# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9437 | 0 | 1.0000 | Bacterial resistance to Quaternary Ammonium Compounds (QAC) disinfectants. Control of bacterial diseases has, for many years, been dependent on the use of antibiotics. Due to the high levels of efficacy of antibiotics in the past other disease control options have, to a large extent, been neglected. Mankind is now facing an increasing problem with antibiotic resistance. In an effort to retain some antibiotics for human use, there are moves afoot to limit or even ban the use of antibiotics in animal production. The use of antibiotics as growth promoters have been banned in the European Union and the USA. The potential ban on the use of antibiotics to treat diseases in production animals creates a dilemma for man-suffer significant problem with bacterial infection or suffer from a severe shortage of food! There are other options for the control of bacterial diseases. These include vaccine development, bacteriophage therapy, and improved biosecurity. Vaccine development against bacterial pathogens, particularly opportunistic pathogens, is often very challenging, as in many cases the molecular basis of the virulence is not always clearly understood. This is particularly true for Escherichia coli. Biosecurity (disinfection) has been a highly neglected area in disease control. With the ever-increasing problems with antibiotic resistance-the focus should return to improvements in biosecurity. As with antibiotics, bacteria also have mechanisms for resistance to disinfectants. To ensure that we do not replace one set of problems (increasing antibiotic resistance) with another (increasing resistance to disinfectants) we need to fully understand the modes of action of disinfectants and how the bacteria develop resistance to these disinfectants. Molecular studies have been undertaken to relate the presence of QAC resistance genes in bacteria to their levels of sensitivity to different generations of QAC-based products. The mode of action of QAC on bacteria has been studied using NanoSAM technology, where it was revealed that the QAC causes disruption of the bacterial cell wall and leaking of the cytoplasm out of the cells. Our main focus is on the control of bacterial and viral diseases in the poultry industry in a post-antibiotic era, but the principles remain similar for disease control in any veterinary field as well as in human medicine. | 2014 | 24595606 |
| 9682 | 1 | 0.9999 | Effect of Probiotics on Host-Microbiota in Bacterial Infections. Diseases caused by bacteria cause millions of deaths every year. In addition, the problem of resistance to antibiotics is so serious that it threatens the achievements of modern medicine. This is a very important global problem as some bacteria can also develop persistence. Indeed, the persistence of pathogenic bacteria has evolved as a potent survival strategy to overcome host organisms' defense mechanisms. Additionally, chronic or persistent infections may be caused by persisters which could facilitate antibiotic resistance. Probiotics are considered good bacteria. It has been described that the modulation of gut microbiota by probiotics could have a great potential to counteract the deleterious impact and/or regulate gut microbiota after bacterial infection. Probiotics might provide health benefits through the inhibition of pathogen growth or the replacement of pathogenic bacteria. Bearing in mind that current strategies to avoid bacterial persistence and prevent antibiotic resistance are not effective, other strategies need to be assessed. We have carried out a comprehensive review, which included the reported literature between 2016 and 2021, highlighting the clinical trials that reported the probiotics' potential to regulate gut microbiota after bacterial infection and focusing in particular on the context of antibiotic resistance and persister cells. | 2022 | 36145418 |
| 4060 | 2 | 0.9999 | Current status of antibiotic resistance in animal production. It is generally accepted that the more antibiotics we use, the faster bacteria will develop resistance. Further it has been more or less accepted that once an antibiotic is withdrawn from the clinic, the resistance genes will eventually disappear, [table: see text] since they will no more be of any survival value for the bacterial cell. However, recent research has shown that after a long time period of exposure to antibiotics, certain bacterial species may adapt to this environment in such a way that they keep their resistance genes stably also after the removal of antibiotics. Thus, there is reason to believe that once resistance has developed it will not even in the long term be eradicated. What then can we do not to increase further the already high level of antibiotic-resistant bacteria in animals? We should of course encourage a prudent use of these valuable drugs. In Sweden antibiotics are not used for growth promoting purposes and are available only after veterinary prescription on strict indications. Generally, antimicrobial treatment of animals on individual or on herd basis should not be considered unless in connection with relevant diagnostics. The amounts of antibiotics used and the development of resistance in important pathogens should be closely monitored. Furthermore, resistance monitoring in certain non-pathogenic intestinal bacteria, which may serve as a reservoir for resistance genes is probably more important than hitherto anticipated. Once the usage of or resistance to a certain antibiotic seems to increase in an alarming way, steps should be taken to limit the usage of the drug in order to prevent further spread of resistance genes in animals, humans and the environment. Better methods for detecting and quantifying antibiotic resistance have to be developed. Screening methods must be standardized and evaluated in order to obtain comparable and reliable results from different countries. The genetic mechanisms for development of resistance and spread of resistance genes should be studied in detail. Research in these areas will lead to new ideas on how to inhibit the resistance mechanisms. So far, it has been well established that a heavy antimicrobial drug selective pressure in overcrowded populations of production animals creates favourable environments both for the emergence and the spread of antibiotic resistance genes. | 1999 | 10783714 |
| 4064 | 3 | 0.9999 | Antimicrobial resistance. The development of antimicrobial drugs, and particularly of antibiotics, has played a considerable role in substantially reducing the morbidity and mortality rates of many infectious diseases. However, the fact that bacteria can develop resistance to antibiotics has produced a situation where antimicrobial agents are losing their effectiveness because of the spread and persistence of drug-resistant organisms. To combat this, more and more antibiotics with increased therapeutic and prophylactic action will need to be developed.This article is concerned with antibiotic resistance in bacteria which are pathogenic to man and animals. The historical background is given, as well as some information on the present situation and trends of antibiotic resistance to certain bacteria in different parts of the world. Considerable concern is raised over the use of antibiotics in man and animals. It is stated that antibiotic resistance in human pathogens is widely attributed to the "misuse" of antibiotics for treatment and prophylaxis in man and to the administration of antibiotics to animals for a variety of purposes (growth promotion, prophylaxis, or therapy), leading to the accumulation of resistant bacteria in their flora. Factors favouring the development of resistance are discussed. | 1983 | 6603914 |
| 9438 | 4 | 0.9999 | The challenge of antibiotic resistance: need to contemplate. "Survival of the fittest " holds good for men and animals as also for bacteria. A majority of bacteria in nature are nonpathogenic, a large number of them, live as commensals on our body leading a symbiotic existence. A limited population of bacteria which has became pathogenic was also sensitive to antibiotics to begin with. It is the man made antibiotic pressure, which has led to the emergence and spread of resistant genes amongst bacteria. Despite the availability of a large arsenal of antibiotics, the ability of bacteria to become resistant to antibacterial agents is amazing. This is more evident in the hospital settings where the antibiotic usage is maximum. The use of antibiotics is widespread in clinical medicine, agriculture, aquaculture, veterinary practice, poultry and even in household products. The major reason for this is the inappropriate use of antibiotics due to a lack of uniform policy and disregard to hospital infection control practices. The antibiotic cover provided by newer antibiotics has been an important factor responsible for the emergence of multi-drug resistant bacteria. Bacterial infections increase the morbidity and mortality, increase the cost of treatment, and prolong hospital stay adding to the economical burden on the nation. The problem is further compounded by the lack of education and " over the counter " availability of antibiotics in developing countries. Antibiotic resistance is now all pervasive with the developed world as much vulnerable to the problem. Despite advancement in medical technology for diagnosis and patient care, a person can still die of an infection caused by a multi-drug resistant bacteria. It is time to think, plan and formulate a strong antibiotic policy to address the burgeoning hospital infection. | 2005 | 15756040 |
| 9439 | 5 | 0.9999 | Antimicrobial resistance, mechanisms and its clinical significance. Antimicrobial agents play a key role in controlling and curing infectious disease. Soon after the discovery of the first antibiotic, the challenge of antibiotic resistance commenced. Antimicrobial agents use different mechanisms against bacteria to prevent their pathogenesis and they can be classified as bactericidal or bacteriostatic. Antibiotics are one of the antimicrobial agents which has several classes, each with different targets. Consequently, bacteria are endlessly using methods to overcome the effectivity of the antibiotics by using distinct types of mechanisms. Comprehending the mechanisms of resistance is vital for better understanding and to continue use of current antibiotics. Which also helps to formulate synthetic antimicrobials to overcome the current mechanism of resistance. Also, encourage in prudent use and misuse of antimicrobial agents. Thus, decline in treatment costs and in the rate of morbidity and mortality. This review will be concentrating on the mechanism of actions of several antibiotics and how bacteria develop resistance to them, as well as the method of acquiring the resistance in several bacteria and how can a strain be resistant to several types of antibiotics. This review also analyzes the prevalence, major clinical implications, clinical causes of antibiotic resistance. Further, it evaluates the global burden of antimicrobial resistance, identifies various challenges and strategies in addressing the issue. Finally, put forward certain recommendations to prevent the spread and reduce the rate of resistance growth. | 2020 | 32201008 |
| 4061 | 6 | 0.9999 | Beyond serial passages: new methods for predicting the emergence of resistance to novel antibiotics. Market launching of a new antibiotic requires knowing in advance its benefits and possible risks, and among them how rapidly resistance will emerge and spread among bacterial pathogens. This information is not only useful from a public health point of view, but also for pharmaceutical industry, in order to reduce potential waste of resources in the development of a compound that might be discontinued at the short term because of resistance development. Most assays currently used for predicting the emergence of resistance are based on culturing the target bacteria by serial passages in the presence of increasing concentrations of antibiotics. Whereas these assays may be valuable for identifying mutations that might cause resistance, they are not useful to establish how fast resistance might appear, neither to address the risk of spread of resistance genes by horizontal gene transfer. In this article, we review recent information pertinent for a more accurate prediction on the emergence and dispersal of antibiotic resistance. | 2011 | 21835695 |
| 9452 | 7 | 0.9999 | Bacteriophages in the Control of Aeromonas sp. in Aquaculture Systems: An Integrative View. Aeromonas species often cause disease in farmed fish and are responsible for causing significant economic losses worldwide. Although vaccination is the ideal method to prevent infectious diseases, there are still very few vaccines commercially available in the aquaculture field. Currently, aquaculture production relies heavily on antibiotics, contributing to the global issue of the emergence of antimicrobial-resistant bacteria and resistance genes. Therefore, it is essential to develop effective alternatives to antibiotics to reduce their use in aquaculture systems. Bacteriophage (or phage) therapy is a promising approach to control pathogenic bacteria in farmed fish that requires a heavy understanding of certain factors such as the selection of phages, the multiplicity of infection that produces the best bacterial inactivation, bacterial resistance, safety, the host's immune response, administration route, phage stability and influence. This review focuses on the need to advance phage therapy research in aquaculture, its efficiency as an antimicrobial strategy and the critical aspects to successfully apply this therapy to control Aeromonas infection in fish. | 2022 | 35203766 |
| 4063 | 8 | 0.9999 | The 2000 Garrod lecture. Factors impacting on the problem of antibiotic resistance. Antibiotic resistance has become a major clinical and public health problem within the lifetime of most people living today. Confronted by increasing amounts of antibiotics over the past 60 years, bacteria have responded to the deluge with the propagation of progeny no longer susceptible to them. While it is clear that antibiotics are pivotal in the selection of bacterial resistance, the spread of resistance genes and of resistant bacteria also contributes to the problem. Selection of resistant forms can occur during or after antimicrobial treatment; antibiotic residues can be found in the environment for long periods of time after treatment. Besides antibiotics, there is the mounting use of other agents aimed at destroying bacteria, namely the surface antibacterials now available in many household products. These too enter the environment. The stage is thus set for an altered microbial ecology, not only in terms of resistant versus susceptible bacteria, but also in terms of the kinds of microorganisms surviving in the treated environment. We currently face multiresistant infectious disease organisms that are difficult and, sometimes, impossible to treat successfully. In order to curb the resistance problem, we must encourage the return of the susceptible commensal flora. They are our best allies in reversing antibiotic resistance. | 2002 | 11751763 |
| 4245 | 9 | 0.9999 | Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. In recent years, we have seen antimicrobial resistance rapidly emerge at a global scale and spread from one country to the other faster than previously thought. Superbugs and multidrug-resistant bacteria are endemic in many parts of the world. There is no question that the widespread use, overuse, and misuse of antimicrobials during the last 80 years have been associated with the explosion of antimicrobial resistance. On the other hand, the molecular pathways behind the emergence of antimicrobial resistance in bacteria were present since ancient times. Some of these mechanisms are the ancestors of current resistance determinants. Evidently, there are plenty of putative resistance genes in the environment, however, we cannot yet predict which ones would be able to be expressed as phenotypes in pathogenic bacteria and cause clinical disease. In addition, in the presence of inhibitory and sub-inhibitory concentrations of antibiotics in natural habitats, one could assume that novel resistance mechanisms will arise against antimicrobial compounds. This review presents an overview of antimicrobial resistance mechanisms, and describes how these have evolved and how they continue to emerge. As antimicrobial strategies able to bypass the development of resistance are urgently needed, a better understanding of the critical factors that contribute to the persistence and spread of antimicrobial resistance may yield innovative perspectives on the design of such new therapeutic targets. | 2020 | 31659373 |
| 4118 | 10 | 0.9999 | Antimicrobial resistance in livestock. Antimicrobial resistance may become a major problem in veterinary medicine as a consequence of the intensive use and misuse of antimicrobial drugs. Related problems are now arising in human medicine, such as the appearance of multi-resistant food-borne pathogens. Product characteristics, dose, treatment interval and duration of treatment influence the selection pressure for antimicrobial drug resistance. There are theoretical, experimental and clinical indications that the emergence of de novo resistance in a pathogenic population can be prevented by minimizing the time that suboptimal drug levels are present in the infected tissue compartment. Until recently, attention has been focused on target pathogens. However, it should be kept in mind that when antimicrobial drugs are used in an individual, resistance selection mainly affects the normal body flora. In the long term, this is at least equally important as resistance selection in the target pathogens, as the horizontal transfer of resistance genes converts almost all pathogenic bacteria into potential recipients for antimicrobial resistance. Other factors contributing to the epidemiology of antimicrobial resistance are the localization and size of the microbial population, and the age, immunity and contact intensity of the host. In livestock, dynamic herd-related resistance patterns have been observed in different animal species. | 2003 | 12667177 |
| 4272 | 11 | 0.9999 | The hidden impact of antibacterial resistance in respiratory tract infection. Steering an appropriate course: principles to guide antibiotic choice. The prevalence and degree of antibacterial resistance in common respiratory pathogens are increasing worldwide. The health impact of resistance is not yet fully understood. However, once the impact of resistance becomes measurable, it may be too late to apply interventions to reduce resistance levels and regain previous quality and cost of care. We should address resistance now, before patient care is irreversibly compromised. The association between antibiotic consumption and the prevalence of resistance is widely assumed. However, evidence suggests that there is a more complex. multifactorial relationship between antibiotic use and resistance. It is also assumed that there is an adaptive fitness cost for bacterial resistance mutations. However, in some cases, bacteria are able to acquire 'compensatory genes' negating any negative impact of resistance mutations. Mathematical modeling indicates that the timescale for the emergence of resistance is typically shorter than the decay time following a decline in antibiotic consumption. Against this background, a general principle is proposed: to maximize patient outcome whilst minimizing the potential for selection and spread of resistance. This may be achieved through the use of agents that fulfill defined pharmacodynamic and pharmacokinetic parameters and elicit rapid eradication of the bacterial population, including emerging resistant mutants, from the site of infection. The choice of agent may not be the same in all regions, as selection will depend on local resistance patterns and disease etiology; however, the application of this principle may help to preserve the benefits of antibiotic therapy. | 2001 | 11419671 |
| 9443 | 12 | 0.9999 | Is Genetic Mobilization Considered When Using Bacteriophages in Antimicrobial Therapy? The emergence of multi-drug resistant bacteria has undermined our capacity to control bacterial infectious diseases. Measures needed to tackle this problem include controlling the spread of antibiotic resistance, designing new antibiotics, and encouraging the use of alternative therapies. Phage therapy seems to be a feasible alternative to antibiotics, although there are still some concerns and legal issues to overcome before it can be implemented on a large scale. Here we highlight some of those concerns, especially those related to the ability of bacteriophages to transport bacterial DNA and, in particular, antibiotic resistance genes. | 2017 | 29206153 |
| 9534 | 13 | 0.9999 | Defining the Benefits of Antibiotic Resistance in Commensals and the Scope for Resistance Optimization. Antibiotic resistance is a major medical and public health challenge, characterized by global increases in the prevalence of resistant strains. The conventional view is that all antibiotic resistance is problematic, even when not in pathogens. Resistance in commensal bacteria poses risks, as resistant organisms can provide a reservoir of resistance genes that can be horizontally transferred to pathogens or may themselves cause opportunistic infections in the future. While these risks are real, we propose that commensal resistance can also generate benefits during antibiotic treatment of human infection, by promoting continued ecological suppression of pathogens. To define and illustrate this alternative conceptual perspective, we use a two-species mathematical model to identify the necessary and sufficient ecological conditions for beneficial resistance. We show that the benefits are limited to species (or strain) interactions where commensals suppress pathogen growth and are maximized when commensals compete with, rather than prey on or otherwise exploit pathogens. By identifying benefits of commensal resistance, we propose that rather than strictly minimizing all resistance, resistance management may be better viewed as an optimization problem. We discuss implications in two applied contexts: bystander (nontarget) selection within commensal microbiomes and pathogen treatment given polymicrobial infections. IMPORTANCE Antibiotic resistance is commonly viewed as universally costly, regardless of which bacterial cells express resistance. Here, we derive an opposing logic, where resistance in commensal bacteria can lead to reductions in pathogen density and improved outcomes on both the patient and public health scales. We use a mathematical model of commensal-pathogen interactions to define the necessary and sufficient conditions for beneficial resistance, highlighting the importance of reciprocal ecological inhibition to maximize the benefits of resistance. More broadly, we argue that determining the benefits as well as the costs of resistances in human microbiomes can transform resistance management from a minimization to an optimization problem. We discuss applied contexts and close with a review of key resistance optimization dimensions, including the magnitude, spectrum, and mechanism of resistance. | 2023 | 36475750 |
| 4243 | 14 | 0.9999 | Action and resistance mechanisms of antibiotics: A guide for clinicians. Infections account for a major cause of death throughout the developing world. This is mainly due to the emergence of newer infectious agents and more specifically due to the appearance of antimicrobial resistance. With time, the bacteria have become smarter and along with it, massive imprudent usage of antibiotics in clinical practice has resulted in resistance of bacteria to antimicrobial agents. The antimicrobial resistance is recognized as a major problem in the treatment of microbial infections. The biochemical resistance mechanisms used by bacteria include the following: antibiotic inactivation, target modification, altered permeability, and "bypass" of metabolic pathway. Determination of bacterial resistance to antibiotics of all classes (phenotypes) and mutations that are responsible for bacterial resistance to antibiotics (genetic analysis) are helpful. Better understanding of the mechanisms of antibiotic resistance will help clinicians regarding usage of antibiotics in different situations. This review discusses the mechanism of action and resistance development in commonly used antimicrobials. | 2017 | 29109626 |
| 4077 | 15 | 0.9999 | Antimicrobial resistance and its association with tolerance to heavy metals in agriculture production. Antimicrobial resistance is a recognized public health challenge that since its emergence limits the therapeutic options available to veterinarians and clinicians alike, when treatment is warranted. This development is further compounded by the paucity of new antibiotics. The agri-food industry benefits from the availability of antimicrobial compounds for food-animal production and crop protection. Nonetheless, their improper use can result in the selection for bacteria that are phenotypically resistant to these compounds. Another class of agents used in agriculture includes various cationic metals that can be included in animal diets as nutritional supplements or spread on pastures to support crop growth and protection. Heavy metals, in particular, are giving rise to concerns among public health professionals, as they can persist in the environment remaining stable for prolonged periods. Moreover, bacteria can also exhibit resistance to these chemical elements and the genes encoding this phenotype can be physically localized to plasmids that may also contain one or more antimicrobial resistance-encoding gene(s). This paper reviews our current understanding of the role that bacteria play in expressing resistance to heavy metals. It will describe how heavy metals are used in agri-food production, and explore evidence available to link resistance to heavy metals and antimicrobial compounds. In addition, possible solutions to reduce the impact of heavy metal resistance are also discussed, including using organic minerals and reducing the level of trace minerals in animal feed rations. | 2017 | 28213031 |
| 9683 | 16 | 0.9999 | Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria. | 2013 | 23554414 |
| 9432 | 17 | 0.9999 | Disinfectants and antiseptics: mechanisms of action and resistance. Chemical biocides are used for the prevention and control of infection in health care, targeted home hygiene or controlling microbial contamination for various industrial processes including but not limited to food, water and petroleum. However, their use has substantially increased since the implementation of programmes to control outbreaks of methicillin-resistant Staphylococcus aureus, Clostridioides difficile and severe acute respiratory syndrome coronavirus 2. Biocides interact with multiple targets on the bacterial cells. The number of targets affected and the severity of damage will result in an irreversible bactericidal effect or a reversible bacteriostatic one. Most biocides primarily target the cytoplasmic membrane and enzymes, although the specific bactericidal mechanisms vary among different biocide chemistries. Inappropriate usage or low concentrations of a biocide may act as a stressor while not killing bacterial pathogens, potentially leading to antimicrobial resistance. Biocides can also promote the transfer of antimicrobial resistance genes. In this Review, we explore our current understanding of the mechanisms of action of biocides, the bacterial resistance mechanisms encompassing both intrinsic and acquired resistance and the influence of bacterial biofilms on resistance. We also consider the impact of bacteria that survive biocide exposure in environmental and clinical contexts. | 2024 | 37648789 |
| 9681 | 18 | 0.9999 | Uses of antimicrobials in plant agriculture. Bacterial diseases of plants are less prevalent than diseases caused by fungi and viruses. Antimicrobials for prophylactic treatment of bacterial diseases of plants are limited in availability, use, and efficacy, and therapeutic use is largely ineffective. Most applications are by spray treatments in orchards. Monitoring and surveillance for drug resistance are not routinely done. In the United States, data on use of antimicrobials for treatment of bacterial diseases of plants are limited to streptomycin and oxytetracycline. Resistance to streptomycin has become widespread among bacterial phytopathogens; no resistance among these bacteria has yet been reported for oxytetracycline. No human health effects have been documented since inception of use of antimicrobials in plants in the 1950s. Transfer of antimicrobial resistance from marker genes in transgenic plants to bacteria has not been documented under natural conditions in field-grown plants. However, antimicrobial-resistance genes are being eliminated from use as marker genes because of concerns about possible transfer from plant genomes back to bacteria, with further horizontal transfer to the bacteria in the environment, or from plant genomes to animals by plant consumption. No new antimicrobials are expected to be used in plant agriculture because of high costs of development, regulatory constraints, and environmental and human health concerns. Alternatives to antimicrobials, such as biocontrol agents, transgenic plants, and novel chemicals, are being developed and marketed, although their efficacy remains to be determined. | 2002 | 11988880 |
| 4238 | 19 | 0.9999 | Biocide tolerance in bacteria. Biocides have been employed for centuries, so today a wide range of compounds showing different levels of antimicrobial activity have become available. At the present time, understanding the mechanisms of action of biocides has also become an important issue with the emergence of bacterial tolerance to biocides and the suggestion that biocide and antibiotic resistance in bacteria might be linked. While most of the mechanisms providing antibiotic resistance are agent specific, providing resistance to a single antimicrobial or class of antimicrobial, there are currently numerous examples of efflux systems that accommodate and, thus, provide tolerance to a broad range of structurally unrelated antimicrobials, both antibiotics and biocides. If biocide tolerance becomes increasingly common and it is linked to antibiotic resistance, not only resistant (even multi-resistant) bacteria could be passed along the food chain, but also there are resistance determinants that can spread and lead to the emergence of new resistant microorganisms, which can only be detected and monitored when the building blocks of resistance traits are understood on the molecular level. This review summarizes the main advances reached in understanding the mechanism of action of biocides, the mechanisms of bacterial resistance to both biocides and antibiotics, and the incidence of biocide tolerance in bacteria of concern to human health and the food industry. | 2013 | 23340387 |