# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9457 | 0 | 1.0000 | Exploring the role of gut microbiota in antibiotic resistance and prevention. BACKGROUND/INTRODUCTION: Antimicrobial resistance (AMR) and the evolution of multiple drug-resistant (MDR) bacteria is of grave public health concern. To combat the pandemic of AMR, it is necessary to focus on novel alternatives for drug development. Within the host, the interaction of the pathogen with the microbiome plays a pivotal role in determining the outcome of pathogenesis. Therefore, microbiome-pathogen interaction is one of the potential targets to be explored for novel antimicrobials. MAIN BODY: This review focuses on how the gut microbiome has evolved as a significant component of the resistome as a source of antibiotic resistance genes (ARGs). Antibiotics alter the composition of the native microbiota of the host by favouring resistant bacteria that can manifest as opportunistic infections. Furthermore, gut dysbiosis has also been linked to low-dosage antibiotic ingestion or subtherapeutic antibiotic treatment (STAT) from food and the environment. DISCUSSION: Colonization by MDR bacteria is potentially acquired and maintained in the gut microbiota. Therefore, it is pivotal to understand microbial diversity and its role in adapting pathogens to AMR. Implementing several strategies to prevent or treat dysbiosis is necessary, including faecal microbiota transplantation, probiotics and prebiotics, phage therapy, drug delivery models, and antimicrobial stewardship regulation. | 2025 | 40096354 |
| 6637 | 1 | 0.9999 | Antibiotic Resistance Gene Expression in Veterinary Probiotics: Two Sides of the Coin. The rapid proliferation of antimicrobial resistance has emerged as one of the most pressing animal and public health challenges of our time. Probiotics, extensively employed in human and veterinary medicine, are instrumental in maintaining a balanced microbiome and mitigating its disruption during antibiotic therapy. While their numerous benefits are well documented, probiotics also present potential risks, notably the capacity to harbor antimicrobial resistance genes. This genetic reservoir could contribute to the emergence and spread of antimicrobial resistance by facilitating the horizontal transfer of resistance genes to pathogenic bacteria within the gut. This review critically examines the presence of antimicrobial resistance genes in commonly used probiotic strains, explores the underlying mechanisms of resistance, and provides a balanced analysis of the benefits and risks associated with their use. By addressing these dual aspects, this paper highlights the need for vigilant evaluation of probiotics to preserve their therapeutic potential while minimizing public health risks. | 2025 | 40266902 |
| 9456 | 2 | 0.9999 | Antibiotic treatments and microbes in the gut. Antibiotic therapies are important in combating disease-causing microorganisms and maintaining host health. It is widely accepted that exposure of the gut microbiota to antibiotics can lead to decreased susceptibility and the development of multi-drug-resistant disease-causing organisms, which can be a major clinical problem. It is also important to consider that antibiotics not only target pathogenic bacteria in the gut, but also can have damaging effects on the ecology of commensal species. This can reduce intrinsic colonization resistance and contribute to problems with antibiotic resistance, including lateral transfer of resistance genes. Our knowledge of the impact of antibiotic treatment on the ecology of the normal microbiota has been increased by recent advances in molecular methods and use of in vitro model systems to investigate the impact of antibiotics on the biodiversity of gut populations and the spread of antibiotic resistance. These highlight the need for more detailed structural and functional information on the long-term antibiotic-associated alterations in the gut microbiome, and spread of antibiotic resistance genes. This will be crucial for the development of strategies, such as targeted therapeutics, probiotics, prebiotics and synbiotics, to prevent perturbations in the gut microbiota, the restoration of beneficial species and improvements in host health. | 2014 | 24471523 |
| 9686 | 3 | 0.9999 | Selective pressures for public antibiotic resistance. The rapid increase of antibiotic-resistant pathogens is severely limiting our current treatment possibilities. An important subset of the resistance mechanisms conferring antibiotic resistance have public effects, allowing otherwise susceptible bacteria to also survive antibiotic treatment. As susceptible bacteria can survive treatment without bearing the metabolic cost of producing the resistance mechanism, there is potential to increase their relative frequency in the population and, as such, select against resistant bacteria. Multiple studies showed that this altered selection for resistance is dependent on various environmental and treatment parameters. In this review, we provide a comprehensive overview of their most important findings and describe the main factors impacting the selection for resistance. In-depth understanding of the driving forces behind selection can aid in the design and implementation of alternative treatments which limit the risk of resistance development. | 2025 | 39158370 |
| 4026 | 4 | 0.9999 | Gut microbiome in the emergence of antibiotic-resistant bacterial pathogens. The human gastrointestinal tract is home to a complex and dynamic community of microorganisms known as gut microbiota, which provide the host with important metabolic, signaling, and immunomodulatory functions. Both the commensal and pathogenic members of the gut microbiome serve as reservoirs of antimicrobial-resistance genes (ARG), which can cause potential health threats to the host and can transfer the ARGs to the susceptible microbes and into the environment. Antimicrobial resistance is becoming a major burden on human health and is widely recognized as a global challenge. The diversity and abundance of ARGs in the gut microbiome are variable and depend on the exposure to healthcare-associated antibiotics, usage of antibiotics in veterinary and agriculture, and the migration of the population. The transfer frequency of the ARGs through horizontal gene transfer (HGT) with the help of mobile genetic elements (MGEs) like plasmids, transposons, or phages is much higher among bacteria living in the GI tract compared to other microbial ecosystems. HGT in gut bacteria is facilitated through multiple gene transfer mechanisms, including transformation, conjugation, transduction, and vesicle fusion. It is the need of the hour to implement strict policies to limit indiscriminate antibiotic usage when needed. Developing rapid diagnostic tests for resistance determination and alternatives to antibiotics like vaccination, probiotics, and bacteriophage therapy should have the highest priority in the research and development sectors. Collective actions for sustainable development against resistant pathogens by promoting endogenous gut microbial growth and diversity through interdisciplinary research and findings are key to overcoming the current antimicrobial resistance crisis. | 2022 | 36280316 |
| 9452 | 5 | 0.9999 | Bacteriophages in the Control of Aeromonas sp. in Aquaculture Systems: An Integrative View. Aeromonas species often cause disease in farmed fish and are responsible for causing significant economic losses worldwide. Although vaccination is the ideal method to prevent infectious diseases, there are still very few vaccines commercially available in the aquaculture field. Currently, aquaculture production relies heavily on antibiotics, contributing to the global issue of the emergence of antimicrobial-resistant bacteria and resistance genes. Therefore, it is essential to develop effective alternatives to antibiotics to reduce their use in aquaculture systems. Bacteriophage (or phage) therapy is a promising approach to control pathogenic bacteria in farmed fish that requires a heavy understanding of certain factors such as the selection of phages, the multiplicity of infection that produces the best bacterial inactivation, bacterial resistance, safety, the host's immune response, administration route, phage stability and influence. This review focuses on the need to advance phage therapy research in aquaculture, its efficiency as an antimicrobial strategy and the critical aspects to successfully apply this therapy to control Aeromonas infection in fish. | 2022 | 35203766 |
| 9458 | 6 | 0.9999 | A new approach to overcoming antibiotic-resistant bacteria: Traditional Chinese medicine therapy based on the gut microbiota. With the irrational use of antibiotics and the increasing abuse of oral antibiotics, the drug resistance of gastrointestinal pathogens has become a prominent problem in clinical practice. Gut microbiota plays an important role in maintaining human health, and the change of microbiota also affects the activity of pathogenic bacteria. Interfering with antibiotic resistant bacteria by affecting gut microbiota has also become an important regulatory signal. In clinical application, due to the unique advantages of traditional Chinese medicine in sterilization and drug resistance, it is possible for traditional Chinese medicine to improve the gut microbial microenvironment. This review discusses the strategies of traditional Chinese medicine for the treatment of drug-resistant bacterial infections by changing the gut microenvironment, unlocking the interaction between microbiota and drug resistance of pathogenic bacteria. | 2023 | 37091671 |
| 9455 | 7 | 0.9999 | Prospects and Challenges of Bacteriophage Substitution for Antibiotics in Livestock and Poultry Production. The overuse and misuse of antibiotics in the livestock and poultry industry has led to the development of multi-drug resistance in animal pathogens, and antibiotic resistance genes (ARGs) in bacteria transfer from animals to humans through the consumption of animal products, posing a serious threat to human health. Therefore, the use of antibiotics in livestock production has been strictly controlled. As a result, bacteriophages have attracted increasing research interest as antibiotic alternatives, since they are natural invaders of bacteria. Numerous studies have shown that dietary bacteriophage supplementation could regulate intestinal microbial composition, enhance mucosal immunity and the physical barrier function of the intestinal tract, and play an important role in maintaining intestinal microecological stability and normal body development of animals. The effect of bacteriophages used in animals is influenced by factors such as species, dose, and duration. However, as a category of mobile genetic elements, the high frequency of gene exchange of bacteriophages also poses risks of transmitting ARGs among bacteria. Hence, we summarized the mechanism and efficacy of bacteriophage therapy, and highlighted the feasibility and challenges of bacteriophage utilization in farm animal production, aiming to provide a reference for the safe and effective application of bacteriophages as an antibiotic alternative in livestock and poultry. | 2024 | 38248459 |
| 9682 | 8 | 0.9999 | Effect of Probiotics on Host-Microbiota in Bacterial Infections. Diseases caused by bacteria cause millions of deaths every year. In addition, the problem of resistance to antibiotics is so serious that it threatens the achievements of modern medicine. This is a very important global problem as some bacteria can also develop persistence. Indeed, the persistence of pathogenic bacteria has evolved as a potent survival strategy to overcome host organisms' defense mechanisms. Additionally, chronic or persistent infections may be caused by persisters which could facilitate antibiotic resistance. Probiotics are considered good bacteria. It has been described that the modulation of gut microbiota by probiotics could have a great potential to counteract the deleterious impact and/or regulate gut microbiota after bacterial infection. Probiotics might provide health benefits through the inhibition of pathogen growth or the replacement of pathogenic bacteria. Bearing in mind that current strategies to avoid bacterial persistence and prevent antibiotic resistance are not effective, other strategies need to be assessed. We have carried out a comprehensive review, which included the reported literature between 2016 and 2021, highlighting the clinical trials that reported the probiotics' potential to regulate gut microbiota after bacterial infection and focusing in particular on the context of antibiotic resistance and persister cells. | 2022 | 36145418 |
| 4005 | 9 | 0.9999 | Metagenomic-based surveillance systems for antibiotic resistance in non-clinical settings. The success of antibiotics as a therapeutic agent has led to their ineffectiveness. The continuous use and misuse in clinical and non-clinical areas have led to the emergence and spread of antibiotic-resistant bacteria and its genetic determinants. This is a multi-dimensional problem that has now become a global health crisis. Antibiotic resistance research has primarily focused on the clinical healthcare sectors while overlooking the non-clinical sectors. The increasing antibiotic usage in the environment - including animals, plants, soil, and water - are drivers of antibiotic resistance and function as a transmission route for antibiotic resistant pathogens and is a source for resistance genes. These natural compartments are interconnected with each other and humans, allowing the spread of antibiotic resistance via horizontal gene transfer between commensal and pathogenic bacteria. Identifying and understanding genetic exchange within and between natural compartments can provide insight into the transmission, dissemination, and emergence mechanisms. The development of high-throughput DNA sequencing technologies has made antibiotic resistance research more accessible and feasible. In particular, the combination of metagenomics and powerful bioinformatic tools and platforms have facilitated the identification of microbial communities and has allowed access to genomic data by bypassing the need for isolating and culturing microorganisms. This review aimed to reflect on the different sequencing techniques, metagenomic approaches, and bioinformatics tools and pipelines with their respective advantages and limitations for antibiotic resistance research. These approaches can provide insight into resistance mechanisms, the microbial population, emerging pathogens, resistance genes, and their dissemination. This information can influence policies, develop preventative measures and alleviate the burden caused by antibiotic resistance. | 2022 | 36532424 |
| 4085 | 10 | 0.9999 | The antibiotic resistome. IMPORTANCE OF THE FIELD: Antibiotics are essential for the treatment of bacterial infections and are among our most important drugs. Resistance has emerged to all classes of antibiotics in clinical use. Antibiotic resistance has, proven inevitable and very often it emerges rapidly after the introduction of a drug into the clinic. There is, therefore, a great interest in understanding the origins, scope and evolution of antibiotic resistance. AREAS COVERED IN THIS REVIEW: The review discusses the concept of the antibiotic resistome, which is the collection of all genes that directly or indirectly contribute to antibiotic resistance. WHAT THE READER WILL GAIN: The review seeks to assemble current knowledge of the resistome concept as a means of understanding the totality of resistance and not just resistance in pathogenic bacteria. TAKE HOME MESSAGE: The concept of the antibiotic resistome provides a framework for the study and understanding of how resistance emerges and evolves. Furthermore, the study of the resistome reveals strategies that can be applied in new antibiotic discoveries. | 2010 | 22827799 |
| 6676 | 11 | 0.9999 | Genomic interplay in bacterial communities: implications for growth promoting practices in animal husbandry. The discovery of antibiotics heralded the start of a "Golden Age" in the history of medicine. Over the years, the use of antibiotics extended beyond medical practice into animal husbandry, aquaculture and agriculture. Now, however, we face the worldwide threat of diseases caused by pathogenic bacteria that are resistant to all existing major classes of antibiotic, reflecting the possibility of an end to the antibiotic era. The seriousness of the threat is underscored by the severely limited production of new classes of antibiotics. Evolution of bacteria resistant to multiple antibiotics results from the inherent genetic capability that bacteria have to adapt rapidly to changing environmental conditions. Consequently, under antibiotic selection pressures, bacteria have acquired resistance to all classes of antibiotics, sometimes very shortly after their introduction. Arguably, the evolution and rapid dissemination of multiple drug resistant genes en-masse across microbial pathogens is one of the most serious threats to human health. In this context, effective surveillance strategies to track the development of resistance to multiple antibiotics are vital to managing global infection control. These surveillance strategies are necessary for not only human health but also for animal health, aquaculture and plant production. Shortfalls in the present surveillance strategies need to be identified. Raising awareness of the genetic events that promote co-selection of resistance to multiple antimicrobials is an important prerequisite to the design and implementation of molecular surveillance strategies. In this review we will discuss how lateral gene transfer (LGT), driven by the use of low-dose antibiotics in animal husbandry, has likely played a significant role in the evolution of multiple drug resistance (MDR) in Gram-negative bacteria and has complicated molecular surveillance strategies adopted for predicting imminent resistance threats. | 2014 | 25161648 |
| 4088 | 12 | 0.9999 | Expanding the soil antibiotic resistome: exploring environmental diversity. Antibiotic resistance has largely been studied in the context of failure of the drugs in clinical settings. There is now growing evidence that bacteria that live in the environment (e.g. the soil) are multi-drug-resistant. Recent functional screens and the growing accumulation of metagenomic databases are revealing an unexpected density of resistance genes in the environment: the antibiotic resistome. This challenges our current understanding of antibiotic resistance and provides both barriers and opportunities for antimicrobial drug discovery. | 2007 | 17951101 |
| 6685 | 13 | 0.9999 | Fighting Antibiotic Resistance: Insights Into Human Barriers and New Opportunities: Antibiotic Resistance Constantly Rises With the Development of Human Activities. We discuss Barriers and Opportunities to Get It Under Control. The public health issue of bacterial multi-resistance to antibiotics has gained awareness among the public, researchers, and the pharmaceutical sector. Nevertheless, the spread of antimicrobial resistance has been considerably aggravated by human activities, climate change, and the subsequent increased release of antibiotics, drug-resistant bacteria, and antibiotic resistance genes in the environment. The extensive use of antibiotics for medical and veterinary purposes has not only induced increasing resistance but also other health problems, including negative effects on the patient's microbiome. Preventive strategies, new treatment modalities, and increased surveillance are progressively set up. A comprehensive approach is, however, lacking for urgently tackling this adverse situation. To address this challenge, we discussed here the main causes driving antimicrobial resistance and pollution of the environment by factors favorable to the emergence of drug resistance. We next propose some key priorities for research, prevention, surveillance, and education to supervise an effective clinical and sustainable response. | 2025 | 40143711 |
| 6677 | 14 | 0.9999 | Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? OBJECTIVE: To raise awareness of the role of environmental biofilm in the emergence and spread of antibiotic resistance and its consideration in antimicrobial stewardship. BACKGROUND: Antibiotic resistance is a major threat to public health. Overuse of antibiotics, increased international travel, and genetic promiscuity amongst bacteria have contributed to antibiotic resistance, and global containment efforts have so far met with limited success. Antibiotic resistance is a natural mechanism by which bacteria have adapted to environmental threats over billions of years and is caused either by genetic mutations or by horizontal gene transfer. Another ancient survival strategy involves bacteria existing within a self-produced polymeric matrix, which today is termed biofilm. Biofilm similarly enables bacterial tolerance to environmental threats, and also encourages the transfer of antibiotic resistance genes between bacterial species. This natural and ubiquitous mode of bacterial life has not been considered amongst strategies to tackle antibiotic resistance in healthcare facilities, despite its ability to significantly enhance bacterial survival and persistence, and to encourage antibiotic resistance. CONCLUSION: Biofilm must be considered synonymously with antibiotic resistance because of its proficiency in transferring resistance genes as well as its innate phenotypic tolerance to antibiotics. Although biofilm falls outside of the current definition of antimicrobial stewardship, greater awareness of the existence, ubiquity, and consequences of environmental biofilm amongst healthcare practitioners is crucial to improving hygiene practices and controlling the emergence and spread of antibiotic resistance in healthcare facilities. | 2020 | 33081846 |
| 4068 | 15 | 0.9999 | Co-selection for antibiotic resistance by environmental contaminants. The environment is increasingly recognised as a hotspot for the selection and dissemination of antibiotic resistant bacteria and antibiotic resistance genes. These can be selected for by antibiotics and non-antibiotic agents (such as metals and biocides), with the evidence to support this well established by observational and experimental studies. However, there is emerging evidence to suggest that plant protection products (such as herbicides), and non-antibiotic drugs (such as chemotherapeutic agents), can also co-select for antibiotic resistance. This review aims to provide an overview of four classes of non-antibiotic agents (metals, biocides, plant protection products, and non-antibiotic drugs) and how they may co-select for antibiotic resistance, with a particular focus on the environment. It also aims to identify key knowledge gaps that should be addressed in future work, to better understand these potential co-selective agents. | 2024 | 39843965 |
| 4100 | 16 | 0.9999 | Mathematical modelling to study the horizontal transfer of antimicrobial resistance genes in bacteria: current state of the field and recommendations. Antimicrobial resistance (AMR) is one of the greatest public health challenges we are currently facing. To develop effective interventions against this, it is essential to understand the processes behind the spread of AMR. These are partly dependent on the dynamics of horizontal transfer of resistance genes between bacteria, which can occur by conjugation (direct contact), transformation (uptake from the environment) or transduction (mediated by bacteriophages). Mathematical modelling is a powerful tool to investigate the dynamics of AMR; however, the extent of its use to study the horizontal transfer of AMR genes is currently unclear. In this systematic review, we searched for mathematical modelling studies that focused on horizontal transfer of AMR genes. We compared their aims and methods using a list of predetermined criteria and used our results to assess the current state of this research field. Of the 43 studies we identified, most focused on the transfer of single genes by conjugation in Escherichia coli in culture and its impact on the bacterial evolutionary dynamics. Our findings highlight the existence of an important research gap in the dynamics of transformation and transduction and the overall public health implications of horizontal transfer of AMR genes. To further develop this field and improve our ability to control AMR, it is essential that we clarify the structural complexity required to study the dynamics of horizontal gene transfer, which will require cooperation between microbiologists and modellers. | 2019 | 31409239 |
| 4076 | 17 | 0.9999 | Overuse of food-grade disinfectants threatens a global spread of antimicrobial-resistant bacteria. Food-grade disinfectants are extensively used for microbial decontamination of food processing equipment. In recent years, food-grade disinfectants have been increasingly used. However, the overuse of disinfectants causes another major issue, which is the emergence and spread of antimicrobial-resistant bacteria on a global scale. As the ongoing pandemic takes global attention, bacterial infections with antibiotic resistance are another ongoing pandemic that often goes unnoticed and will be the next real threat to humankind. Here, the effects of food-grade disinfectant overuse on the global emergence and spread of antimicrobial-resistant bacteria were reviewed. It was found that longtime exposure to the most common food-grade disinfectants promoted resistance to clinically important antibiotics in pathogenic bacteria, namely cross-resistance. Currently, the use of disinfectants is largely unregulated. The mechanisms of cross-resistance are regulated by intrinsic molecular mechanisms including efflux pumps, DNA repair system, modification of the molecular target, and metabolic adaptation. Cross-resistance can also be acquired by mobile genetic elements. Long-term exposure to disinfectants has an impact on the dissemination of antimicrobial resistance in soil, plants, animals, water, and human gut environments. | 2024 | 36756870 |
| 6678 | 18 | 0.9999 | Bacteriophage Therapy to Combat Microbial Infections and Antimicrobial Resistance. Antimicrobial resistance (AMR) is a global issue; however, in lower resource settings, uncontrolled measures and uncontrolled use of antibiotics in human, animal, and agricultural practices have increased their prevalence in developing countries. Various mechanisms have been implicated to explain the AMR, like the circulation of the plasmid carrying antibiotic resistance genes (ARG), mutation in target genes (intrinsic and plasmid), overexpression of efflux pumps, underexpression of porins, etc. Various therapeutic strategies used to combat AMR exist, such as nonantibiotic approaches (vaccinations or immunotherapy, nano-derived treatments, and bacteriophage therapy), Anti-plasmid and plasmid curing approaches, combinatorial approaches (combination of antibiotics as well as a combination of two different approaches), and plant-based therapeutics. In this focused review, we have discussed the potential use of bacteriophage-based therapy to combat AMR and biofilm formation through multifaceted ways, including lysis of the drug-resistant bacteria, targeting the pili of AMR plasmids conjugation systems, and use of phage-derived lytic proteins. Phages can also be used to decontaminate surfaces in healthcare settings, prevent bacterial contamination in food (meat and dairy), and control bacterial populations in environmental settings, such as water and soil. Therefore, the bacteriophages-based approach served as a dual sword and could not only prevent the spread of infectious diseases but also manage the AMR. | 2025 | 40757460 |
| 9557 | 19 | 0.9998 | Antimicrobial Resistance Profile by Metagenomic and Metatranscriptomic Approach in Clinical Practice: Opportunity and Challenge. The burden of bacterial resistance to antibiotics affects several key sectors in the world, including healthcare, the government, and the economic sector. Resistant bacterial infection is associated with prolonged hospital stays, direct costs, and costs due to loss of productivity, which will cause policy makers to adjust their policies. Current widely performed procedures for the identification of antibiotic-resistant bacteria rely on culture-based methodology. However, some resistance determinants, such as free-floating DNA of resistance genes, are outside the bacterial genome, which could be potentially transferred under antibiotic exposure. Metagenomic and metatranscriptomic approaches to profiling antibiotic resistance offer several advantages to overcome the limitations of the culture-based approach. These methodologies enhance the probability of detecting resistance determinant genes inside and outside the bacterial genome and novel resistance genes yet pose inherent challenges in availability, validity, expert usability, and cost. Despite these challenges, such molecular-based and bioinformatics technologies offer an exquisite advantage in improving clinicians' diagnoses and the management of resistant infectious diseases in humans. This review provides a comprehensive overview of next-generation sequencing technologies, metagenomics, and metatranscriptomics in assessing antimicrobial resistance profiles. | 2022 | 35625299 |