models can be used to aid understanding of the global antibiotic resistance (ABR) crisis and identify new ways of combating this threat.ABR occurs when bacteria respond to random or selective pressures and adapt to new environments through the acquisition of new genetic traits. This is usually through the acquisition of a piece of DNA from other bacteria, a process called horizontal gene transfer (HGT), the modification of a piece of DNA within a bacterium, or through. Bacteria have evolved mechanisms that enable them to respond to environmental threats by mutation, and horizontal gene transfer (HGT): conjugation; transduction; and transformation. A frequent mechanism of HGT responsible for spreading antibiotic resistance on the global scale is conjugation, as it allows the direct transfer of mobile genetic elements (MGEs). Although there are several MGEs, the most important MGEs which promote the development and rapid spread of antimicrobial resistance genes in bacterial populations are plasmids and transposons. Each of the resistance-spread-mechanisms mentioned above can be modeled allowing us to understand the process better and to define strategies to reduce resistance.202438949703
948220.9999Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. Antibiotics were one of the great discoveries of the 20th century. However, resistance appeared even in the earliest years of the antibiotic era. Antibiotic resistance continues to become worse, despite the ever-increasing resources devoted to combat the problem. One of the most important factors in the development of resistance to antibiotics is the remarkable ability of bacteria to share genetic resources via Lateral Gene Transfer (LGT). LGT occurs on a global scale, such that in theory, any gene in any organism anywhere in the microbial biosphere might be mobilized and spread. With sufficiently strong selection, any gene may spread to a point where it establishes a global presence. From an antibiotic resistance perspective, this means that a resistance phenotype can appear in a diverse range of infections around the globe nearly simultaneously. We discuss the forces and agents that make this LGT possible and argue that the problem of resistance can ultimately only be managed by understanding the problem from a broad ecological and evolutionary perspective. We also argue that human activities are exacerbating the problem by increasing the tempo of LGT and bacterial evolution for many traits that are important to humans.201121517914
946330.9999Predictable and unpredictable evolution of antibiotic resistance. Evolution of bacteria towards antibiotic resistance is unavoidable as it represents a particular aspect of the general evolution of bacteria. Thus, at the very best, the only hope we can have in the field of resistance is to delay dissemination of resistant bacteria or resistance genes. Resistance to antibiotics in bacteria can result from mutations in resident structural or regulatory genes or from horizontal acquisition of foreign genetic information. In this review, we will consider the predictable future of the relationship between bacteria and antibiotics.200818397243
970340.9999Ecology and evolution of antibiotic resistance. The evolution of bacterial pathogens towards antibiotic resistance is not just a relevant problem for human health, but a fascinating example of evolution that can be studied in real time as well. Although most antibiotics are natural compounds produced by environmental microbiota, exposure of bacterial populations to high concentrations of these compounds as the consequence of their introduction for human therapy (and later on for farming) a few decades ago is a very recent situation in evolutionary terms. Resistance genes are originated in environmental bacteria, where they have evolved for millions of years to play different functions that include detoxification, signal trafficking or metabolic functions among others. However, as the consequence of the strong selective pressure exerted by antimicrobials at clinical settings, farms and antibiotic-contaminated natural ecosystems, the selective forces driving the evolution of these potential resistance determinants have changed in the last few decades. Natural ecosystems contain a large number of potential resistance genes; nevertheless, just a few of them are currently present in gene-transfer units and disseminated among pathogens. Along the review, the processes implied in this situation and the consequences for the future evolution of resistance and the environmental microbiota are discussed.200923765924
970150.9999Environmental factors influencing the development and spread of antibiotic resistance. Antibiotic resistance and its wider implications present us with a growing healthcare crisis. Recent research points to the environment as an important component for the transmission of resistant bacteria and in the emergence of resistant pathogens. However, a deeper understanding of the evolutionary and ecological processes that lead to clinical appearance of resistance genes is still lacking, as is knowledge of environmental dispersal barriers. This calls for better models of how resistance genes evolve, are mobilized, transferred and disseminated in the environment. Here, we attempt to define the ecological and evolutionary environmental factors that contribute to resistance development and transmission. Although mobilization of resistance genes likely occurs continuously, the great majority of such genetic events do not lead to the establishment of novel resistance factors in bacterial populations, unless there is a selection pressure for maintaining them or their fitness costs are negligible. To enable preventative measures it is therefore critical to investigate under what conditions and to what extent environmental selection for resistance takes place. In addition, understanding dispersal barriers is not only key to evaluate risks, but also to prevent resistant pathogens, as well as novel resistance genes, from reaching humans.201829069382
969960.9999Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. It is generally accepted that resistance genes acquired by human pathogens through horizontal gene transfer originated in environmental, non-pathogenic bacteria. As a consequence, there is increasing concern on the roles that natural, non-clinical ecosystems, may play in the evolution of resistance. Recent studies have shown that the variability of determinants that can provide antibiotic resistance on their expression in a heterologous host is much larger than what is actually found in human pathogens, which implies the existence of bottlenecks modulating the transfer, spread, and stability of antibiotic resistance genes. In this review, the role that different factors such as founder effects, ecological connectivity, fitness costs, or second-order selection may have on the establishment of a specific resistance determinant in a population of bacterial pathogens is analyzed.201122319513
406570.9999The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. During the past 10 years, multidrug-resistant Gram-negative Enterobacteriaceae have become a substantial challenge to infection control. It has been suggested by clinicians that the effectiveness of antibiotics is in such rapid decline that, depending on the pathogen concerned, their future utility can be measured in decades or even years. Unless the rise in antibiotic resistance can be reversed, we can expect to see a substantial rise in incurable infection and fatality in both developed and developing regions. Antibiotic resistance develops through complex interactions, with resistance arising by de-novo mutation under clinical antibiotic selection or frequently by acquisition of mobile genes that have evolved over time in bacteria in the environment. The reservoir of resistance genes in the environment is due to a mix of naturally occurring resistance and those present in animal and human waste and the selective effects of pollutants, which can co-select for mobile genetic elements carrying multiple resistant genes. Less attention has been given to how anthropogenic activity might be causing evolution of antibiotic resistance in the environment. Although the economics of the pharmaceutical industry continue to restrict investment in novel biomedical responses, action must be taken to avoid the conjunction of factors that promote evolution and spread of antibiotic resistance.201323347633
948080.9999Antibiotic resistance: it's bad, but why isn't it worse? Antibiotic natural products are ancient and so is resistance. Consequently, environmental bacteria harbor numerous and varied antibiotic resistance elements. Nevertheless, despite long histories of antibiotic production and exposure, environmental bacteria are not resistant to all known antibiotics. This means that there are barriers to the acquisition of a complete resistance armamentarium. The sources, distribution, and movement of resistance mechanisms in different microbes and bacterial populations are mosaic features that act as barriers to slow this movement, thus moderating the emergence of bacterial pan-resistance. This is highly relevant to understanding the emergence of resistance in pathogenic bacteria that can inform better antibiotic management practices and influence new drug discovery.201728915805
948990.9999The origins of antibiotic resistance. Antibiotics remain one of our most important pharmacological tools for the control of infectious disease. However, unlike most other drugs, the use of antibiotics selects for resistant organisms and erodes their clinical utility. Resistance can emerge within populations of bacteria by mutation and be retained by subsequent selection or by the acquisition of resistance elements laterally from other organisms. The source of these resistance genes is only now being understood. The evidence supports a large bacterial resistome-the collection of all resistance genes and their precursors in both pathogenic and nonpathogenic bacteria. These genes have arisen by various means including self-protection in the case of antibiotic producers, transport of small molecules for various reasons including nutrition and detoxification of noxious chemicals, and to accomplish other goals, such as metabolism, and demonstrate serendipitous selectivity for antibiotics. Regardless of their origins, resistance genes can rapidly move through bacterial populations and emerge in pathogenic bacteria. Understanding the processes that contribute to the evolution and selection of resistance is essential to mange current stocks of antibiotics and develop new ones.201223090593
9295100.9999Biological activities specified by antibiotic resistance plasmids. Bacteria can display resistance to a wide spectrum of noxious agents and environmental conditions, and these properties are often mediated by genes located on extrachromosomal DNA elements called plasmids. Replication, vertical and horizontal transmission and evolution of these elements are discussed, and examples of the genes responsible for the resistance phenotypes are given. Selective forces that drive the evolution of new combinations of bacterial properties of particular importance in clinical situations are analysed.19863542928
9490110.9999The superbugs: evolution, dissemination and fitness. Since the introduction of antibiotics, bacteria have not only evolved elegant resistance mechanisms to thwart their effect, but have also evolved ways in which to disseminate themselves or their resistance genes to other susceptible bacteria. During the past few years, research has revealed not only how such resistance mechanisms have been able to evolve and to rapidly disseminate, but also how bacteria have, in some cases, been able to adapt to this new burden of resistance with little or no cost to their fitness. Such adaptations make the control of these superbugs all the more difficult.199810066531
9493120.9999Regulatory integration of horizontally-transferred genes in bacteria. Horizontal transfer of genetic material is a fact of microbial life and bacteria can obtain new DNA sequences through the processes of conjugation, transduction and transformation. This offers the bacterium the possibility of evolving rapidly by importing new genes that code for new traits that may assist in environmental adaptation. Research in this area has focused in particular on the role of horizontal transfer in the dissemination through bacterial populations of genes for resistance to antimicrobial agents, including antibiotics. It is becoming clear that many other phenotypic characteristics have been acquired through horizontal routes and that these include traits contributing to pathogenesis and symbiosis. An important corollary to the acquisition of new genes is the problem of how best to integrate them in the existing gene regulatory circuits of the recipient so that fitness is not compromised initially and can be enhanced in the future through optimal expression of the new genes.200919273337
4072130.9999A horizontal transmission of genetic information and its importance for development of antibiotics resistance. Genetic information is transmitted among organisms through two pathways - vertically from generation to generation (from parents to progeny) and horizontally (laterally) by direct exchange of genetic material across species barriers. These are primarily prokaryotes, in which the exchange of genes or whole gene segments by horizontal transmission is quite common. They can dynamically and in a relatively short time generate highly diverse genomes, which does not allow the vertical transmission. As a result, prokaryotes can rapidly acquire new properties such as virulence and pathogenicity as well as resistance to toxins, including antibiotics, by which they increase their adaptability. Therefore, reinfection-resistant microorganisms are always more difficult to treat than infections caused by non-resistant bacteria. Antibiotic resistance today is a global problem of health care service. Not only does the number of diseases caused by resistant pathogenic strains of bacteria increase, but also the cost of treatment increases disproportionately, the length of hospitalization is prolonged, and mortality is often rising. Therefore, when indicating antibiotic therapy, it is important to keep in mind that both overuse and abuse of antibiotics contribute to the spread of antibiotic resistance genes. This is equally true for antibiotic applications in veterinary medicine, agriculture, including aquacultures, or in the food industry. Keywords: horizontal transmission of genetic information, endosymbiosis, antibiotic resistance, risks of the emergence and spread of antibiotic resistance, prevention of antibiotic resistance.201830441943
9696140.9999Evolution of resistance in microorganisms of human origin. Resistance to antimicrobials in bacteria results from either evolution of "new" DNA or from variation in existing DNA. Evidence suggests that new DNA did not originate since the use of antibiotics in medicine, but evolved long ago in soil bacteria. This evidence is based on functional and structural homologies of resistance proteins in human pathogens, and resistance proteins or physiological proteins of soil bacteria. Variation in existing DNA has been shown to comprise variations in structural or regulatory genes of the normal chromosome or mutations in already existing plasmid-mediated resistance genes modifying the resistance phenotype. The success of R-determinants in human pathogens was due to their horizontal spread by transformation, transduction and conjugation. Furthermore, transposition has enabled bacteria to efficiently distribute R-determinants between independent DNA-molecules. Since the genetic processes involved in the development of resistance are rare events, the selective pressure exerted by antibiotics has significantly contributed to the overall evolutionary picture. With few exceptions, experimental data about the role of antibiotic usage outside human medicine with respect to the resistance problem in human pathogens are missing. Epidemiological data about the occurrence of resistance in human pathogens seem to indicate that the major contributing factor to the problem we face today was the extensive use of antibiotics in medicine itself.19938212510
9698150.9999Potential impact of environmental bacteriophages in spreading antibiotic resistance genes. The idea that bacteriophage transduction plays a role in the horizontal transfer of antibiotic resistance genes is gaining momentum. Such transduction might be vital in horizontal transfer from environmental to human body-associated biomes and here we review many lines of evidence supporting this notion. It is well accepted that bacteriophages are the most abundant entities in most environments, where they have been shown to be quite persistent. This fact, together with the ability of many phages to infect bacteria belonging to different taxa, makes them suitable vehicles for gene transfer. Metagenomic studies confirm that substantial percentages of the bacteriophage particles present in most environments contain bacterial genes, including mobile genetic elements and antibiotic resistance genes. When specific genes of resistance to antibiotics are detected by real-time PCR in the bacteriophage populations of different environments, only tenfold lower numbers of these genes are observed, compared with those found in the corresponding bacterial populations. In addition, the antibiotic resistance genes from these bacteriophages are functional and generate resistance to the bacteria when these genes are transfected. Finally, reports about the transduction of antibiotic resistance genes are on the increase.201323701331
9485160.9999Evolution of Drug Resistance in Bacteria. Resistance to antibiotics is an important and timely problem of contemporary medicine. Rapid evolution of resistant bacteria calls for new preventive measures to slow down this process, and a longer-term progress cannot be achieved without a good understanding of the mechanisms through which drug resistance is acquired and spreads in microbial populations. Here, we discuss recent experimental and theoretical advances in our knowledge how the dynamics of microbial populations affects the evolution of antibiotic resistance . We focus on the role of spatial and temporal drug gradients and show that in certain situations bacteria can evolve de novo resistance within hours. We identify factors that lead to such rapid onset of resistance and discuss their relevance for bacterial infections.201627193537
9694170.9999Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: from the resistome to genetic plasticity in the β-lactamases world. Antibiotics and antibiotic resistance determinants, natural molecules closely related to bacterial physiology and consistent with an ancient origin, are not only present in antibiotic-producing bacteria. Throughput sequencing technologies have revealed an unexpected reservoir of antibiotic resistance in the environment. These data suggest that co-evolution between antibiotic and antibiotic resistance genes has occurred since the beginning of time. This evolutionary race has probably been slow because of highly regulated processes and low antibiotic concentrations. Therefore to understand this global problem, a new variable must be introduced, that the antibiotic resistance is a natural event, inherent to life. However, the industrial production of natural and synthetic antibiotics has dramatically accelerated this race, selecting some of the many resistance genes present in nature and contributing to their diversification. One of the best models available to understand the biological impact of selection and diversification are β-lactamases. They constitute the most widespread mechanism of resistance, at least among pathogenic bacteria, with more than 1000 enzymes identified in the literature. In the last years, there has been growing concern about the description, spread, and diversification of β-lactamases with carbapenemase activity and AmpC-type in plasmids. Phylogenies of these enzymes help the understanding of the evolutionary forces driving their selection. Moreover, understanding the adaptive potential of β-lactamases contribute to exploration the evolutionary antagonists trajectories through the design of more efficient synthetic molecules. In this review, we attempt to analyze the antibiotic resistance problem from intrinsic and environmental resistomes to the adaptive potential of resistance genes and the driving forces involved in their diversification, in order to provide a global perspective of the resistance problem.201323404545
9492180.9999The Search for 'Evolution-Proof' Antibiotics. The effectiveness of antibiotics has been widely compromised by the evolution of resistance among pathogenic bacteria. It would be restored by the development of antibiotics to which bacteria cannot evolve resistance. We first discuss two kinds of 'evolution-proof' antibiotic. The first comprises literally evolution-proof antibiotics to which bacteria cannot become resistant by mutation or horizontal gene transfer. The second category comprises agents to which resistance may arise, but so rarely that it does not become epidemic. The likelihood that resistance to a novel agent will spread is evaluated here by a simple model that includes biological and therapeutic parameters governing the evolution of resistance within hosts and the transmission of resistant strains between hosts. This model leads to the conclusion that epidemic spread is unlikely if the frequency of mutations that confer resistance falls below a defined minimum value, and it identifies potential targets for intervention to prevent the evolution of resistance. Whether or not evolution-proof antibiotics are ever found, searching for them is likely to improve the deployment of new and existing agents by advancing our understanding of how resistance evolves.201829191398
4016190.9999Antimicrobial-induced horizontal transfer of antimicrobial resistance genes in bacteria: a mini-review. The emergence and spread of antimicrobial resistance (AMR) among pathogenic bacteria constitute an accelerating crisis for public health. The selective pressures caused by increased use and misuse of antimicrobials in medicine and livestock production have accelerated the overall selection of resistant bacteria. In addition, horizontal gene transfer (HGT) plays an important role in the spread of resistance genes, for example mobilizing reservoirs of AMR from commensal bacteria into pathogenic ones. Antimicrobials, besides antibacterial function, also result in undesirable effects in the microbial populations, including the stimulation of HGT. The main aim of this narrative review was to present an overview of the current knowledge of the impact of antimicrobials on HGT in bacteria, including the effects of transformation, transduction and conjugation, as well as other less well-studied mechanisms of HGT. It is widely accepted that conjugation plays a major role in the spread of AMR in bacteria, and the focus of this review is therefore mainly on the evidence provided that antimicrobial treatment affects this process. Other mechanisms of HGT have so far been deemed less important in this respect; however, recent discoveries suggest their role may be larger than previously thought, and the review provides an update on the rather limited knowledge currently available regarding the impact of antimicrobial treatment on these processes as well. A conclusion from the review is that there is an urgent need to investigate the mechanisms of antimicrobial-induced HGT, since this will be critical for developing new strategies to combat the spread of AMR.202234894259