# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9428 | 0 | 1.0000 | Biofilms and their properties. Bacteria within the oral cavity live primarily as complex, polymicrobial biofilms. Dental biofilms are necessary etiological factors for dental caries and periodontal diseases but have also been implicated in diseases outside the oral cavity. Biofilm is the preferred lifestyle for bacteria, and biofilms are found on almost any surface in nature. Bacteria growing within a biofilm exhibit an altered phenotype. Substantial changes in gene expression occur when bacteria are in close proximity or physical contact with one another or with the host. This may facilitate nutritional co-operation, cell-cell signaling, and gene transfer, including transfer of antibiotic-resistance genes, thus rendering biofilm bacteria with properties other than those found in free-floating, planktonic bacteria. We will discuss biofilm properties and possible consequences for future prophylaxis. | 2018 | 30178559 |
| 9429 | 1 | 0.9999 | Basic features of biofilms--why are they difficult therapeutic targets? The purpose of this paper is to review the basic features of biofilms associated with human infections and summarize why such biofilms are resistant to antimicrobial agents. The formation of most biofilms involves adherence of bacteria to a conditioned surface, growth and division of the attached bacteria, synthesis of a polymeric slime matrix, formation of a structured microbial community, and incorporation of other micro-organisms into the microbial mass. The transition of bacteria from free-floating (planktonic) to biofilm environments involves extensive up-regulation of genes associated with adherence. Micro-organisms in established biofilms engage in complex integrated activities involving activation and deactivation of genes that promote the survival of bacteria within the biofilm community. Mechanisms of the increased resistance of biofilm bacteria to antimicrobial agents may involve: (1) neutralization or consumption of the drug, (2) failure of the drug to completely penetrate the biofilm, (3) inability of the drug to affect metabolically inactive bacteria, and (4) presence of drug-resistant bacteria within biofilms. | 2004 | 16479852 |
| 9430 | 2 | 0.9999 | Mechanisms of antimicrobial resistance in biofilms. Most bacteria in nature exist in aggregated communities known as biofilms, and cells within a biofilm demonstrate major physiological changes compared to their planktonic counterparts. Biofilms are associated with many different types of infections which can have severe impacts on patients. Infections involving a biofilm component are often chronic and highly recalcitrant to antibiotic therapy as a result of intrinsic physical factors including extracellular matrix production, low growth rates, altered antibiotic target production and efficient exchange of resistance genes. This review describes the biofilm lifecycle, phenotypic characteristics of a biofilm, and contribution of matrix and persister cells to biofilms intrinsic tolerance to antimicrobials. We also describe how biofilms can evolve antibiotic resistance and transfer resistance genes within biofilms. Multispecies biofilms and the impacts of various interactions, including cooperation and competition, between species on tolerance to antimicrobials in polymicrobial biofilm communities are also discussed. | 2024 | 39364333 |
| 4255 | 3 | 0.9999 | Oral biofilms: a reservoir of transferable, bacterial, antimicrobial resistance. Oral microbes are responsible for dental caries and periodontal diseases and have also been implicated in a range of other diseases beyond the oral cavity. These bacteria live primarily as complex, polymicrobial biofilms commonly called dental plaque. Cells growing within a biofilm often exhibit altered phenotypes, such as increased antibiotic resistance. The stable structural properties and close proximity of the bacterial cells within the biofilm appears to be an excellent environment for horizontal gene transfer, which can lead to the spread of antibiotic resistance genes amongst the biofilm inhabitants. This article will present an overview of the different types and amount of resistance to antibiotics that have been found in the human oral microbiota and will discuss the oral inhabitants' role as a reservoir of antimicrobial resistance genes. In addition, data on the genetic support for these resistance genes will be detailed and the evidence for horizontal gene transfer reviewed, demonstrating that the bacteria inhabiting the oral cavity are a reservoir of transferable antibiotic resistance. | 2010 | 21133668 |
| 9436 | 4 | 0.9999 | Phenotypic Resistance to Antibiotics. The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented. | 2013 | 27029301 |
| 9431 | 5 | 0.9999 | Biofilms and antimicrobial resistance. The pathogenesis of many orthopaedic infections is related to the presence of microorganisms in biofilms. I examine the emerging understanding of the mechanisms of biofilm-associated antimicrobial resistance. Biofilm-associated resistance to antimicrobial agents begins at the attachment phase and increases as the biofilm ages. A variety of reasons for the increased antimicrobial resistance of microorganisms in biofilms have been postulated and investigated. Although bacteria in biofilms are surrounded by an extracellular matrix that might physically restrict the diffusion of antimicrobial agents, this does not seem to be a predominant mechanism of biofilm-associated antimicrobial resistance. Nutrient and oxygen depletion within the biofilm cause some bacteria to enter a nongrowing (ie, stationary) state, in which they are less susceptible to growth-dependent antimicrobial killing. A subpopulation of bacteria might differentiate into a phenotypically resistant state. Finally, some organisms in biofilms have been shown to express biofilm-specific antimicrobial resistance genes that are not required for biofilm formation. Overall, the mechanism of biofilm-associated antimicrobial resistance seems to be multifactorial and may vary from organism to organism. Techniques that address biofilm susceptibility testing to antimicrobial agents may be necessary before antimicrobial regimens for orthopaedic prosthetic device-associated infections can be appropriately defined in research and clinical settings. Finally, a variety of approaches are being defined to overcome biofilm-associated antimicrobial resistance. | 2005 | 16056024 |
| 9433 | 6 | 0.9999 | The relative contributions of physical structure and cell density to the antibiotic susceptibility of bacteria in biofilms. For many bacterial infections, noninherited mechanisms of resistance are responsible for extending the term of treatment and in some cases precluding its success. Among the most important of these noninherited mechanisms of resistance is the ability of bacteria to form biofilms. There is compelling evidence that bacteria within biofilms are more refractory to antibiotics than are planktonic cells. Not so clear, however, is the extent to which this resistance can be attributed to the structure of biofilms rather than the physiology and density of bacteria within them. To explore the contribution of the structure of biofilms to resistance in a quantitative way, we developed an assay that compares the antibiotic sensitivity of bacteria in biofilms to cells mechanically released from these structures. Our method, which we apply to Escherichia coli and Staphylococcus aureus each with antibiotics of five classes, controls for the density and physiological state of the treated bacteria. For most of the antibiotics tested, the bacteria in biofilms were no more resistant than the corresponding populations of planktonic cells of similar density. Our results, however, suggest that killing by gentamicin, streptomycin, and colistin is profoundly inhibited by the structure of biofilms; these drugs are substantially more effective in killing bacteria released from biofilms than cells within these structures. | 2012 | 22450987 |
| 9427 | 7 | 0.9999 | Polysaccharides' Structures and Functions in Biofilm Architecture of Antimicrobial-Resistant (AMR) Pathogens. Bacteria and fungi have developed resistance to the existing therapies such as antibiotics and antifungal drugs, and multiple mechanisms are mediating this resistance. Among these, the formation of an extracellular matrix embedding different bacterial cells, called biofilm, is an effective strategy through which bacterial and fungal cells are establishing a relationship in a unique environment. The biofilm provides them the possibility to transfer genes conferring resistance, to prevent them from desiccation and to impede the penetration of antibiotics or antifungal drugs. Biofilms are formed of several constituents including extracellular DNA, proteins and polysaccharides. Depending on the bacteria, different polysaccharides form the biofilm matrix in different microorganisms, some of them involved in the first stage of cells' attachment to surfaces and to each other, and some responsible for giving the biofilm structure resistance and stability. In this review, we describe the structure and the role of different polysaccharides in bacterial and fungal biofilms, we revise the analytical methods to characterize them quantitatively and qualitatively and finally we provide an overview of potential new antimicrobial therapies able to inhibit biofilm formation by targeting exopolysaccharides. | 2023 | 36835442 |
| 9434 | 8 | 0.9998 | Facilitation of horizontal transfer of antimicrobial resistance by transformation of antibiotic-induced cell-wall-deficient bacteria. It is universally accepted that the use of antibiotics will lead to antimicrobial resistance. Traditionally, the explanation to this phenomenon was random mutation and horizontal gene transfer and amplification by selective pressure. Subsequently, a second mechanism of antibiotic-induced antimicrobial resistance acquisition was proposed, when Davies et al. discovered that genes encoding antimicrobial resistance are present in bacteria that produce antibiotics, and during the process of antibiotic purification from these antibiotic-producing organisms, remnants of the organisms' DNA that contain antibiotic resistance genes are also co-extracted, and can be recovered in antibiotic preparations. In addition to selective pressure and antimicrobial resistance genes in antibiotic preparations, we hypothesize the third mechanism by which administration of antibiotics leads to antimicrobial resistance. beta-Lactams and glycopeptides damage bacteria by inhibiting cell wall murein synthesis. During the process, cell-wall-deficient forms are generated before the bacteria die. These cell-wall-deficient forms have an increased ability to uptake DNA by transformation. It has been demonstrated that plasmids encoding antimicrobial resistance of Staphylococcus aureus can be transformed to Bacillus subtilis after the B. subtilis was treated with penicillin or lysostaphin, a chemical that damage the cell walls of some Gram-positive bacteria; and that short treatment of Escherichia coli with antibiotics disturbing bacterial cell wall synthesis rendered the cells capable of absorbing foreign DNA. Since bacteria occupying the same ecological niche, such as the lower gastrointestinal tract, is common, bacteria are often incubated with foreign DNA encoding resistance coming from the administration of antibiotics or other bacteria that undergone lysis unrelated to antibiotic-induced killing. As few as a single antibiotic resistant gene is taken up by the cell-wall-deficient form, it will develop into a resistant clone, despite most of the other bacteria are killed by the antibiotic. If the hypothesis is correct, one should reduce the use of antibiotics that perturb bacterial cell wall synthesis, such as beta-lactams, which is the largest group being manufactured, in both humans and animals, in order to reduce the acquisition of antibiotic resistance through this mechanism. In contrast to the old theory that antibiotics only provide selective pressures for the development of antimicrobial resistance, antibiotics by themselves are able to generate the whole chain of events towards the development of antimicrobial resistance. Antibiotics provide a source of antimicrobial resistance genes, facilitate the horizontal transfer of antimicrobial resistance genes through facilitating transformation, and provide selective pressures for amplification of the antimicrobial resistance genes. That is perhaps an important reason why antimicrobial resistance is so difficult to control. Further experiments should be performed to delineate which particular type of beta-lactam antibiotics are associated with increase in transformation efficiencies more than the others, so that we can select those less resistance generating beta-lactam for routine usage. | 2003 | 13679020 |
| 9288 | 9 | 0.9998 | Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. Bacterial resistances to metals are heterogeneous in both their genetic and biochemical bases. Metal resistance may be chromosomally-, plasmid- or transposon-encoded, and one or more genes may be involved: at the biochemical level at least six different mechanisms are responsible for resistance. Various types of resistance mechanisms can occur singly or in combination and for a particular metal different mechanisms of resistance can occur in the same species. To understand better the diverse responses of bacteria to metal ion challenge we have constructed a qualitative model for the selection of metal resistance in bacteria. How a bacterium becomes resistant to a particular metal depends on the number and location of cellular components sensitive to the specific metal ion. Other important selective factors include the nature of the uptake systems for the metal, the role and interactions of the metal in the normal metabolism of the cell and the availability of plasmid (or transposon) encoded resistance mechanisms. The selection model presented is based on the interaction of these factors and allows predictions to be made about the evolution of metal resistance in bacterial populations. It also allows prediction of the genetic basis and of mechanisms of resistance which are in substantial agreement with those in well-documented populations. The interaction of, and selection for resistance to, toxic substances in addition to metals, such as antibiotics and toxic analogues, involve similar principles to those concerning metals. Potentially, models for selection of resistance to any substance can be derived using this approach. | 1995 | 7766205 |
| 9432 | 10 | 0.9998 | Disinfectants and antiseptics: mechanisms of action and resistance. Chemical biocides are used for the prevention and control of infection in health care, targeted home hygiene or controlling microbial contamination for various industrial processes including but not limited to food, water and petroleum. However, their use has substantially increased since the implementation of programmes to control outbreaks of methicillin-resistant Staphylococcus aureus, Clostridioides difficile and severe acute respiratory syndrome coronavirus 2. Biocides interact with multiple targets on the bacterial cells. The number of targets affected and the severity of damage will result in an irreversible bactericidal effect or a reversible bacteriostatic one. Most biocides primarily target the cytoplasmic membrane and enzymes, although the specific bactericidal mechanisms vary among different biocide chemistries. Inappropriate usage or low concentrations of a biocide may act as a stressor while not killing bacterial pathogens, potentially leading to antimicrobial resistance. Biocides can also promote the transfer of antimicrobial resistance genes. In this Review, we explore our current understanding of the mechanisms of action of biocides, the bacterial resistance mechanisms encompassing both intrinsic and acquired resistance and the influence of bacterial biofilms on resistance. We also consider the impact of bacteria that survive biocide exposure in environmental and clinical contexts. | 2024 | 37648789 |
| 9685 | 11 | 0.9998 | Biofilm: A Hotspot for Emerging Bacterial Genotypes. Bacteria have the ability to adapt to changing environments through rapid evolution mediated by modification of existing genetic information, as well as by horizontal gene transfer (HGT). This makes bacteria a highly successful life form when it comes to survival. Unfortunately, this genetic plasticity may result in emergence and dissemination of antimicrobial resistance and virulence genes, and even the creation of multiresistant "superbugs" which may pose serious threats to public health. As bacteria commonly reside in biofilms, there has been an increased interest in studying these phenomena within biofilms in recent years. This review summarizes the present knowledge within this important area of research. Studies on bacterial evolution in biofilms have shown that mature biofilms develop into diverse communities over time. There is growing evidence that the biofilm lifestyle may be more mutagenic than planktonic growth. Furthermore, all three main mechanisms for HGT have been observed in biofilms. This has been shown to occur both within and between bacterial species, and higher transfer rates in biofilms than in planktonic cultures were detected. Of special concern are the observations that mutants with increased antibiotic resistance occur at higher frequency in biofilms than in planktonic cultures even in the absence of antibiotic exposure. Likewise, efficient dissemination of antimicrobial resistance genes, as well as virulence genes, has been observed within the biofilm environment. This new knowledge emphasizes the importance of biofilm awareness and control. | 2018 | 29914658 |
| 4256 | 12 | 0.9998 | Genetic competence and transformation in oral streptococci. The oral streptococci are normally non-pathogenic residents of the human microflora. There is substantial evidence that these bacteria can, however, act as "genetic reservoirs" and transfer genetic information to transient bacteria as they make their way through the mouth, the principal entry point for a wide variety of bacteria. Examples that are of particular concern include the transfer of antibiotic resistance from oral streptococci to Streptococcus pneumoniae. The mechanisms that are used by oral streptococci to exchange genetic information are not well-understood, although several species are known to enter a physiological state of genetic competence. This state permits them to become capable of natural genetic transformation, facilitating the acquisition of foreign DNA from the external environment. The oral streptococci share many similarities with two closely related Gram-positive bacteria, S. pneumoniae and Bacillus subtilis. In these bacteria, the mechanisms of quorum-sensing, the development of competence, and DNA uptake and integration are well-characterized. Using this knowledge and the data available in genome databases allowed us to identify putative genes involved in these processes in the oral organism Streptococcus mutans. Models of competence development and genetic transformation in the oral streptococci and strategies to confirm these models are discussed. Future studies of competence in oral biofilms, the natural environment of oral streptococci, will be discussed. | 2001 | 11497374 |
| 9614 | 13 | 0.9998 | Antibiotic-Independent Adaptive Effects of Antibiotic Resistance Mutations. Antibiotic usage selects for the accumulation and spread of antibiotic-resistant bacteria. However, resistance can also accumulate in the absence of antibiotic exposure. Antibiotics are often designed to target widely distributed regulatory housekeeping genes. The targeting of such genes enables these antibiotics to be useful against a wider variety of pathogens. This review highlights work suggesting that regulatory housekeeping genes of the type targeted by many antibiotics function as hubs of adaptation to conditions unrelated to antibiotic exposure. As a result of this, some mutations to the regulatory housekeeping gene targets of antibiotics confer both antibiotic resistance and an adaptive effect unrelated to antibiotic exposure. Such antibiotic-independent adaptive effects of resistance mutations may substantially affect the dynamics of antibiotic resistance accumulation and spread. | 2017 | 28629950 |
| 9517 | 14 | 0.9998 | Better together-Salmonella biofilm-associated antibiotic resistance. Salmonella poses a serious threat to public health and socioeconomic development worldwide because of its foodborne pathogenicity and antimicrobial resistance. This biofilm-planktonic lifestyle enables Salmonella to interfere with the host and become resistant to drugs, conferring inherent tolerance to antibiotics. The complex biofilm structure makes bacteria tolerant to harsh conditions due to the diversity of physiological, biochemical, environmental, and molecular factors constituting resistance mechanisms. Here, we provide an overview of the mechanisms of Salmonella biofilm formation and antibiotic resistance, with an emphasis on less-studied molecular factors and in-depth analysis of the latest knowledge about upregulated drug-resistance-associated genes in bacterial aggregates. We classified and extensively discussed each group of these genes encoding transporters, outer membrane proteins, enzymes, multiple resistance, metabolism, and stress response-associated proteins. Finally, we highlighted the missing information and studies that need to be undertaken to understand biofilm features and contribute to eliminating antibiotic-resistant and health-threatening biofilms. | 2023 | 37401756 |
| 8921 | 15 | 0.9998 | Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilm-specific proteome. Biofilm bacteria are widely held to exhibit a unique phenotype, typified by their increased resistance to antimicrobial agents. Numerous studies have been devoted to the identification of biofilm-specific genes, but surprisingly few have been reported to date. We compared the whole cell proteomes of 24 h old Bacillus cereus biofilms and the associated suspended population to exponential, transient and stationary phase planktonic cultures using the unbiased approach of principal component analysis, comparing the quantity variations of the 823 detected spots. The analyses support the hypothesis that biofilms of Gram positive bacteria have a unique pattern of gene expression. The data provides proteomic evidence for a new biofilm and surface influenced planktonic population which is distinct to both planktonic and biofilm cells. | 2006 | 16889414 |
| 9324 | 16 | 0.9998 | Role of horizontally transferred copper resistance genes in Staphylococcus aureus and Listeria monocytogenes. Bacteria have evolved mechanisms which enable them to control intracellular concentrations of metals. In the case of transition metals, such as copper, iron and zinc, bacteria must ensure enough is available as a cofactor for enzymes whilst at the same time preventing the accumulation of excess concentrations, which can be toxic. Interestingly, metal homeostasis and resistance systems have been found to play important roles in virulence. This review will discuss the copper homeostasis and resistance systems in Staphylococcus aureus and Listeria monocytogenes and the implications that acquisition of additional copper resistance genes may have in these pathogens. | 2022 | 35404222 |
| 9282 | 17 | 0.9998 | Could DNA uptake be a side effect of bacterial adhesion and twitching motility? DNA acquisition promotes the spread of resistance to antibiotics and virulence among bacteria. It is also linked to several natural phenomena including recombination, genome dynamics, adaptation and speciation. Horizontal DNA transfer between bacteria occurs via conjugation, transduction or competence for natural transformation by DNA uptake. Among these, competence is the only mechanism of transformation initiated and entirely controlled by the chromosome of the recipient bacteria. While the molecular mechanisms allowing the uptake of extracellular DNA are increasingly characterized, the function of competence for natural transformation by DNA uptake, the selective advantage maintaining it and the reasons why bacteria take up DNA in the first place are still debated. In this synthesis, I review some of the literature and discuss the four hypotheses on how and why do bacteria take up DNA. I argue that DNA uptake by bacteria is an accidental by-product of bacterial adhesion and twitching motility. Adhesion and motility are generally increased in stressful conditions, which may explain why bacteria increase DNA uptake in these conditions. In addition to its fundamental scientific relevance, the new hypothesis suggested here has significant clinical implications and finds further support from the fact that antibiotics sometimes fail to eliminate the targeted bacterium while inevitably causing stress to others. The widespread misuse of antibiotics may thus not only be selecting for resistant strains, but may also be causing bacteria to take up more DNA with the consequent increase in the chances of acquiring drug resistance and virulence-a scenario in full concordance with the previously reported induction of competence genes by antibiotics in Streptococcus pneumoniae and Legionella pneumophila. | 2013 | 23381940 |
| 9697 | 18 | 0.9998 | Origins and evolution of antibiotic resistance. The massive prescription of antibiotics and their non-regulated and extensive usage has resulted in the development of extensive antibiotic resistance in microorganisms; this has been of great clinical significance. Antibiotic resistance occurs not only by mutation of microbial genes which code for antibiotic uptake into cells or the binding sites for antibiotics, but mostly by the acquisition of heterologous resistance genes from external sources. The physical characteristics of the microbial community play a major role in gene exchange, but antimicrobial agents provide the selective pressure for the development of resistance and promote the transfer of resistance genes among bacteria. The control of antibiotic usage is essential to prevent the development of resistance to new antibiotics. | 1996 | 9019139 |
| 9140 | 19 | 0.9998 | Polyamine as a microenvironment factor in resistance to antibiotics. One of the main issues in modern medicine is the decrease in the efficacy of antibiotic therapy against resistant microorganisms. The advent of antimicrobial resistance has added significantly to the impact of infectious diseases, in number of infections, as well as added healthcare costs. The development of antibiotic tolerance and resistance is influenced by a variety of environmental variables, and it is important to identify these environmental factors as part of any strategy for combating antibiotic resistance. The review aims to emphasize that biogenic polyamines are one of such environmental cues that impacts the antibiotic resistance in bacteria. The biogenic polyamines can help bacteria acquire resistance to antibiotics either by regulating the level of number of porin channels in the outer membrane, by modifying the outer membrane liposaccharides or by protecting macromolecule from antibiotic stress. Thus, understanding the way polyamines function in bacteria can thus be beneficial while designing the drugs to combat diseases. | 2024 | 37339480 |