# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9464 | 0 | 1.0000 | Why is antibiotic resistance a deadly emerging disease? Evolution of bacteria towards resistance to antimicrobial agents, including multidrug resistance, is unavoidable because it represents a particular aspect of the general evolution of bacteria that is unstoppable. Therefore, the only means of dealing with this situation is to delay the emergence and subsequent dissemination of resistant bacteria or resistance genes. In this review, we will consider the biochemical mechanisms and the genetics that bacteria use to offset antibiotic selective pressure. The data provided are mainly, if not exclusively, taken from the work carried out in the laboratory, although there are numerous other examples in the literature. | 2016 | 26806259 |
| 9465 | 1 | 1.0000 | Antimicrobial drug resistance: "Prediction is very difficult, especially about the future". Evolution of bacteria towards resistance to antimicrobial drugs, including multidrug resistance, is unavoidable because it represents a particular aspect of the general evolution of bacteria that is unstoppable. Therefore, the only means of dealing with this situation is to delay the emergence and subsequent dissemination of resistant bacteria or resistance genes. Resistance to antimicrobial drugs in bacteria can result from mutations in housekeeping structural or regulatory genes. Alternatively, resistance can result from the horizontal acquisition of foreign genetic information. The 2 phenomena are not mutually exclusive and can be associated in the emergence and more efficient spread of resistance. This review discusses the predictable future of the relationship between antimicrobial drugs and bacteria. | 2005 | 16318687 |
| 9463 | 2 | 0.9999 | Predictable and unpredictable evolution of antibiotic resistance. Evolution of bacteria towards antibiotic resistance is unavoidable as it represents a particular aspect of the general evolution of bacteria. Thus, at the very best, the only hope we can have in the field of resistance is to delay dissemination of resistant bacteria or resistance genes. Resistance to antibiotics in bacteria can result from mutations in resident structural or regulatory genes or from horizontal acquisition of foreign genetic information. In this review, we will consider the predictable future of the relationship between bacteria and antibiotics. | 2008 | 18397243 |
| 4244 | 3 | 0.9999 | Molecular mechanisms of antibiotic resistance. Antibiotic-resistant bacteria that are difficult or impossible to treat are becoming increasingly common and are causing a global health crisis. Antibiotic resistance is encoded by several genes, many of which can transfer between bacteria. New resistance mechanisms are constantly being described, and new genes and vectors of transmission are identified on a regular basis. This article reviews recent advances in our understanding of the mechanisms by which bacteria are either intrinsically resistant or acquire resistance to antibiotics, including the prevention of access to drug targets, changes in the structure and protection of antibiotic targets and the direct modification or inactivation of antibiotics. | 2015 | 25435309 |
| 4245 | 4 | 0.9999 | Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. In recent years, we have seen antimicrobial resistance rapidly emerge at a global scale and spread from one country to the other faster than previously thought. Superbugs and multidrug-resistant bacteria are endemic in many parts of the world. There is no question that the widespread use, overuse, and misuse of antimicrobials during the last 80 years have been associated with the explosion of antimicrobial resistance. On the other hand, the molecular pathways behind the emergence of antimicrobial resistance in bacteria were present since ancient times. Some of these mechanisms are the ancestors of current resistance determinants. Evidently, there are plenty of putative resistance genes in the environment, however, we cannot yet predict which ones would be able to be expressed as phenotypes in pathogenic bacteria and cause clinical disease. In addition, in the presence of inhibitory and sub-inhibitory concentrations of antibiotics in natural habitats, one could assume that novel resistance mechanisms will arise against antimicrobial compounds. This review presents an overview of antimicrobial resistance mechanisms, and describes how these have evolved and how they continue to emerge. As antimicrobial strategies able to bypass the development of resistance are urgently needed, a better understanding of the critical factors that contribute to the persistence and spread of antimicrobial resistance may yield innovative perspectives on the design of such new therapeutic targets. | 2020 | 31659373 |
| 9486 | 5 | 0.9999 | Acquired Bacterial Resistance to Antibiotics and Resistance Genes: From Past to Future. The discovery, commercialization, and regular administration of antimicrobial agents have revolutionized the therapeutic paradigm, making it possible to treat previously untreatable and fatal infections. However, the excessive use of antibiotics has led to develop resistance soon after their use in clinical practice, to the point of becoming a global emergency. The mechanisms of bacterial resistance to antibiotics are manifold, including mechanisms of destruction or inactivation, target site modification, or active efflux, and represent the main examples of evolutionary adaptation for the survival of bacterial species. The acquirement of new resistance mechanisms is a consequence of the great genetic plasticity of bacteria, which triggers specific responses that result in mutational adaptation, acquisition of genetic material, or alteration of gene expression, virtually producing resistance to all currently available antibiotics. Understanding resistance processes is critical to the development of new antimicrobial agents to counteract drug-resistant microorganisms. In this review, both the mechanisms of action of antibiotic resistance (AMR) and the antibiotic resistance genes (ARGs) mainly found in clinical and environmental bacteria will be reviewed. Furthermore, the evolutionary background of multidrug-resistant bacteria will be examined, and some promising elements to control or reduce the emergence and spread of AMR will be proposed. | 2025 | 40149034 |
| 4064 | 6 | 0.9999 | Antimicrobial resistance. The development of antimicrobial drugs, and particularly of antibiotics, has played a considerable role in substantially reducing the morbidity and mortality rates of many infectious diseases. However, the fact that bacteria can develop resistance to antibiotics has produced a situation where antimicrobial agents are losing their effectiveness because of the spread and persistence of drug-resistant organisms. To combat this, more and more antibiotics with increased therapeutic and prophylactic action will need to be developed.This article is concerned with antibiotic resistance in bacteria which are pathogenic to man and animals. The historical background is given, as well as some information on the present situation and trends of antibiotic resistance to certain bacteria in different parts of the world. Considerable concern is raised over the use of antibiotics in man and animals. It is stated that antibiotic resistance in human pathogens is widely attributed to the "misuse" of antibiotics for treatment and prophylaxis in man and to the administration of antibiotics to animals for a variety of purposes (growth promotion, prophylaxis, or therapy), leading to the accumulation of resistant bacteria in their flora. Factors favouring the development of resistance are discussed. | 1983 | 6603914 |
| 4065 | 7 | 0.9999 | The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. During the past 10 years, multidrug-resistant Gram-negative Enterobacteriaceae have become a substantial challenge to infection control. It has been suggested by clinicians that the effectiveness of antibiotics is in such rapid decline that, depending on the pathogen concerned, their future utility can be measured in decades or even years. Unless the rise in antibiotic resistance can be reversed, we can expect to see a substantial rise in incurable infection and fatality in both developed and developing regions. Antibiotic resistance develops through complex interactions, with resistance arising by de-novo mutation under clinical antibiotic selection or frequently by acquisition of mobile genes that have evolved over time in bacteria in the environment. The reservoir of resistance genes in the environment is due to a mix of naturally occurring resistance and those present in animal and human waste and the selective effects of pollutants, which can co-select for mobile genetic elements carrying multiple resistant genes. Less attention has been given to how anthropogenic activity might be causing evolution of antibiotic resistance in the environment. Although the economics of the pharmaceutical industry continue to restrict investment in novel biomedical responses, action must be taken to avoid the conjunction of factors that promote evolution and spread of antibiotic resistance. | 2013 | 23347633 |
| 9488 | 8 | 0.9999 | Minimizing potential resistance: the molecular view. The major contribution of molecular biology to the study of antibiotic resistance has been the elucidation of nearly all biochemical mechanisms of resistance and the routes for dissemination of genetic information among bacteria. In this review, we consider the potential contribution of molecular biology to counteracting the evolution of resistant bacteria. In particular, we emphasize the fact that fundamental approaches have had direct practical effects on minimizing potential resistance: by improving interpretation of resistance phenotypes, by providing more adequate human therapy, by fostering more prudent use of antibiotics, and by allowing the rational design of new drugs that evade existing resistance mechanisms or address unexploited targets. | 2001 | 11524711 |
| 4243 | 9 | 0.9999 | Action and resistance mechanisms of antibiotics: A guide for clinicians. Infections account for a major cause of death throughout the developing world. This is mainly due to the emergence of newer infectious agents and more specifically due to the appearance of antimicrobial resistance. With time, the bacteria have become smarter and along with it, massive imprudent usage of antibiotics in clinical practice has resulted in resistance of bacteria to antimicrobial agents. The antimicrobial resistance is recognized as a major problem in the treatment of microbial infections. The biochemical resistance mechanisms used by bacteria include the following: antibiotic inactivation, target modification, altered permeability, and "bypass" of metabolic pathway. Determination of bacterial resistance to antibiotics of all classes (phenotypes) and mutations that are responsible for bacterial resistance to antibiotics (genetic analysis) are helpful. Better understanding of the mechanisms of antibiotic resistance will help clinicians regarding usage of antibiotics in different situations. This review discusses the mechanism of action and resistance development in commonly used antimicrobials. | 2017 | 29109626 |
| 4239 | 10 | 0.9999 | Bacterial resistance. Pathogenic bacteria remain adaptable to an increasingly hostile environment and a wider variety of more potent antibiotics. Organisms not intrinsically prepared for defense have been able to acquire resistance to newer antimicrobial agents. Chromosomal mutations alone cannot account for the rapid emergence and spread of antibiotic resistance. It has been established that plasmids and transposons are particularly important in the evolution of antibiotic-resistant bacteria. Plasmid- or transposon-mediated resistance provides the bacteria with pre-evolved genes refined to express high-level resistance. In particular, transposons can transfer these resistance determinants in diverse bacterial species, and nature provides in humans and animals large intestinal reservoirs in which such communications are facilitated. Antibiotic therapy exerts selection pressures on bacteria. Eradication or marked reduction in the populations of susceptible organisms promotes the overgrowth of intrinsically resistant strains and favors those resistant as a result of favorable chromosomal mutations or via plasmids or transposons. In our hospitals, where antibiotic consumption continues to increase, the nosocomial flora consists of many resistant bacteria, and infections acquired in the nosocomial setting are now far more severe than their community-acquired counterparts. There is convincing evidence that infection control measures must take into further consideration the contribution of the hospital worker as carrier and mediator of antibiotic resistance. | 1991 | 1649425 |
| 9481 | 11 | 0.9998 | Genetic linkage and horizontal gene transfer, the roots of the antibiotic multi-resistance problem. Bacteria carrying resistance genes for many antibiotics are moving beyond the clinic into the community, infecting otherwise healthy people with untreatable and frequently fatal infections. This state of affairs makes it increasingly important that we understand the sources of this problem in terms of bacterial biology and ecology and also that we find some new targets for drugs that will help control this growing epidemic. This brief and eclectic review takes the perspective that we have too long thought about the problem in terms of treatment with or resistance to a single antibiotic at a time, assuming that dissemination of the resistance gene was affected by simple vertical inheritance. In reality antibiotic resistance genes are readily transferred horizontally, even to and from distantly related bacteria. The common agents of bacterial gene transfer are described and also one of the processes whereby nonantibiotic chemicals, specifically toxic metals, in the environment can select for and enrich bacteria with antibiotic multiresistance. Lastly, some speculation is offered on broadening our perspective on this problem to include drugs directed at compromising the ability of the mobile elements themselves to replicate, transfer, and recombine, that is, the three "infrastructure" processes central to the movement of genes among bacteria. | 2006 | 17127524 |
| 4242 | 12 | 0.9998 | The basis of antibiotic resistance in bacteria. The ability of bacteria to resist the inhibitory and lethal actions of antibiotics is a major clinical problem, and has been observed with every antimicrobial agent. In this article, the major mechanisms of antibiotic resistance are reviewed, and the clinical relevance of such resistance in selected bacteria is discussed. | 1990 | 2192071 |
| 4059 | 13 | 0.9998 | The prevention of antibiotic resistance during treatment. Prevention of emergence of antibiotic resistance during treatment is an important goal when prescribing antimicrobials. Antibiotic resistant bacteria can emerge in three main ways--by acquisition of new genes via transposons or horizontal gene transfer, by selection of resistant variants and by selection of naturally resistant strains. In order to minimize emergence of antibiotic resistance during therapy it is important to try and avoid antibiotics which encourage the transfer of resistance genes, to avoid selection of resistant variants from susceptible pathogens and to avoid ablation of antibiotic susceptible normal flora. However, implementing these objectives is not always easy. This paper discusses possible ways of limiting the emergence of resistant bacteria during treatment. It does not consider how to prevent the spread of these strains from person to person. The prevalence of antibiotic-resistant bacteria depends upon the selection of antibiotic-resistant strains and spread of these strains from person to person. Prevention therefore consists of two parts--the prevention of acquisition of resistance/selection of antibiotic-resistant variants and interrupting the mechanisms by which person-to-person spread can occur. This paper considers only the first of these two influences on prevalence of resistance. | 1999 | 10885824 |
| 9482 | 14 | 0.9998 | Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. Antibiotics were one of the great discoveries of the 20th century. However, resistance appeared even in the earliest years of the antibiotic era. Antibiotic resistance continues to become worse, despite the ever-increasing resources devoted to combat the problem. One of the most important factors in the development of resistance to antibiotics is the remarkable ability of bacteria to share genetic resources via Lateral Gene Transfer (LGT). LGT occurs on a global scale, such that in theory, any gene in any organism anywhere in the microbial biosphere might be mobilized and spread. With sufficiently strong selection, any gene may spread to a point where it establishes a global presence. From an antibiotic resistance perspective, this means that a resistance phenotype can appear in a diverse range of infections around the globe nearly simultaneously. We discuss the forces and agents that make this LGT possible and argue that the problem of resistance can ultimately only be managed by understanding the problem from a broad ecological and evolutionary perspective. We also argue that human activities are exacerbating the problem by increasing the tempo of LGT and bacterial evolution for many traits that are important to humans. | 2011 | 21517914 |
| 9485 | 15 | 0.9998 | Evolution of Drug Resistance in Bacteria. Resistance to antibiotics is an important and timely problem of contemporary medicine. Rapid evolution of resistant bacteria calls for new preventive measures to slow down this process, and a longer-term progress cannot be achieved without a good understanding of the mechanisms through which drug resistance is acquired and spreads in microbial populations. Here, we discuss recent experimental and theoretical advances in our knowledge how the dynamics of microbial populations affects the evolution of antibiotic resistance . We focus on the role of spatial and temporal drug gradients and show that in certain situations bacteria can evolve de novo resistance within hours. We identify factors that lead to such rapid onset of resistance and discuss their relevance for bacterial infections. | 2016 | 27193537 |
| 9487 | 16 | 0.9998 | Molecular mechanisms of antibiotic resistance revisited. Antibiotic resistance is a global health emergency, with resistance detected to all antibiotics currently in clinical use and only a few novel drugs in the pipeline. Understanding the molecular mechanisms that bacteria use to resist the action of antimicrobials is critical to recognize global patterns of resistance and to improve the use of current drugs, as well as for the design of new drugs less susceptible to resistance development and novel strategies to combat resistance. In this Review, we explore recent advances in understanding how resistance genes contribute to the biology of the host, new structural details of relevant molecular events underpinning resistance, the identification of new resistance gene families and the interactions between different resistance mechanisms. Finally, we discuss how we can use this information to develop the next generation of antimicrobial therapies. | 2023 | 36411397 |
| 4058 | 17 | 0.9998 | Antimicrobial resistance: a complex issue. The discovery of antibiotics represented a turning point in human history. However, by the late 1950s infections that were difficult to treat, involving resistant bacteria, were being reported. Nowadays, multiresistant strains have become a major concern for public and animal health. Antimicrobial resistance is a complex issue, linked to the ability of bacteria to adapt quickly to their environment. Antibiotics, and antimicrobial-resistant bacteria and determinants, existed before the discovery and use of antibiotics by humans. Resistance to antimicrobial agents is a tool that allows bacteria to survive in the environment, and to develop. Resistance genes can be transferred between bacteria by horizontal transfer involving three mechanisms: conjugation, transduction and transformation. Resistant bacteria can emerge in any location when the appropriate conditions develop. Antibiotics represent a powerful selector for antimicrobial resistance in bacteria. Reducing the use of antimicrobial drugs is one way to control antimicrobial resistance; however, a full set of measures needs to be implemented to achieve this aim. | 2012 | 22849265 |
| 4066 | 18 | 0.9998 | Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment. The use of antimicrobial agents has been claimed to be the driving force for the emergence and spread of microbial resistance. However, several studies have reported the presence of multidrug-resistant bacteria in populations exposed to low levels of antimicrobial drugs or even never exposed. For many pathogens, especially those organisms for which asymptomatic colonization typically precedes infection (e.g., Enterococcus spp. and Escherichia coli), the selective effects of antimicrobial use can only be understood if we considerer all biological and environmental pathways which enable these bacteria, and the genes they carry, to spread between different biomes. This ecological framework provides an essential perspective for formulating antimicrobial use policies, precisely because it encompasses the root causes of these problems rather than merely their consequences. | 2013 | 23343983 |
| 4063 | 19 | 0.9998 | The 2000 Garrod lecture. Factors impacting on the problem of antibiotic resistance. Antibiotic resistance has become a major clinical and public health problem within the lifetime of most people living today. Confronted by increasing amounts of antibiotics over the past 60 years, bacteria have responded to the deluge with the propagation of progeny no longer susceptible to them. While it is clear that antibiotics are pivotal in the selection of bacterial resistance, the spread of resistance genes and of resistant bacteria also contributes to the problem. Selection of resistant forms can occur during or after antimicrobial treatment; antibiotic residues can be found in the environment for long periods of time after treatment. Besides antibiotics, there is the mounting use of other agents aimed at destroying bacteria, namely the surface antibacterials now available in many household products. These too enter the environment. The stage is thus set for an altered microbial ecology, not only in terms of resistant versus susceptible bacteria, but also in terms of the kinds of microorganisms surviving in the treated environment. We currently face multiresistant infectious disease organisms that are difficult and, sometimes, impossible to treat successfully. In order to curb the resistance problem, we must encourage the return of the susceptible commensal flora. They are our best allies in reversing antibiotic resistance. | 2002 | 11751763 |