Molecular characterization and diversity of carbapenemases in Gram-negative bacteria in Libyan hospitals. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
93301.0000Molecular characterization and diversity of carbapenemases in Gram-negative bacteria in Libyan hospitals. INTRODUCTION: Antimicrobial resistance has become a major threat to public health, especially in developing countries, due to the uncontrolled consumption of antibiotics. This study aims to characterize antibiotic resistance genes in different bacteria recovered in different healthcare facilities in Libya. METHODOLOGY: 379 samples were recovered from various sources from different sites. 210 samples were able to grow on culture media. 133 Gram-negative carbapenem-resistant strains were recovered from clinical specimens (n = 64), and hospital environments (n = 69). Antibiotic susceptibility tests were performed to select carbapenem-resistant strains. Colistin resistance was tested by the UMIC method to determine the minimum inhibitory concentration. RT-PCR was conducted to detect the incidence of carbapenemases-encoding genes. RESULTS: Gram-negative bacteria showed a low susceptibility to carbapenems. Molecular investigations indicated that NDM-1 was the most prevalent in Enterobacteriaceae isolated from patients and hospital environment (n = 26, n = 41), followed by blaOXA-48 (n = 16, n = 15) and blaVIM (n = 3) from patients and blaKPC (n = 1) from hospital environment. Concerning A. baumannii, blaOXA-23 was detected in strains isolated from patients (n = 8) and hospital environment (n = 6), followed by blaNDM (n = 9) from patients and one from hospital environment. Carbapenem resistance in P. aeruginosa was encoded by modification in OprD encoding gene, such as IS (ISpa26), polymorphism, and a premature stop codon. CONCLUSIONS: Several carbapenem resistant Gram-negative bacteria were identified by the expression of different carbapenemases and the alteration of OprD.202540720466
93110.9999Epidemiological characteristics and antimicrobial susceptibility among carbapenem-resistant non-fermenting bacteria in Brazil. INTRODUCTION: Non-fermenting Gram-negative bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii are widespread in the environment and are increasingly associated with nosocomial infections. Extensive and indiscriminate use of antibiotics in hospitals has contributed to an increased number of infections caused by these microorganisms, that are resistant to a wide variety of antimicrobials, including β-lactams. This study aimed to isolate and identify carbapenem-resistant Acinetobacter spp. and P. aeruginosa from hospitalized patients, to determine their antimicrobial susceptibility patterns and to screen for blaOXA-23, blaOXA-24, blaOXA-51, blaOXA-58, and blaOXA-143 genes among the isolated bacteria. METHODOLOGY: Antimicrobial resistance patterns were performed using the disk-diffusion method. Genetic markers related to carbapenem resistance were screened by polymerase chain reaction. RESULTS: Carbapenem-resistant Acinetobacter spp. (n = 44) and P. aeruginosa (n = 28) samples were isolated from patients admitted to a tertiary hospital. Polymyxin B was the only effective drug for all isolates. Considering the oxacillinase gene screening, genetic markers were observed only in Acinetobacter isolates. The most frequent genotype observed was blaOXA-23+/blaOXA-51+ (45.5%), followed by blaOXA-51+/blaOXA-143+ (41%). The oxacillinase genes blaOXA-24 and blaOXA-58 were not detected. High mortality rates (> 70%) were observed. CONCLUSIONS: The data suggest the need for rational use of antimicrobials associated with early diagnosis of multidrug-resistant bacteria, especially considering non-fermenting Gram-negative rods, which are widespread in hospitals. The findings of blaoxa-51(-) strains suggest the occurrence and spread of non-A. baumannii species throughout our hospitals. Effective implementation of surveillance programs in hospitals is needed to reduce infectious and resistant intra- and inter-species bacteria.201627367001
93420.9999High Carbapenem Resistance Caused by VIM and NDM Enzymes and OprD Alteration in Nonfermenter Bacteria Isolated from a Libyan Hospital. Acinetobacter baumannii and Pseudomonas aeruginosa are among the most prevalent pathogens causing a wide range of serious infections in hospitalized patients and contaminating intensive care units and inanimate surfaces. The purpose of this study was to investigate the mechanism of carbapenem resistance in clinical and hospital environmental isolates of A. baumannii and P. aeruginosa recovered from a Libyan hospital. From a total of 82 Gram-negative bacteria, 8 isolates of A. baumannii and 3 isolates of P. aeruginosa exhibited resistance to imipenem with minimum inhibitory concentrations ranging from 16 to >32 μg/mL. Five isolates of A. baumannii harbored bla(OXA-23) gene, from which three isolates were collected from patients and two from hospital environment. Only one isolate harbored bla(NDM-1) gene, which was responsible for carbapenem resistance in A. baumannii. The OprD gene seems to be disturbed by an insertion sequence (IS) in two isolates and affected by polymorphism in one isolate. Pulsed-field gel electrophoresis results showed high genetic diversity among carbapenemase producing A. baumannii. This study highlights the dissemination of bla(OXA-23) and bla(NDM-1) genes in a Libyan setting. Therefore, infection prevention and control practices, antimicrobial stewardship initiatives, and antimicrobial resistance surveillance systems should be implemented to prevent the wide spread of antimicrobial resistance.202134029121
93230.9999Emergence of armA and rmtB genes among VIM, NDM, and IMP metallo-β-lactamase-producing multidrug-resistant Gram-negative pathogens. In the recent years, it has been noted that microorganisms with acquired resistance to almost all available potent antibiotics are increasing worldwide. Hence, the use of antibiotics in every clinical setup has to be organized to avoid irrational use of antibiotics. This study was aimed to establish the pattern of antibiotic sensitivity and relevance of antimicrobial resistance in aerobic Gram-negative bacilli. A total of 103 aerobic Gram-negative bacteria namely Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Citrobacter koserii, Proteus spp., and Pseudomonas aeruginosa were collected from tertiary care centers around Chennai. Kirby-Bauer Disk Diffusion test and study for genes of cephalosporin, carbapenem, and aminoglycoside resistance were done. A descriptive analysis of the data on altogether 103 clinical urine isolates was performed. All strains showed susceptibility to colistin. The frequency of genes encoding 16S rRNA methylases armA and rmtB were 7.8% and 6.8%, respectively. Among metallo-β-lactamases, bla(VIM), bla(IMP), and bla(NDM-1) were detected in 6.8%, 3.8%, and 3.8%, respectively. One E. coli strain harbored bla(SIM-1) gene. Cumulative analysis of data suggested that 30% of the strains carried more than one resistance gene. The current research evidenced the increasing frequency of resistance mechanisms in India. Combined approach of antibiotic restriction, effective surveillance, and good infection control practices are essential to overcome antibiotic resistance.201828870092
86040.9999Investigation of Plasmid-Mediated Colistin Resistance Genes (mcr-1-8) in Enterobacterales Isolates. Background The escalating global rise in multidrug-resistant gram-negative bacteria presents an increasingly substantial threat to patient safety. Over the past decade, carbapenem-resistant Enterobacterales (CRE) have emerged as one of the most critical pathogens in hospital-acquired infections, notably within intensive care units. Colistin has become one of the last-resort antimicrobial agents utilized to combat infections caused by CRE. However, the use of colistin has been accompanied by a notable increase in the prevalence of colistin-resistant bacteria. This study aimed to investigate plasmid-mediated colistin resistance genes ranging from mcr-1 to mcr-8 among members of the Enterobacterales order. Materials and methods This prospective study was conducted in the microbiology laboratory of Afyonkarahisar Health Sciences University Health Research and Practice Center between May 1, 2021 and July 31, 2022. A total of 2,646 Enterobacterales isolates were obtained from all culture-positive clinical samples sent from various clinics. Of these, 79 isolates exhibiting resistance to carbapenem antibiotics were included in the study. Among the 79 isolates, the presence of mcr-1 to mcr-8 genes was investigated in 27 isolates that were shown to be resistant to colistin. The identification of bacteria at the species level and antibiotic susceptibility tests were conducted using the VITEK 2 automated system (bioMérieux, USA). Colistin resistance among Enterobacterales strains exhibiting carbapenem resistance was evaluated using the broth microdilution technique (ComASP™ Colistin, Liofilchem, Italy), in accordance with the manufacturer's instructions. Results In our in vitro investigations, the minimum inhibitory concentration (MIC) values for meropenem were determined to be >8 µg/ml, whereas for colistin, the MIC50 value was >16 µg/ml and the MIC90 value was 8 µg/ml. A total of 27 colistin-resistant strains were identified among the 79 carbapenem-resistant Enterobacterales strains analyzed. The most prevalent agent among colistin-resistant strains was Klebsiella pneumoniae (K. pneumoniae), representing 66.7% of the isolates. This was followed by Proteus mirabilis (P. mirabilis) with 29.6% and Escherichia coli (E. coli) with 3.7%. The colistin resistance rate among carbapenem-resistant strains was found to be 34.2%, with colistin MIC values in strains tested by the broth microdilution method ranging from 4 to >16 µg/ml concentrations. In polymerase chain reaction (PCR) studies, the mcr-1 gene region was successfully detected by real-time PCR in the positive control isolate. Nevertheless, none of the gene regions from mcr-1 to mcr-8 were identified in our study investigating the presence of plasmid-mediated genes using a multiplex PCR kit. Conclusion Although our study demonstrated the presence of increased colistin resistance rates in carbapenem-resistant Enterobacterales isolates, it resulted in the failure to detect genes from mcr-1 to mcr-8 by the multiplex PCR method. Therefore, it is concluded that the colistin resistance observed in Enterobacteriaceae isolates in our region is not due to the mcr genes screened, but to different resistance development mechanisms.202438957246
92350.9999Prevalence of Oxacillinase Genes in Clinical Multidrug-Resistant Gram-Negative Bacteria. BACKGROUND: The emergence of OXA-type beta-lactamases has become a significant threat to public healthcare systems and may lead to prolonged hospital stays and increased mortality rates among affected patients. This study aimed to determine the prevalence of oxacillinase resistance (OXA) genes in multidrug-resistant (MDR) Gram-negative bacteria. METHODS: One hundred and six clinical isolates were collected from a stock of Gram-negative isolates and were identified and tested for antibiotic susceptibility and presence of OXA genes using polymerase chain reaction (PCR). RESULTS: The most common detected isolate was Klebsiella pneumoniae (36.8%), followed by Escherichia coli (33%), Pseudomonas aeruginosa (16%), and Acinetobacter baumannii (14.2%). Out of these isolates, 97.4%, 87.2%, 84.6%, and 79.5% were resistant to ampicillin/sulbactam, cefotaxime, ceftazidime, and aztreonam, respectively. PCR results confirmed the presence of one or more OXA genes in 34% of the samples studied. The blaOXA-1 and blaOXA-10 genes were the most highly detected genes, followed by blaOXA-4 and blaOXA-51. The total number of Pseudomonas aeruginosa isolates was confirmed to carry at least one OXA gene (70.6%), whereas Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were confirmed to carry at least one OXA gene (53.3, 28.2, and 22.9%, respectively). There was a significant association (p < 0.05) between the resistance genes and the type of isolate. CONCLUSIONS: Pseudomonas aeruginosa and Acinetobacter baumannii are the most common MDR Gram-negative strains carrying OXA-type beta-lactamase genes. Monitoring of MDR pathogens in Gram-negative bacteria must be continuously undertaken to implement effective measures for infection control and prevention.202540066541
93060.9999Isolation of Carbapenem and Colistin Resistant Gram-Negative Bacteria Colonizing Immunocompromised SARS-CoV-2 Patients Admitted to Some Libyan Hospitals. The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating effect, globally. We describe, for the first time, the occurrence of carbapenem-resistant bacteria colonizing SARS-CoV-2 patients who developed hospital-associated infections with carbapenemase-producing, Gram-negative bacteria at some isolation centers of SARS-CoV-2 in the eastern part of Libya. In total, at first, 109 samples were collected from 43 patients, with the samples being recovered from oral (n = 35), nasal (n = 45), and rectal (n = 29) cavities. Strain identification was performed via matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Antibiotic susceptibility testing was carried out on Mueller-Hinton agar, using the standard disk diffusion method. MIC determination was confirmed via E-TEST and microdilution standard methods. A molecular study was carried out to characterize the carbapenem and colistin resistance in Gram-negative bacterial strains. All of the positive results were confirmed via sequencing. Klebsiella pneumoniae (n = 32), Citrobacter freundii (n = 21), Escherichia coli (n = 7), and Acinetobacter baumannii (n = 21) were the predominant isolated bacteria. Gram-negative isolates were multidrug-resistant and carried different carbapenem resistance-associated genes, including NDM-1 (56/119; 47.05%), OXA-48 (15/119; 12.60%), OXA-23 (19/119; 15.96%), VIM (10/119; 8.40%), and the colistin resistance mobile gene mcr-1 (4/119; 3.36%). The overuse of antimicrobials, particularly carbapenem antibiotics, during the SARS-CoV-2 pandemic has led to the emergence of multidrug-resistant bacteria, mainly K. pneumoniae, A. baumannii, and colistin-resistant E. coli strains. Increased surveillance as well as the rational use of carbapenem antibiotics and, recently, colistin are required to reduce the propagation of multidrug-resistant strains and to optimally maintain the efficacy of these antibiotics. IMPORTANCE In this work, we describe, for the first time, the occurrence of carbapenem-resistant bacteria colonizing COVID-19 patients who developed hospital-associated infections with carbapenemase-producing, Gram-negative bacteria at some isolation centers of COVID-19 in the eastern part of Libya. Our results confirmed that the overuse of antimicrobials, such as carbapenem antibiotics, during the COVID-19 pandemic has led to the emergence of multidrug-resistant bacteria, mainly K. pneumoniae and A. baumannii, as well as colistin resistance.202337042782
93670.9999Occurrence and Diversity of Intra- and Interhospital Drug-Resistant and Biofilm-Forming Acinetobacter baumannii and Pseudomonas aeruginosa. Acinetobacter baumannii and Pseudomonas aeruginosa are the most relevant Gram-negative bacteria associated with hospital and opportunistic infections. This study aimed to evaluate the dynamics of drug-resistant A. baumannii and P. aeruginosa and biofilm formers from two public hospitals in northeastern Brazil. One hundred isolates (35 from A. baumannii and 65 from P. aeruginosa) were identified using the automated Vitek(®)2 Compact method (bioMérieux) and confirmed using the MALDI-TOF (MS) mass spectrometry technique. Molecular experiments were performed by polymerase chain reaction (PCR) to detect the frequency of bla(KPC), bla(IMP), bla(VIM), and bla(SHV) genes. The biofilm formation potential was evaluated using crystal violet in Luria Bertani Miller and trypticase soy broth culture media under the following conditions: at standard concentration, one quarter (25%) of the standard concentration and supplemented with 1% glucose. In addition, the genetic diversity of the isolates was verified by the ERIC-PCR technique. Isolates presented distinct resistance profiles with a high level of beta-lactam resistance. The highest index of genes detected was bla(KPC) (60%), followed by bla(SHV) (39%), bla(VIM) (8%), and bla(IMP) (1%). All the isolates were sensitive to the polymyxins tested and formed biofilms at different intensities. Twelve clones of A. baumannii and eight of P. aeruginosa were identified, of which few were indicative of intra- and interhospital dissemination. This study reveals the dispersion dynamics of these isolates in the hospital environment. The results demonstrate the importance of monitoring programs to combat the spread of these pathogens.202031916896
221980.9999Development and validation of a multiplex TaqMan real-time PCR for rapid detection of genes encoding four types of class D carbapenemase in Acinetobacter baumannii. A multiplex TaqMan real-time PCR to detect carbapenem-hydrolysing class D β-lactamases (bla(OXA-23)-like, bla(OXA-24/40)-like, bla(OXA-51)-like and bla(OXA-58)-like genes) was developed and evaluated for early detection of imipenem (IMP) resistance in clinically significant Acinetobacter baumannii isolates. Well-characterized strains of A. baumannii were used as positive controls and non-Acinetobacter strains were used to assess specificity. Analytical sensitivity was quantified by comparison with the number of bacterial c.f.u. Forty of 46 (87 %) clinically significant and IMP-resistant A. baumannii isolates were positive for the bla(OXA-23)-like gene, and one isolate (2 %) was positive for the bla(OXA-58)-like gene. The bla(OXA-24/40)-like gene was not detected in any of the 46 IMP-resistant strains and the bla(OXA-51)-like gene was identified in both IMP-resistant and non-resistant A. baumannii. All 11 non-Acinetobacter bacteria produced a negative result for each of the four bla(OXA) genes. This assay was able to detect as few as 10 c.f.u. per assay. This real-time PCR method demonstrated rapid detection of OXA-like carbapenem resistance in A. baumannii in comparison with phenotypic susceptibility testing methodology. This method could be adapted to a multiplexed single reaction for rapid detection of genes associated with carbapenem resistance in A. baumannii and potentially other clinically significant multidrug-resistant Gram-negative bacteria.201222878252
92490.9999Screening of Antimicrobial Resistance Genes and Epidemiological Features in Hospital and Community-Associated Carbapenem-Resistant Pseudomonas aeruginosa Infections. INTRODUCTION: Researching carbapenem-resistant isolates enables the identification of carbapenemase-producing bacteria and prevents their spread. METHODS: P. aeruginosa isolates were recovered from Medicine Faculty of Recep Tayyip Erdoğan University and identified by conventional methods and the automated Vitek 2 Compact system. Antimicrobial susceptibility experiments were performed in accordance with CLSI criteria and the automated Vitek 2 Compact system. The PCR method was investigated for the presence of β-lactamase resistance genes. PFGE typing was performed to show clonal relation among samples. RESULTS: Seventy P. aeruginosa isolates were isolated from seventy patients. Of the patients, 67.1% had contact with the health service in the last 90 days and 75.7% of the patients had received antimicrobial therapy in the previous 90 days. Twenty-four isolates were carbapenem resistant, 2 isolates were multidrug-resistant except colistin, and none of the samples had colistin resistance. The gene encoding β-lactamase or metallo-β-lactamase was found in a total of 36 isolates. The bla (VEB) and bla (PER) genes were identified in 1 and 5 isolates alone or 17 and 13 isolates in combination with other resistance genes, respectively. The bla (NDM) was the most detected metallo-β-lactamase encoding gene (n=18), followed by bla (KPC) (n=12). bla (IMP) and bla (VIM) were detected in 5 and 1 isolates, respectively. Also, the association of bla (VEB)-bla (PER) and bla (VEB)-bla (KPC)-bla (NDM) was found to be very high. Much more resistance genes and co-occurrence were detected in hospital-acquired samples than community-acquired samples. No difference was found between the community and hospital-associated isolates according to PFGE results. Simultaneously from 6 patients, other microorganisms were also isolated and 5 of them died. CONCLUSION: The average length of stay (days) was found to be significantly higher in HAI group than CAI group. The death of 5 patients with fewer or no resistance genes showed that the co-existence of other microorganisms in addition to resistance genes was important on death.202133907430
909100.9999First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Herein, we describe a case report of carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae isolates that were identified from the same patient at a Tertiary University Hospital Centre in Portugal. Antimicrobial susceptibility and the molecular characterization of resistance and virulence determinants were performed. PCR screening identified the presence of the resistance genes bla(KPC-3), bla(TEM-1) and bla(SHV-1) in both isolates. The KPC-3 K. pneumoniae isolate belonged to the ST-14 high risk clone and accumulated an uncommon resistance and virulence profile additional to a horizontal dissemination capacity. In conclusion, the molecular screening led to the first identification of the A. baumannii KPC-3 producer in Portugal with a full antimicrobial resistance profile including tigecycline and colistin.201830404152
2123110.9999Phenotypic and genotypic detection of resistance mechanisms in carbapenem-resistant gram-negative bacteria isolated from Egyptian ICU patients with first emergence of NDM-1 producing Klebsiella oxytoca. BACKGROUND AND OBJECTIVES: Carbapenems are considered the last resort to treat several infections, particularly in intensive care units (ICUs). However, increasing carbapenem resistance is problematic because it leads to high morbidity and mortality rates. This study aimed to determine the rate of carbapenem resistance among Gram-negative bacteria collected from patients in ICUs and to identify their resistance mechanisms using phenotypic and genotypic methods. MATERIALS AND METHODS: Antimicrobial susceptibility testing was carried out using the disc diffusion method among 180 Gram-negative bacterial isolates. Productions of carbapenemases, metallo-beta-lactamases (MBLs) and the harboring of carbapenemase-encoding genes, were detected in 40 selected carbapenem-resistant Gram-negative bacteria (CR-GNB). RESULTS: Of 40 selected CR-GNB isolates, 28 (70%), and 20 (50%) isolates were phenotypically positive for carbapenemase, and MBL production, respectively. Furthermore, 22 (55%) showed amplification of one or more of the carbapenemase-encoding genes, including bla (NDM-1), bla (VIM-2), and bla (OXA-48). This study described the first emergence of NDM-1 producing Klebsiella oxytoca in Egyptian ICUs. CONCLUSION: High incidence of CR-GNB detected in the ICUs in our study area may be attributed to the overuse of antibiotics, including carbapenems, and improper application of infection control measures. These findings confirm the need for the application of a strict antibiotic stewardship program.202236721446
2124120.9999Evaluation of Phenotypic and Genotypic Characteristics of Carbapnemases-producing Enterobacteriaceae and Its Prevalence in a Referral Hospital in Tehran City. BACKGROUND & OBJECTIVE: Carbapenem-resistant Enterobacteriaceae is a growing concern worldwide including Iran. The emergence of this pathogen is worrying as carbapenem is one of the 'last-line' antibiotics for treatment of infections caused by multi drug resistant gram- negative bacteria. The main objective of this study was to determine the prevalence of carbapenem-resistant Enterobacteriaceae in a referral hospital in Tehran, Iran. METHODS: In this study, all positive isolates of Enterobacteriaceae recorded in blood, urine, and other body fluids were studied during April 2017 to April 2018 in a referral hospital in Tehran. All cases of resistance to carbapenems were first tested by modified Hodge test. All cases with positive or negative test, after gene extraction, were examined genotypically based on the primers designed for the three Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-β-lactamase (NDM), and OXA-48 genes by conventional PCR method. RESULTS: 108 isolates (13.6%) were resistant to all cephalosporins as well as to imipenem and meropenem. In a genotypic study, including 45 isolates, 13 isolates were positive for OXA-48 gene, 11 isolates for OXA-48 and NDM genes, 11 isolates for OXA-48, NDM and KPC genes, 4 isolates for OXA-48 genes and KPC, 3 isolates for NDM, one isolate for KPC. On the other hand, two isolates were negative for all three genes examined. CONCLUSION: OXA-48 gene was one of the most common genes resistant to carbapenems in Iran. According to studies, the prevalence of antibiotic resistance in Iran is rising dramatically, which reduces the choice of antibiotics to treat severe infections in the future.202032215024
870130.9999Dissemination of multiple carbapenem-resistant clones of Acinetobacter baumannii in the Eastern District of Saudi Arabia. It has previously been shown that carbapenem-resistant Acinetobacter baumannii are frequently detected in Saudi Arabia. The present study aimed to identify the epidemiology and distribution of antibiotic resistance determinants in these bacteria. A total of 83 A. baumannii isolates were typed by pulsed-field gel electrophoresis (PFGE), and screened by PCR for carbapenemase genes and insertion sequences. Antibiotic sensitivity to imipenem, meropenem, tigecycline, and colistin were determined. Eight different PFGE groups were identified, and were spread across multiple hospitals. Many of the PFGE groups contained isolates belonging to World-wide clone 2. Carbapenem resistance or intermediate resistance was detected in 69% of isolates. The bla VIM gene was detected in 94% of isolates, while bla OXA-23-like genes were detected in 58%. The data demonstrate the co-existence and wide distribution of a number of clones of carbapenem-resistant A. baumannii carrying multiple carbapenem-resistance determinants within hospitals in the Eastern Region of Saudi Arabia.201526191044
2307140.9999Phenotypic and molecular characterization of antimicrobial resistance and virulence factors in Pseudomonas aeruginosa clinical isolates from Recife, State of Pernambuco, Brazil. INTRODUCTION: The emergence of carbapenem resistance mechanisms in Pseudomonas aeruginosa has been outstanding due to the wide spectrum of antimicrobial degradation of these bacteria, reducing of therapeutic options. METHODS: Sixty-one clinical strains of P. aeruginosa isolated from five public hospitals in Recife, Pernambuco, Brazil, were examined between 2006 and 2010, aiming of evaluating the profiles of virulence, resistance to antimicrobials, presence of metallo-β-lactamase (MBL) genes, and clonal relationship among isolates. RESULTS: A high percentage of virulence factors (34.4% mucoid colonies; 70.5% pyocyanin; 93.4% gelatinase positives; and 72.1% hemolysin positive) and a high percentage of antimicrobial resistance rates (4.9% pan-resistant and 54.1% multi-drug resistant isolates) were observed. Among the 29 isolates resistant to imipenem and/or ceftazidime, 44.8% (13/29) were MBL producers by phenotypic evaluation, and of these, 46.2% (6/13) were positive for the blaSPM-1 gene. The blaIMP and blaVIM genes were not detected. The molecular typing revealed 21 molecular profiles of which seven were detected in distinct hospitals and periods. Among the six positive blaSPM-1 isolates, three presented the same clonal profile and were from the same hospital, whereas the other three presented different clonal profiles. CONCLUSIONS: These results revealed that P. aeruginosa is able to accumulate different resistance and virulence factors, making the treatment of infections difficult. The identification of blaSPM-1 genes and the dissemination of clones in different hospitals, indicate the need for stricter application of infection control measures in hospitals in Recife, Brazil, aiming at reducing costs and damages caused by P. aeruginosa infections.201223295873
862150.9999Emergence of plasmid-mediated mcr genes from Gram-negative bacteria at the human-animal interface. BACKGROUND: The global emergence of plasmid-mediated colistin resistance (Col-R) conferred by mcr genes in gram-negative rods (GNRs) has jeopardized the last treatment option for multidrug-resistant bacterial infections in humans. This study aimed to assess the emergence of mcr gene-mediated Col-R in GNRs isolated from humans and animals in Pakistan. METHODS: Animal and clinical specimens collected from various sources were prospectively analysed using standard microbiological procedures. Pathogens were identified using the API 20E and API 20NE systems (bioMerieux). Minimum inhibitory concentration (MIC) against colistin was determined using the MIC detection methods, and multiplex polymerase chain reaction (PCR) was used to amplify the mcr-1 to mcr-5 genes. RESULTS: We isolated 126 (88.1%) animal and 17 (11.9%) human Col-R phenotypes, among which there was a significant association (P < 0.01) of Escherichia coli and Proteus mirabilis with animals and of Acinetobacter baumannii with humans. Animal strains exhibited statistically significant (P < 0.05) resistance to co-trimoxazole, chloramphenicol, and moxifloxacin, and the human pathogens exhibited statistically significant (P < 0.05) antibiotic resistance to cephalosporins, carbapenems, and piperacillin-tazobactam. For Col-R strains, MIC(50) values were > 6 µg/mL and > 12 µg/mL for human and animal isolates, respectively. mcr genes were detected in 110 (76.9%) bacterial strains, of which 108 (98.2%) were mcr-1 and 2 (1.8%) were mcr-2. CONCLUSIONS: The detection of a considerable number of mcr-1 and mcr-2 genes in animals is worrisome, as they are now being detected in clinical pathogens. The acquisition of mcr genes by colistin-susceptible bacteria could leave us in a post-antibiotic era.202033292525
929160.9998Prevalence, antibiotic susceptibility and characterization of antibiotic resistant genes among carbapenem-resistant Gram-negative bacilli and yeast in intestinal flora of cancer patients in North Lebanon. The emergence and spread of carbapenem-resistant bacteria are a significant clinical and public health concern. The aim of the study is to determine the prevalence of intestinal carriage of carbapenem-resistant bacteria and yeasts in cancer patients under chemotherapy. 41 stool samples collected from cancer patients in Nini hospital in Tripoli, North Lebanon have been analyzed. After isolating yeasts and carbapenem-resistant bacteria, a biochemical identification and antimicrobial susceptibility profile were determined. The mechanism of enzymatic carbapenem-resistance was detected by searching for carbapenemases by both Hodge test and PCR assays. The association of several mechanisms of resistance was also searched. 46.3% (19/41) of patients were colonized by yeast. Candida glabrata (6/19) was the major species. The prevalence of carbapenem-resistant bacteria was 24.4% (10/41) including Escherichia coli (5/10), Enterobacter cloacae (1/10), Enterobacter aerogenes (1/10) Edwardsiella hoshinae (1/10) Pantoea agglomerans (1/10) and Pseudomonas stutzeri (1/10). PCR and sequencing of the amplified fragments revealed that Pseudomonas stutzeri (1/1) carried VIM gene and Enterobacter aerogenes (1/1) and E. coli (1/5) carried OXA-48 gene. The other Enterobacteriaceae were resistant to carbapenems by mechanisms other than a carbapenemase including hyperproduction of cephalosporinase (4/10), extended spectrum beta-lactamases (1/10) and both cephalosporinase and extended spectrum beta-lactamases (2/10). High prevalence of intestinal carriage of carbapenem-resistant bacteria and yeasts were detected in cancer patients under chemotherapy. In order to prevent the development of endogenous infection and the dissemination of antimicrobial resistance, an implementation of antibiotic stewardship programs and infection control measures is required in hospitals particularly in the department of chemotherapy.201728216021
859170.9998Analysis of mcr family of colistin resistance genes in Gram-negative isolates from a tertiary care hospital in India. AIM: Colistin serves as the drug of last resort for combating numerous multidrug-resistant (MDR) Gram-negative infections. Its efficacy is hampered by the prevalent issue of colistin resistance, which severely limits treatment options for critically ill patients. Identifying resistance genes is crucial for controlling resistance spread, with horizontal gene transfer being the primary mechanism among bacteria. This study aimed to assess the prevalence of plasmid-mediated mcr genes associated with colistin resistance in Gram-negative bacteria, utilizing both genotypic and phenotypic tests. METHODS AND RESULTS: The clinical isolates (n = 913) were obtained from a tertiary care center in Chennai, India. Colistin resistance was seen among Gram-negative isolates. These strains underwent screening for mcr-1, mcr-3, mcr-4, and mcr-5 genes via conventional PCR. Additionally, mcr-positive isolates were confirmed through Sanger sequencing and phenotypic testing. The bacterial isolates predominantly comprised Klebsiella pneumoniae (62.43%), Escherichia coli (19.71%), Pseudomonas aeruginosa (10.73%), and Acinetobacter baumannii (4.81%), along with other species. All isolates exhibited multidrug resistance to three or more antibiotic classes. Colistin resistance, determined via broth microdilution (BMD) using CLSI guidelines, was observed in 13.08% of the isolates studied. Notably, mcr-5 was detected in K. pneumoniae in PCR, despite its absence in Sanger sequencing and phenotypic tests (including the combined-disk test, colistin MIC in the presence of EDTA, and Zeta potential assays). This finding underscores the importance of employing multiple diagnostic approaches to accurately identify colistin resistance mechanisms.202438986507
928180.9998Phenotypic and genotypic characterization of carbapenem encoding genes among carbapenem-resistant Gram-negative bacteria isolated from North Casablanca, Morocco. Carbapenem resistance genes in Gram-negative bacteria (CR-GNB) are a major cause of critical infections and are considered an urgent public health concern. The present study aimed to describe the prevalence of CR-GNB and the dissemination of extended-spectrum beta-lactamase (ESBL) and carbapenemase genes in clinical isolates from Casablanca, Morocco. Firstly, the strains were collected and identified using phenotypic and biochemical methods, then the antibiotic susceptibility was evaluated by the disc diffusion assay to screen isolates resistant to carbapenems. Secondly, three traditional methods, the carbapenem inactivation method, the modified Hodge, and the in-house carba-NP, were performed to predict the carbapenemase production by the included strains. Finally, conventional PCR was utilized to validate and detect the carbapenemase- and ESBL-related genes. Concerning the results, out of the identified 122 strains, 48 were CR isolates, including 30 Klebsiella pneumoniae, 13 Escherichia coli, and 5 Pseudomonas aeruginosa. Furthermore, these strains presented a high level of resistance. Moreover, the prediction of carbapenemase production by the phenotypic methods showed variable results. Also, the PCR analysis revealed a high occurrence of β-lactamase (ESBL and carbapenemase) genes in the included clinical strains, and most strains harbored multiple resistance genes. Our findings suggest that the three existing methods have some limitations, and a validation study is still necessary for the carbapenemase diagnostics.202540857960
858190.9998Minocycline and Omadacycline Resistance Among Carbapenem-Resistant Gram-Negative Bacteria: Antimicrobial Susceptibility Testing and Molecular Characterization. Increasing prevalence of multidrug-resistant infections has rendered the healthcare systems ineffective in managing infectious diseases. Drugs of "last resort" like carbapenems and polymyxins are becoming less effective in the management of antibiotic-resistant Gram-negative bacterial infections, leaving the clinicians with limited choices. Evaluation of the efficacy of other available broad-spectrum antibiotics (belonging to a different class) is warranted as a treatment alternative. The current study was undertaken to evaluate the in vitro antibacterial activity of minocycline and a new drug, omadacycline among carbapenem-resistant Gram-negative bacteria (GNB), isolated from clinical samples (pus and sputum) and to genotypically analyze them. A prospective cross-sectional study was conducted in a 3,200-bedded tertiary care medical center, located in Lucknow in the northern part of India. All the clinical isolates recovered from pus and sputum samples of patients admitted in intensive care units were processed according to the standard protocols. Identification and antibiotic susceptibility testing were performed, and carbapenem-resistant Gram-negative bacteria (CRGNB) showing resistance to minocycline were included in the study. Molecular screening of β-lactamase and tetracycline resistance genes was done by the conventional polymerase chain reaction method. Minimum inhibitory concentration analysis was performed using the broth microdilution technique. Among 700 CRGNB, 15.29% (n = 107/700) were minocycline resistant by disk diffusion method. Genetic analysis demonstrated the presence of tetracycline-resistant genes in about one-third isolates, among which the tet(B) gene was present in 41.12% (n = 44/107). Upon broth microdilution analysis, the overall minimum inhibitory concentration for minocycline was raised, wherein 4.76% (n = 5/107) of our clinical Gram-negative isolates were inhibited at ≤8 mg/L and 15.23% (n = 28/107) were inhibited at ≤16 mg/L. Omadacycline was able to inhibit 13.08% (n = 14/107) of the minocycline-resistant isolates at ≤4 mg/L (susceptible breakpoint for Enterobacterales). Based on the cut-off value proposed, 15.09% (n = 16/107) isolates resistant to minocycline were inhibited by omadacycline. High prevalence of multidrug-resistant bugs entails judicious use of minocycline and omadacycline. The presence of tet genes coexisting with bla(NDM) and bla(OXA) in our bacterial isolates shows that the resistance pattern in Gram-negative bacilli is regularly evolving, and a fully functional surveillance program across the health care system is needed to prevent the emergence and spread of antimicrobial resistance.202540126171