Gene transfer mechanisms among members of the genus Rhodopseudomonas. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
935201.0000Gene transfer mechanisms among members of the genus Rhodopseudomonas. Recent studies on species of the genus Rhodopseudomonas, particularly R, capsulata and R. sphaeroides, have resulted in the development of a range of systems of genetic exchange without peer among the photosynthetic prokaryotes. In R. capsulata, systems of generalized transduction and R-prime formation have provided a detailed map of the arrangement of photosynthesis genes, while systems of conjugation and chromosome transfer in R, sphaeroides have provided a map of the location of genes involved in amino acid biosynthesis, antibiotic resistance and photosynthesis. A recent report of plasmid transformation in R. sphaeroides provides another important avenue for the analysis of genes such as those involved in photosynthesis and photochemical nitrogen fixation, through the application of DNA cloning technology. That plasmid transformation, generalized and specialized transduction, conjugation, chromosome transfer and R-prime formation do occur in Rhodopseudomonas indicates the rapid emergence of genetic and molecular biological techniques applicable to studies of these bacteria.19836314864
928310.9996Vibrio cholerae: Measuring Natural Transformation Frequency. Many bacteria can become naturally competent to take up extracellular DNA across their outer and inner membranes by a dedicated competence apparatus. Whereas some studies show that the DNA delivered to the cytoplasm may be used for genome repair or for nutrition, it can also be recombined onto the chromosome by homologous recombination: a process called natural transformation. Along with conjugation and transduction, natural transformation represents a mechanism for horizontal transfer of genetic material, e.g., antibiotic resistance genes, which can confer new beneficial characteristics onto the recipient bacteria. Described here are protocols for quantifying the frequency of transformation for the human pathogen Vibrio cholerae, one of several Vibrio species recently shown to be capable of natural transformation.201425367272
932120.9996Copper resistance determinants in bacteria. Copper is an essential trace element that is utilized in a number of oxygenases and electron transport proteins, but it is also a highly toxic heavy metal, against which all organisms must protect themselves. Known bacterial determinants of copper resistance are plasmid-encoded. The mechanisms which confer resistance must be integrated with the normal metabolism of copper. Different bacteria have adopted diverse strategies for copper resistance, and this review outlines what is known about bacterial copper resistance mechanisms and their genetic regulation.19921741459
928530.9996Bacterial genetic exchange in nature. Most bacteria are haploid organisms containing only one copy of each gene per cell for most of the growth cycle. This means that the chance for correcting random mutations in bacterial genes would depend entirely on the complementarity inherent in DNA structures, unless homologous DNA sequences can be imported from outside the cell. Bacteria, like all living organisms have evolved at least one autonomous mechanism, conjugation, for exchanging portions of genetic materials between two related cells. The ecological benefits of conjugation include the expansion of metabolic versatility and resistance to hazardous environmental conditions. Natural bacterial genetic exchange also occurs through virus infections (transduction) and through the uptake of extracellular DNA (transformation). The origin and ecological benefits of transduction and transformation are difficult to assess because they are driven by factors external to the affected cell. Bacterial genetic exchange has implications for the evolution of phenotypes that are either beneficial to humans, such as biodegradation of toxic xenobiotic chemicals, or that are detrimental, such as the evolution of pathogenesis and the spread of antibiotic resistance. Understanding natural bacterial genetic exchange mechanisms is also relevant to the assessment of dispersal risks associated with genetically engineered bacteria and recombinant genes in the environment.19958533067
934140.9996Horizontal gene transfers in insects. Horizontal gene transfer is the transfer of genetic material across species boundaries. Although horizontal gene transfers are relatively rare in animals, the recent rapid accumulation of genomic data has identified increasing amounts of exogenous DNA inserts in insect genomes. Most of the horizontally acquired sequences appear to be non-functional; however, there is growing evidence that some genes are truly expressed and confer novel functions on the recipient insects. These include previously unavailable metabolic properties including digesting food, degrading toxins, providing resistance to pathogens, and facilitating an obligate mutualistic relationship with intracellular bacteria. A recent analysis revealed that an aphid gene of bacterial origin encodes a protein that is transported into the obligate symbiont, paralleling the evolution of endosymbiotic organelles.201532131363
932850.9996Man-made cell-like compartments for molecular evolution. Cellular compartmentalization is vital for the evolution of all living organisms. Cells keep together the genes, the RNAs and proteins that they encode, and the products of their activities, thus linking genotype to phenotype. We have reproduced this linkage in the test tube by transcribing and translating single genes in the aqueous compartments of water-in-oil emulsions. These compartments, with volumes close to those of bacteria, can be recruited to select genes encoding catalysts. A protein or RNA with a desired catalytic activity converts a substrate attached to the gene that encodes it to product. In other compartments, substrates attached to genes that do not encode catalysts remain unmodified. Subsequently, genes encoding catalysts are selectively enriched by virtue of their linkage to the product. We demonstrate the linkage of genotype to phenotype in man-made compartments using a model system. A selection for target-specific DNA methylation was based on the resistance of the product (methylated DNA) to restriction digestion. Genes encoding HaeIII methyltransferase were selected from a 10(7)-fold excess of genes encoding another enzyme.19989661199
929660.9996Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. Living organisms are defined by the genes they possess. Control of expression of this gene set, both temporally and in response to the environment, determines whether an organism can survive changing conditions and can compete for the resources it needs to reproduce. Bacteria are no exception; changes to the genome will, in general, threaten the ability of the microbe to survive, but acquisition of new genes may enhance its chances of survival by allowing growth in a previously hostile environment. For example, acquisition of an antibiotic resistance gene by a bacterial pathogen can permit it to thrive in the presence of an antibiotic that would otherwise kill it; this may compromise clinical treatments. Many forces, chemical and genetic, can alter the genetic content of DNA by locally changing its nucleotide sequence. Notable for genetic change in bacteria are transposable elements and site-specific recombination systems such as integrons. Many of the former can mobilize genes from one replicon to another, including chromosome-plasmid translocation, thus establishing conditions for interspecies gene transfer. Balancing this, transposition activity can result in loss or rearrangement of DNA sequences. This chapter discusses bacterial DNA transfer systems, transposable elements and integrons, and the contributions each makes towards the evolution of bacterial genomes, particularly in relation to bacterial pathogenesis. It highlights the variety of phylogenetically distinct transposable elements, the variety of transposition mechanisms, and some of the implications of rearranging DNA, and addresses the effects of genetic change on the fitness of the microbe.200415148416
934470.9996A comparative study indicates vertical inheritance and horizontal gene transfer of arsenic resistance-related genes in eukaryotes. Arsenic is a ubiquitous element in the environment, a source of constant evolutionary pressure on organisms. The arsenic resistance machinery is thoroughly described for bacteria. Highly resistant lineages are also common in eukaryotes, but evolutionary knowledge is much more limited. While the origin of the resistance machinery in eukaryotes is loosely attributed to horizontal gene transfer (HGT) from bacteria, only a handful of eukaryotes were deeply studied. Here we investigate the origin and evolution of the core genes in arsenic resistance in eukaryotes using a broad phylogenetic framework. We hypothesize that, as arsenic pressure is constant throughout Earth's history, resistance mechanisms are probably ancestral to eukaryotes. We identified homologs for each of the arsenic resistance genes in eukaryotes and traced their possible origin using phylogenetic reconstruction. We reveal that: i. an important component of the arsenic-resistant machinery originated before the last eukaryotic common ancestor; ii. later events of gene duplication and HGT generated new homologs that, in many cases, replaced ancestral ones. Even though HGT has an important contribution to the expansion of arsenic metabolism in eukaryotes, we propose the hypothesis of ancestral origin and differential retention of arsenic resistance mechanisms in the group. Key-words: Environmental adaptation; resistance to toxic metalloids; detoxification; comparative genomics; functional phylogenomics.202235533945
935580.9995Conjugative type IV secretion systems enable bacterial antagonism that operates independently of plasmid transfer. Bacterial cooperation and antagonism mediated by secretion systems are among the ways in which bacteria interact with one another. Here we report the discovery of an antagonistic property of a type IV secretion system (T4SS) sourced from a conjugative plasmid, RP4, using engineering approaches. We scrutinized the genetic determinants and suggested that this antagonistic activity is independent of molecular cargos, while we also elucidated the resistance genes. We further showed that a range of Gram-negative bacteria and a mixed bacterial population can be eliminated by this T4SS-dependent antagonism. Finally, we showed that such an antagonistic property is not limited to T4SS sourced from RP4, rather it can also be observed in a T4SS originated from another conjugative plasmid, namely R388. Our results are the first demonstration of conjugative T4SS-dependent antagonism between Gram-negative bacteria on the genetic level and provide the foundation for future mechanistic studies.202438664513
935490.9995Chemical anatomy of antibiotic resistance: chloramphenicol acetyltransferase. The evolution of mechanisms of resistance to natural antimicrobial substances (antibiotics) was almost certainly concurrent with the development in microorganisms of the ability to synthesise such agents. Of the several general strategies adopted by bacteria for defence against antibiotics, one of the most pervasive is that of enzymic inactivation. The vast majority of eubacteria that are resistant to chloramphenicol, an inhibitor of prokaryotic protein synthesis, owe their resistance phenotype to genes for chloramphenicol acetyltransferase (CAT), which catalyses O-acetylation of the antibiotic, using acetyl-CoA as the acyl donor. The structure of CAT is known, as are many of the properties of the enzyme which explain its remarkable specificity and catalytic efficiency. Less clear is the evolutionary pathway which has produced the different members of the CAT 'family' of enzymes. Hints come from other acetyltransferases which share structure and mechanistic features with CAT, while not being strictly 'homologous' at the level of amino acid sequence. The 'super-family' of trimeric acetyltransferases appears to have in common a chemical mechanism based on a shared architecture.19921364583
9307100.9995Integrons. Integrons are genetic elements able to acquire and rearrange open reading frames (ORFs) embedded in gene cassette units and convert them to functional genes by ensuring their correct expression. They were originally identified as a mechanism used by Gram-negative bacteria to collect antibiotic resistance genes and express multiple resistance phenotypes in synergy with transposons. More recently, their role has been broadened with the discovery of chromosomal integron (CI) structures in the genomes of hundreds of bacterial species. This review focuses on the resources carried in these elements, on their unique recombination mechanisms, and on the different mechanisms controlling the cassette dynamics. We discuss the role of the toxin/antitoxin (TA) cassettes for the stabilization of the large cassette arrays carried in the larger CIs, known as superintegrons. Finally, we explore the central role played by single-stranded DNA in the integron cassette dynamics in light of the recent discovery that the integron integrase expression is controlled by the SOS response.201020707672
9356110.9995The expression of antibiotic resistance genes in antibiotic-producing bacteria. Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance.201424964724
284120.9995Expression of a transposable antibiotic resistance element in Saccharomyces. Some eukaryotic genes can be expressed in bacteria but there are few examples of the expression of prokaryotic genes in eukaryotes. Antibiotic G418 is a 2-deoxystreptamine antibiotic that is structurally related to gentamicin but has inhibitory activity against a much wider variety of pro- and eukaryotic organisms. In bacteria, resistance to G418 can be determined by several plasmid-encoded modifiying enzymes and, in view of the broad spectrum of activity of G418, we considered that this antibiotic might be useful as a selective agent for the introduction of these antibiotic resistance genes into a eukaryotic organism such as Saccharomyces cerevisiae. Additional impetus for these experiments came from the knowledge that certain of the G418-resistance determinants in bacteria are carried on transposable elements; a study of the properties of these elements in eukaryotes would be intriguing.19806253817
9339130.9995A functional genomics approach to identify and characterize oxidation resistance genes. In order to develop a more complete understanding of the genes required for resistance to oxidative DNA damage, we devised methods to identify genes that can prevent or repair oxidative DNA damage. These methods use the oxidative mutator phenotype of a repair deficient E. coli strain to measure the antimutator effect resulting from the expression of human cDNAs. The method can be adapted to characterize the function, and to determine the active site domains, of putative antimutator genes. Since bacteria do not contain subcellular compartments, genes that function in mitochondria, the cytoplasm, or the nucleus can be identified. Methods to determine the localization of genes in their normal host organism are also described.200819082958
9343140.9995Origin of the bacterial SET domain genes: vertical or horizontal? The presence of Supressor of variegation-Enhanser of zeste-Trithorax (SET) domain genes in bacteria is a current paradigm for lateral genetic exchange between eukaryotes and prokaryotes. Because a major function of SET domain proteins is the chemical modification of chromatin and bacteria do not have chromatin, there is no apparent functional requirement for the existence of bacterial SET domain genes. Consequently, their finding in only a small fraction of pathogenic and symbiotic bacteria was taken as evidence that bacteria have obtained the SET domain genes from their hosts. Furthermore, it was proposed that the products of the genes would, most likely, be involved in bacteria-host interactions. The broadened scope of sequenced bacterial genomes to include also free-living and environmental species provided a larger sample to analyze the bacterial SET domain genes. By phylogenetic analysis, examination of individual chromosomal regions for signs of insertion, and evaluating the chromosomal versus SET domain genes' GC contents, we provide evidence that SET domain genes have existed in the bacterial domain of life independently of eukaryotes. The bacterial genes have undergone an evolution of their own unconnected to the evolution of the eukaryotic SET domain genes. Initial finding of SET domain genes in predominantly pathogenic and symbiotic bacteria resulted, most probably, from a biased sample. However, a lateral transfer of SET domain genes may have occurred between some bacteria and a family of Archaea. A model for the evolution and distribution of SET domain genes in bacteria is proposed.200717148507
9306150.9995Establishment Genes Present on pLS20 Family of Conjugative Plasmids Are Regulated in Two Different Ways. During conjugation, a conjugative DNA element is transferred from a donor to a recipient cell via a connecting channel. Conjugation has clinical relevance because it is the major route for spreading antibiotic resistance and virulence genes. The conjugation process can be divided into different steps. The initial steps carried out in the donor cell culminate in the transfer of a single DNA strand (ssDNA) of the conjugative element into the recipient cell. However, stable settlement of the conjugative element in the new host requires at least two additional events: conversion of the transferred ssDNA into double-stranded DNA and inhibition of the hosts' defence mechanisms to prevent degradation of the transferred DNA. The genes involved in this late step are historically referred to as establishment genes. The defence mechanisms of the host must be inactivated rapidly and-importantly-transiently, because prolonged inactivation would make the cell vulnerable to the attack of other foreign DNA, such as those of phages. Therefore, expression of the establishment genes in the recipient cell has to be rapid but transient. Here, we studied regulation of the establishment genes present on the four clades of the pLS20 family of conjugative plasmids harboured by different Bacillus species. Evidence is presented that two fundamentally different mechanisms regulate the establishment genes present on these plasmids. Identification of the regulatory sequences were critical in revealing the establishment regulons. Remarkably, whereas the conjugation genes involved in the early steps of the conjugation process are conserved and are located in a single large operon, the establishment genes are highly variable and organised in multiple operons. We propose that the mosaical distribution of establishment genes in multiple operons is directly related to the variability of defence genes encoded by the host bacterial chromosomes.202134946067
9708160.9995Potential dissemination of antibiotic resistance genes from transgenic plants to microorganisms. Evidence that genes were transferred during evolution from plants to bacteria was obtained from nucleotide and protein sequence analyses. However, the extent of such transfers among phylogenetically distant organisms is limited by various factors, including those related to complexity of the environment and those endogenous to the bacteria, designed to prevent a drift of the genome integrity. The goal of this article is to give an overview of the potentials and limits of natural interkingdom gene transfers, with a particular focus on prokaryote originating sequences fitting the nuclear genome of transgenic plants.200010879570
9357170.9995The bifunctional enzymes of antibiotic resistance. The evolutionary union of two genes--each encoding proteins of complementary enzymatic activity--into a single gene so as to allow the coordinated expression of these activities as a fusion polypeptide, is an increasingly recognized biological occurrence. The result of this genetic union is the bifunctional enzyme. This fusion of separate catalytic activities into a single protein, whose gene is regulated by a single promoter, is seen especially where the coordinated expression of the separate activities is highly desirable. Increasingly, a circumstance driving the evolution of the bifunctional enzyme in bacteria is the resistance response of bacteria to antibiotic chemotherapy. We summarize the knowledge on bifunctional antibiotic-resistance enzymes, as possible harbingers of clinically significant resistance mechanisms of the future.200919615931
9288180.9995Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. Bacterial resistances to metals are heterogeneous in both their genetic and biochemical bases. Metal resistance may be chromosomally-, plasmid- or transposon-encoded, and one or more genes may be involved: at the biochemical level at least six different mechanisms are responsible for resistance. Various types of resistance mechanisms can occur singly or in combination and for a particular metal different mechanisms of resistance can occur in the same species. To understand better the diverse responses of bacteria to metal ion challenge we have constructed a qualitative model for the selection of metal resistance in bacteria. How a bacterium becomes resistant to a particular metal depends on the number and location of cellular components sensitive to the specific metal ion. Other important selective factors include the nature of the uptake systems for the metal, the role and interactions of the metal in the normal metabolism of the cell and the availability of plasmid (or transposon) encoded resistance mechanisms. The selection model presented is based on the interaction of these factors and allows predictions to be made about the evolution of metal resistance in bacterial populations. It also allows prediction of the genetic basis and of mechanisms of resistance which are in substantial agreement with those in well-documented populations. The interaction of, and selection for resistance to, toxic substances in addition to metals, such as antibiotics and toxic analogues, involve similar principles to those concerning metals. Potentially, models for selection of resistance to any substance can be derived using this approach.19957766205
9282190.9995Could DNA uptake be a side effect of bacterial adhesion and twitching motility? DNA acquisition promotes the spread of resistance to antibiotics and virulence among bacteria. It is also linked to several natural phenomena including recombination, genome dynamics, adaptation and speciation. Horizontal DNA transfer between bacteria occurs via conjugation, transduction or competence for natural transformation by DNA uptake. Among these, competence is the only mechanism of transformation initiated and entirely controlled by the chromosome of the recipient bacteria. While the molecular mechanisms allowing the uptake of extracellular DNA are increasingly characterized, the function of competence for natural transformation by DNA uptake, the selective advantage maintaining it and the reasons why bacteria take up DNA in the first place are still debated. In this synthesis, I review some of the literature and discuss the four hypotheses on how and why do bacteria take up DNA. I argue that DNA uptake by bacteria is an accidental by-product of bacterial adhesion and twitching motility. Adhesion and motility are generally increased in stressful conditions, which may explain why bacteria increase DNA uptake in these conditions. In addition to its fundamental scientific relevance, the new hypothesis suggested here has significant clinical implications and finds further support from the fact that antibiotics sometimes fail to eliminate the targeted bacterium while inevitably causing stress to others. The widespread misuse of antibiotics may thus not only be selecting for resistant strains, but may also be causing bacteria to take up more DNA with the consequent increase in the chances of acquiring drug resistance and virulence-a scenario in full concordance with the previously reported induction of competence genes by antibiotics in Streptococcus pneumoniae and Legionella pneumophila.201323381940