# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9447 | 0 | 1.0000 | Modern vaccine development via reverse vaccinology to combat antimicrobial resistance. With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review. | 2022 | 35642852 |
| 8179 | 1 | 0.9998 | Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives. The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles' distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives. | 2023 | 36830949 |
| 9446 | 2 | 0.9998 | Newer antibiotics for the treatment of respiratory tract infections. PURPOSE OF REVIEW: In this review, we highlight some of the developments achieved over the past 2 years in the field of novel antimicrobial compounds. RECENT FINDINGS: Modification of existing compound classes to create more powerful compounds capable of overcoming pathogen resistance and the introduction of completely new classes of antibiotics and inhibitors of new bacterial targets or inhibitors of genes relating to virulence or pathogenesis are the strategies more commonly employed in pharmacologic research. Ketolides, oxazolidinones, streptogramins, glycylcyclines, and peptide deformylase inhibitors are among the most promising classes of antibiotics. Recently, several lines of research have documented that it is effective to target the infection process rather than killing bacteria. This is important because it is likely that such a therapeutic strategy could ablate infection without inducing resistance. SUMMARY: Emergence of resistance to the antibiotics currently employed in clinical practice is a continual stimulus for further research aimed at identifying novel antimicrobial compounds. These drugs will perhaps effectively fight against bacteria that now are scarcely controlled by the traditional antimicrobial agents. Health care personnel must appreciate that only judicious use of antimicrobial drugs will prevent the further uncontrolled spread of bacterial resistance. Implementation of reference guidelines would probably be an effective way to limit antibiotic misuse. | 2004 | 15071370 |
| 9442 | 3 | 0.9998 | Antibiotic resistance. Antibiotic resistance poses serious challenges to health and national security, and policy changes will be required to mitigate the consequences of antibiotic resistance. Resistance can arise in disease-causing bacteria naturally, or it can be deliberately introduced to a biological weapon. In either case, life-saving drugs are rendered ineffective. Resistant bacterial infections are difficult to treat, and there are few new antibiotics in the drug development pipeline. This article describes how antibiotic resistance affects health and national security, how bacteria become antibiotic resistant, and what should be done now so antibiotics will be available to save lives in the future. | 2009 | 20028245 |
| 9539 | 4 | 0.9998 | Materials for restoring lost Activity: Old drugs for new bugs. The escalation of bacterial resistance to conventional medical antibiotics is a serious concern worldwide. Improvements to current therapies are urgently needed to address this problem. The synergistic combination of antibiotics with other agents is a strategic solution to combat multi-drug-resistant bacteria. Although these combinations decrease the required high dosages and therefore, reduce the toxicity of both agents without compromising the bactericidal effect, they cannot stop the development of further resistance. Recent studies have shown certain elements restore the ability of antibiotics to destroy bacteria that have acquired resistance to them. Due to these synergistic activities, organic and inorganic molecules have been investigated with the goal of restoring antibiotics in new approaches that mitigate the risk of expanding resistance. Herein, we summarize recent studies that restore antibiotics once thought to be ineffective, but have returned to our armamentarium through innovative, combinatorial efforts. A special focus is placed on the mechanisms that allow the synergistic combinations to combat bacteria. The promising data that demonstrated restoration of antimicrobials, supports the notion to find more combinations that can combat antibiotic-resistant bacteria. | 2022 | 35461913 |
| 8180 | 5 | 0.9998 | Harnessing Nanoparticles to Overcome Antimicrobial Resistance: Promises and Challenges. The rise of antimicrobial resistance (AMR) has become a serious global health issue that kills millions of people each year globally. AMR developed in bacteria is difficult to treat and poses a challenge to clinicians. Bacteria develop resistance through a variety of processes, including biofilm growth, targeted area alterations, and therapeutic drug alteration, prolonging the period they remain within cells, where antibiotics are useless at therapeutic levels. This rise in resistance is linked to increased illness and death, highlighting the urgent need for effective solutions to combat this growing challenge. Nanoparticles (NPs) offer unique solutions for fighting AMR bacteria. Being smaller in size with a high surface area, enhancing interaction with bacteria makes the NPs strong antibacterial agents against various infections. In this review, we have discussed the epidemiology and mechanism of AMR development. Furthermore, the role of nanoparticles as antibacterial agents, and their role in drug delivery has been addressed. Additionally, the potential, challenges, toxicity, and future prospects of nanoparticles as antibacterial agents against AMR pathogens have been discussed. The research work discussed in this review links with Sustainable Development Goal 3 (SDG-3), which aims to ensure disease-free lives and promote well-being for all ages. | 2025 | 39219123 |
| 9546 | 6 | 0.9998 | Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria. Bacterial resistance has intensified in recent years due to the uncontrolled use of conventional drugs, and new bacterial strains with multiple resistance have been reported. This problem may be solved by using antimicrobial peptides (AMPs), which fulfill their bactericidal activity without developing much bacterial resistance. The rapid interaction between AMPs and the bacterial cell membrane means that the bacteria cannot easily develop resistance mechanisms. In addition, various drugs for clinical use have lost their effect as a conventional treatment; however, the synergistic effect of AMPs with these drugs would help to reactivate and enhance antimicrobial activity. Their efficiency against multi-resistant and extensively resistant bacteria has positioned them as promising molecules to replace or improve conventional drugs. In this review, we examined the importance of antimicrobial peptides and their successful activity against critical and high-priority bacteria published in the WHO list. | 2021 | 34064302 |
| 9445 | 7 | 0.9998 | Bacteriophages of Mycobacterium tuberculosis, their diversity, and potential therapeutic uses: a review. Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis) is a highly infectious disease and worldwide health problem. Based on the WHO TB report, 9 million active TB cases are emerging, leading to 2 million deaths each year. The recent emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) strains emphasizes the necessity to improve novel therapeutic plans. Among the various developing antibacterial approaches, phage therapy is thought to be a precise hopeful resolution. Mycobacteriophages are viruses that infect bacteria such as Mycobacterium spp., containing the M. tuberculosis complex. Phages and phage-derived proteins can act as promising antimicrobial agents. Also, phage cocktails can broaden the spectrum of lysis activity against bacteria. Recent researches have also shown the effective combination of antibiotics and phages to defeat the infective bacteria. There are limitations and concerns about phage therapy. For example, human immune response to phage therapy, transferring antibiotic resistance genes, emerging resistance to phages, and safety issues. So, in the present study, we introduced mycobacteriophages, their use as therapeutic agents, and their advantages and limitations as therapeutic applications. | 2022 | 36550444 |
| 9484 | 8 | 0.9998 | Phage-antibiotic combinations: a promising approach to constrain resistance evolution in bacteria. Antibiotic resistance has reached dangerously high levels throughout the world. A growing number of bacteria pose an urgent, serious, and concerning threat to public health. Few new antibiotics are available to clinicians and only few are in development, highlighting the need for new strategies to overcome the antibiotic resistance crisis. Combining existing antibiotics with phages, viruses the infect bacteria, is an attractive and promising alternative to standalone therapies. Phage-antibiotic combinations have been shown to suppress the emergence of resistance in bacteria, and sometimes even reverse it. Here, we discuss the mechanisms by which phage-antibiotic combinations reduce resistance evolution, and the potential limitations these mechanisms have in steering microbial resistance evolution in a desirable direction. We also emphasize the importance of gaining a better understanding of mechanisms behind physiological and evolutionary phage-antibiotic interactions in complex in-patient environments. | 2021 | 33175408 |
| 9444 | 9 | 0.9998 | Prospects for the Use of New Technologies to Combat Multidrug-Resistant Bacteria. The increasing use of antibiotics is being driven by factors such as the aging of the population, increased occurrence of infections, and greater prevalence of chronic diseases that require antimicrobial treatment. The excessive and unnecessary use of antibiotics in humans has led to the emergence of bacteria resistant to the antibiotics currently available, as well as to the selective development of other microorganisms, hence contributing to the widespread dissemination of resistance genes at the environmental level. Due to this, attempts are being made to develop new techniques to combat resistant bacteria, among them the use of strictly lytic bacteriophage particles, CRISPR-Cas, and nanotechnology. The use of these technologies, alone or in combination, is promising for solving a problem that humanity faces today and that could lead to human extinction: the domination of pathogenic bacteria resistant to artificial drugs. This prospective paper discusses the potential of bacteriophage particles, CRISPR-Cas, and nanotechnology for use in combating human (bacterial) infections. | 2019 | 31293420 |
| 9443 | 10 | 0.9998 | Is Genetic Mobilization Considered When Using Bacteriophages in Antimicrobial Therapy? The emergence of multi-drug resistant bacteria has undermined our capacity to control bacterial infectious diseases. Measures needed to tackle this problem include controlling the spread of antibiotic resistance, designing new antibiotics, and encouraging the use of alternative therapies. Phage therapy seems to be a feasible alternative to antibiotics, although there are still some concerns and legal issues to overcome before it can be implemented on a large scale. Here we highlight some of those concerns, especially those related to the ability of bacteriophages to transport bacterial DNA and, in particular, antibiotic resistance genes. | 2017 | 29206153 |
| 9440 | 11 | 0.9998 | The Case against Antibiotics and for Anti-Virulence Therapeutics. Although antibiotics have been indispensable in the advancement of modern medicine, there are downsides to their use. Growing resistance to broad-spectrum antibiotics is leading to an epidemic of infections untreatable by first-line therapies. Resistance is exacerbated by antibiotics used as growth factors in livestock, over-prescribing by doctors, and poor treatment adherence by patients. This generates populations of resistant bacteria that can then spread resistance genes horizontally to other bacterial species, including commensals. Furthermore, even when antibiotics are used appropriately, they harm commensal bacteria leading to increased secondary infection risk. Effective antibiotic treatment can induce bacterial survival tactics, such as toxin release and increasing resistance gene transfer. These problems highlight the need for new approaches to treating bacterial infection. Current solutions include combination therapies, narrow-spectrum therapeutics, and antibiotic stewardship programs. These mediate the issues but do not address their root cause. One emerging solution to these problems is anti-virulence treatment: preventing bacterial pathogenesis instead of using bactericidal agents. In this review, we discuss select examples of potential anti-virulence targets and strategies that could be developed into bacterial infection treatments: the bacterial type III secretion system, quorum sensing, and liposomes. | 2021 | 34683370 |
| 9183 | 12 | 0.9998 | Overcoming Bacteriophage Resistance in Phage Therapy. Antibiotic resistance among pathogenic bacteria is one of the most severe global challenges. It is predicted that over ten million lives will be lost annually by 2050. Phage therapy is a promising alternative to antibiotics. However, the ease of development of phage resistance during therapy is a concern. This review focuses on the possible ways to overcome phage resistance in phage therapy. | 2024 | 37966611 |
| 8182 | 13 | 0.9998 | Antibiotics in Food Chain: The Consequences for Antibiotic Resistance. Antibiotics have been used as essential therapeutics for nearly 100 years and, increasingly, as a preventive agent in the agricultural and animal industry. Continuous use and misuse of antibiotics have provoked the development of antibiotic resistant bacteria that progressively increased mortality from multidrug-resistant bacterial infections, thereby posing a tremendous threat to public health. The goal of our review is to advance the understanding of mechanisms of dissemination and the development of antibiotic resistance genes in the context of nutrition and related clinical, agricultural, veterinary, and environmental settings. We conclude with an overview of alternative strategies, including probiotics, essential oils, vaccines, and antibodies, as primary or adjunct preventive antimicrobial measures or therapies against multidrug-resistant bacterial infections. The solution for antibiotic resistance will require comprehensive and incessant efforts of policymakers in agriculture along with the development of alternative therapeutics by experts in diverse fields of microbiology, biochemistry, clinical research, genetic, and computational engineering. | 2020 | 33066005 |
| 9564 | 14 | 0.9998 | Genomic tools to profile antibiotic mode of action. The increasing emergence of antimicrobial multiresistant bacteria is of great concern to public health. While these bacteria are becoming an ever more prominent cause of nosocomial and community-acquired infections worldwide, the antibiotic discovery pipeline has been stalled in the last few years with very few efforts in the research and development of novel antibacterial therapies. Some of the root causes that have hampered current antibiotic drug development are the lack of understanding of the mode of action (MOA) of novel antibiotic molecules and the poor characterization of the bacterial physiological response to antibiotics that ultimately causes resistance. Here, we review how bacterial genetic tools can be applied at the genomic level with the goal of profiling resistance to antibiotics and elucidating antibiotic MOAs. Specifically, we highlight how chemical genomic detection of the MOA of novel antibiotic molecules and antibiotic profiling by next-generation sequencing are leveraging basic antibiotic research to unprecedented levels with great opportunities for knowledge translation. | 2015 | 24617440 |
| 9187 | 15 | 0.9998 | Recent advances in gene-editing approaches for tackling antibiotic resistance threats: a review. Antibiotic resistance, a known global health challenge, involves the flow of bacteria and their genes among animals, humans, and their surrounding environment. It occurs when bacteria evolve and become less responsive to the drugs designated to kill them, making infections harder to treat. Despite several obstacles preventing the spread of genes and bacteria, pathogens regularly acquire novel resistance factors from other species, which reduces their ability to prevent and treat such bacterial infections. This issue requires coordinated efforts in healthcare, research, and public awareness to address its impact on human health worldwide. This review outlines how recent advances in gene editing technology, especially CRISPR/Cas9, unveil a breakthrough in combating antibiotic resistance. Our focus will remain on the relationship between CRISPR/cas9 and its impact on antibiotic resistance and its related infections. Moreover, the prospects of this new advanced research and the challenges of adopting these technologies against infections will be outlined by exploring its different derivatives and discussing their advantages and limitations over others, thereby providing a corresponding reference for the control and prevention of the spread of antibiotic resistance. | 2024 | 38994001 |
| 9441 | 16 | 0.9998 | Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. BACKGROUND: Antibiotic resistance is currently the most serious global threat to the effective treatment of bacterial infections. Antibiotic resistance has been established to adversely affect both clinical and therapeutic outcomes, with consequences ranging from treatment failures and the need for expensive and safer alternative drugs to the cost of higher rates of morbidity and mortality, longer hospitalization, and high-healthcare costs. The search for new antibiotics and other antimicrobials continues to be a pressing need in humanity's battle against bacterial infections. Antibiotic resistance appears inevitable, and there is a continuous lack of interest in investing in new antibiotic research by pharmaceutical industries. This review summarized some new strategies for tackling antibiotic resistance in bacteria. METHODS: To provide an overview of the recent research, we look at some new strategies for preventing resistance and/or reviving bacteria's susceptibility to already existing antibiotics. RESULTS: Substantial pieces of evidence suggest that antimicrobials interact with host immunity, leading to potent indirect effects that improve antibacterial activities and may result in more swift and complete bactericidal effects. A new class of antibiotics referred to as immuno-antibiotics and the targeting of some biochemical resistance pathway components including inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria can be considered as new emerging strategies to combat antibiotic resistance in bacteria. CONCLUSION: This review highlighted and discussed immuno-antibiotics and inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria as new weapons against antibiotic resistance in bacteria. | 2022 | 35949048 |
| 9562 | 17 | 0.9998 | Fight against antimicrobial resistance. Antimicrobial and antibiotic resistance is ever increasing and the fight against it is a battle that can never be won. Nevertheless, some possibilities exist to improve this situation, at least in part. The present review article discusses some approaches that can be used to control microbial resistance. Possible strategies are (1) designing new vaccines against resistant bacterial strains; (2) investigation of the potential of both traditional and non-traditional sources of natural substances for use as new antibiotics; (3) search for genes specifying biosynthesis of antibiotics; (4) use of forgotten natural compounds and their transformation, and (5) investigation of new antibiotic targets in pathogenic bacteria. Particular attention is paid to the search for new compounds that would be able to inhibit pathogenic bacteria resistant to existing antibiotics. | 2018 | 30126284 |
| 8178 | 18 | 0.9998 | Unraveling resistance mechanisms in combination therapy: A comprehensive review of recent advances and future directions. Antimicrobial resistance is a global health threat. Misuse and overuse of antimicrobials are the main drivers in developing drug-resistant bacteria. The emergence of the rapid global spread of multi-resistant bacteria requires urgent multisectoral action to generate novel treatment alternatives. Combination therapy offers the potential to exploit synergistic effects for enhanced antibacterial efficacy of drugs. Understanding the complex dynamics and kinetics of drug interactions in combination therapy is crucial. Therefore, this review outlines the current advances in antibiotic resistance's evolutionary and genetic dynamics in combination therapies-exposed bacteria. Moreover, we also discussed four pivotal future research areas to comprehend better the development of antibiotic resistance in bacteria treated with combination strategies. | 2024 | 38510041 |
| 9488 | 19 | 0.9998 | Minimizing potential resistance: the molecular view. The major contribution of molecular biology to the study of antibiotic resistance has been the elucidation of nearly all biochemical mechanisms of resistance and the routes for dissemination of genetic information among bacteria. In this review, we consider the potential contribution of molecular biology to counteracting the evolution of resistant bacteria. In particular, we emphasize the fact that fundamental approaches have had direct practical effects on minimizing potential resistance: by improving interpretation of resistance phenotypes, by providing more adequate human therapy, by fostering more prudent use of antibiotics, and by allowing the rational design of new drugs that evade existing resistance mechanisms or address unexploited targets. | 2001 | 11524711 |