# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9298 | 0 | 1.0000 | Delivering "Chromatic Bacteria" Fluorescent Protein Tags to Proteobacteria Using Conjugation. Recently, we published a large and versatile set of plasmids, the chromatic bacteria toolbox, to deliver eight different fluorescent protein genes and four combinations of antibiotic resistance genes to Gram-negative bacteria. Fluorescent tags are important tools for single-cell microbiology, synthetic community studies, biofilm, and host-microbe interaction studies. Using conjugation helper strain E. coli S17-1 as a donor, we show how plasmid conjugation can be used to deliver broad host range plasmids, Tn5 transposons delivery plasmids, and Tn7 transposon delivery plasmids into species belonging to the Proteobacteria. To that end, donor and recipient bacteria are grown under standard growth conditions before they are mixed and incubated under non-selective conditions. Then, transconjugants or exconjugant recipients are selected on selective media. Mutant colonies are screened using a combination of tools to ensure that the desired plasmids or transposons are present and that the colonies are not containing any surviving donors. Through conjugation, a wide range of Gram-negative bacteria can be modified without prior, often time-consuming, establishment of competent cell and electroporation procedures that need to be adjusted for every individual strain. The here presented protocol is not exclusive for the delivery of Chromatic bacteria plasmids and transposons, but can also be used to deliver other mobilizable plasmids to bacterial recipients. | 2019 | 33654996 |
| 6313 | 1 | 0.9998 | A Novel Nonantibiotic, lgt-Based Selection System for Stable Maintenance of Expression Vectors in Escherichia coli and Vibrio cholerae. Antibiotic selection for the maintenance of expression plasmids is discouraged in the production of recombinant proteins for pharmaceutical or other human uses due to the risks of antibiotic residue contamination of the final products and the release of DNA encoding antibiotic resistance into the environment. We describe the construction of expression plasmids that are instead maintained by complementation of the lgt gene encoding a (pro)lipoprotein glyceryl transferase essential for the biosynthesis of bacterial lipoprotein. Mutations in lgt are lethal in Escherichia coli and other Gram-negative organisms. The lgt gene was deleted from E. coli and complemented by the Vibrio cholerae-derived gene provided in trans on a temperature-sensitive plasmid, allowing cells to grow at 30°C but not at 37°C. A temperature-insensitive expression vector carrying the V. cholerae-derived lgt gene was constructed, whereby transformants were selected by growth at 39°C. The vector was successfully used to express two recombinant proteins, one soluble and one forming insoluble inclusion bodies. Reciprocal construction was done by deleting the lgt gene from V. cholerae and complementing the lesion with the corresponding gene from E. coli The resulting strain was used to produce the secreted recombinant cholera toxin B subunit (CTB) protein, a component of licensed as well as newly developed oral cholera vaccines. Overall, the lgt system described here confers extreme stability on expression plasmids, and this strategy can be easily transferred to other Gram-negative species using the E. coli-derived lgt gene for complementation.IMPORTANCE Many recombinant proteins are produced in bacteria from genes carried on autonomously replicating DNA elements called plasmids. These plasmids are usually inherently unstable and rapidly lost. This can be prevented by using genes encoding antibiotic resistance. Plasmids are thus maintained by allowing only plasmid-containing cells to survive when the bacteria are grown in medium supplemented with antibiotics. In the described antibiotic-free system for the production of recombinant proteins, an essential gene is deleted from the bacterial chromosome and instead provided on a plasmid. The loss of the plasmid becomes lethal for the bacteria. Such plasmids can be used for the expression of recombinant proteins. This broadly applicable system removes the need for antibiotics in recombinant protein production, thereby contributing to reducing the spread of genes encoding antibiotic resistance, reducing the release of antibiotics into the environment, and freeing the final products (often used in pharmaceuticals) from contamination with potentially harmful antibiotic residues. | 2018 | 29222103 |
| 3817 | 2 | 0.9998 | A host/plasmid system that is not dependent on antibiotics and antibiotic resistance genes for stable plasmid maintenance in Escherichia coli. Uneven distribution of plasmid-based expression vectors to daughter cells during bacterial cell division results in an increasing proportion of plasmid free cells during growth. This is a major industrial problem leading to reduction of product yields and increased production costs during large-scale cultivation of vector-carrying bacteria. For this reason, a selection must be provided that kills the plasmid free cells. The most conventional method to obtain this desired selection is to insert some gene for antibiotic resistance in the plasmid and then grow the bacteria in the presence of the corresponding antibiotic. We describe here a host/plasmid Escherichia coli system with a totally stable plasmid that can be maintained without the use of antibiotic selection. The plasmid is maintained, since it carries the small essential gene infA (coding for translation initiation factor 1, IF1) in an E. coli strain that has been deleted for its chromosomal infA gene. As a result only plasmid carrying cells can grow, making the strain totally dependent on the maintenance of the plasmid. A selection based on antibiotics is thus not necessary during cultivation, and no antibiotic-resistance genes are present neither in the final strain nor in the final plasmid. Plasmid-free cells do not accumulate even after an extended period of continuous growth. Growth rates of the control and the plasmid harboring strains are indistinguishable from each other in both LB and defined media. The indicated approach can be used to modify existing production strains and plasmids to the described concept. The infA based plasmid stability system should eliminate industrial cultivation problems caused by the loss of expression vector and use of antibiotics in the cultivation medium. Also environmental problems caused by release of antibiotics and antibiotic resistance genes, that potentially can give horizontal gene transfer between bacterial populations, are eliminated. | 2004 | 15196766 |
| 3824 | 3 | 0.9998 | Screening for novel antibiotic resistance genes. Knowledge of novel antibiotic resistance genes aids in the understanding of how antibiotics function and how bacteria fight them. This knowledge also allows future generations of an antibiotic or antibiotic group to be altered to allow the greatest efficacy. The method described here is very simple in theory. The bacterial strains are screened for antibiotic resistance. Cultures of the strain are grown, and DNA is extracted. A partial digest of the extraction is cloned into Escherichia coli, and the transformants are plated on selective media. Any colony that grows will possess the antibiotic resistance gene and can be further examined. In actual practice, however, this technique can be complicated. The detailed protocol will need to be optimized for each bacterial strain, vector, and cell line chosen. | 2010 | 20830570 |
| 9901 | 4 | 0.9998 | Plasmid interference for curing antibiotic resistance plasmids in vivo. Antibiotic resistance increases the likelihood of death from infection by common pathogens such as Escherichia coli and Klebsiella pneumoniae in developed and developing countries alike. Most important modern antibiotic resistance genes spread between such species on self-transmissible (conjugative) plasmids. These plasmids are traditionally grouped on the basis of replicon incompatibility (Inc), which prevents coexistence of related plasmids in the same cell. These plasmids also use post-segregational killing ('addiction') systems, which poison any bacterial cells that lose the addictive plasmid, to guarantee their own survival. This study demonstrates that plasmid incompatibilities and addiction systems can be exploited to achieve the safe and complete eradication of antibiotic resistance from bacteria in vitro and in the mouse gut. Conjugative 'interference plasmids' were constructed by specifically deleting toxin and antibiotic resistance genes from target plasmids. These interference plasmids efficiently cured the corresponding antibiotic resistant target plasmid from different Enterobacteriaceae in vitro and restored antibiotic susceptibility in vivo to all bacterial populations into which plasmid-mediated resistance had spread. This approach might allow eradication of emergent or established populations of resistance plasmids in individuals at risk of severe sepsis, enabling subsequent use of less toxic and/or more effective antibiotics than would otherwise be possible, if sepsis develops. The generalisability of this approach and its potential applications in bioremediation of animal and environmental microbiomes should now be systematically explored. | 2017 | 28245276 |
| 9277 | 5 | 0.9998 | Plasmid incompatibility: more compatible than previously thought? It is generally accepted that plasmids containing the same origin of replication are incompatible. We have re-examined this concept in terms of the plasmid copy number, by introducing plasmids containing the same origin of replication and different antibiotic resistance genes into bacteria. By selecting for resistance to only one antibiotic, we were able to examine the persistence of plasmids carrying resistances to other antibiotics. We find that plasmids are not rapidly lost, but are able to persist in bacteria for multiple overnight growth cycles, with some dependence upon the nature of the antibiotic selected for. By carrying out the experiments with different origins of replication, we have been able to show that higher copy number leads to longer persistence, but even with low copy plasmids, persistence occurs to a significant degree. This observation holds significance for the field of protein engineering, as the presence of two or more plasmids within bacteria weakens, and confuses, the connection between screened phenotype and genotype, with the potential to wrongly assign specific phenotypes to incorrect genotypes. | 2007 | 17332010 |
| 9275 | 6 | 0.9998 | Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids. Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple antibiotic-resistance genes containing plasmids are stably maintained in both Escherichia coli and Salmonella enterica in the absence of phages, while plasmid-dependent phage PRD1 causes a dramatic reduction in the frequency of antibiotic-resistant bacteria. The loss of antibiotic resistance in cells initially harbouring RP4 plasmid was shown to result from evolution of phage resistance where bacterial cells expelled their plasmid (and hence the suitable receptor for phages). Phages also selected for a low frequency of plasmid-containing, phage-resistant bacteria, presumably as a result of modification of the plasmid-encoded receptor. However, these double-resistant mutants had a growth cost compared with phage-resistant but antibiotic-susceptible mutants and were unable to conjugate. These results suggest that bacteriophages could play a significant role in restricting the spread of plasmid-encoded antibiotic resistance. | 2011 | 21632619 |
| 9829 | 7 | 0.9998 | Promiscuous transfer of drug resistance in gram-negative bacteria. Bacterial conjugation is a major mechanism for the spread of antibiotic-resistance genes in pathogenic organisms. In gram-negative bacteria, broad-host-range drug-resistance plasmids mediate genetic exchange between many unrelated species. The mechanism of conjugation encoded by the broad-host-range IncP plasmid RK2 has been studied in detail. The location and sequence of the transfer origin of RK2 has been determined. Several barriers limit plasmid transfer between unrelated bacteria: interactions at the cell surface may prevent effective mating contact, restriction systems may degrade foreign DNA, or the plasmid may not replicate in the new host. RK2 has evolved specific mechanisms by which it overcomes these barriers; this plasmid can mediate the transfer of resistance to most gram-negative bacteria. | 1984 | 6143782 |
| 6310 | 8 | 0.9998 | Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BACKGROUND: The Red recombinase system of bacteriophage lambda has been used to inactivate chromosomal genes in E. coli K-12 through homologous recombination using linear PCR products. The aim of this study was to induce mutations in the genome of some temperate Shiga toxin encoding bacteriophages. When phage genes are in the prophage state, they behave like chromosomal genes. This enables marker genes, such as antibiotic resistance genes, to be incorporated into the stx gene. Once the phages' lytic cycle is activated, recombinant Shiga toxin converting phages are produced. These phages can transfer the marker genes to the bacteria that they infect and convert. As the Red system's effectiveness decreased when used for our purposes, we had to introduce significant variations to the original method. These modifications included: confirming the stability of the target stx gene increasing the number of cells to be transformed and using a three-step PCR method to produce the amplimer containing the antibiotic resistance gene. RESULTS: Seven phages carrying two different antibiotic resistance genes were derived from phages that are directly involved in the pathogenesis of Shiga toxin-producing strains, using this modified protocol. CONCLUSION: This approach facilitates exploration of the transduction processes and is a valuable tool for studying phage-mediated horizontal gene transfer. | 2006 | 16984631 |
| 261 | 9 | 0.9998 | Suicide vectors for antibiotic marker exchange and rapid generation of multiple knockout mutants by allelic exchange in Gram-negative bacteria. Allelic exchange is frequently used in bacteria to generate knockout mutants in genes of interest, to carry out phenotypic analysis and learn about their function. Frequently, understanding of gene function in complex processes such as pathogenesis requires the generation of multiple mutant strains. In Pseudomonads and other non-Enterobacteriaceae, this is a time-consuming and laborious process based on the use of suicide vectors and allelic exchange of the appropriate mutant version of each gene, disrupted by a different antibiotic marker. This often implies the generation of a series of mutants for each gene, each disrupted by a different antibiotic marker, in order to obtain all possible double or multiple mutant combinations. In this work, we have modified this method by developing a set of 3 plasmid derivatives from the previously described suicide vector for allelic exchange, pKAS32, to make antibiotic marker exchange easier and thus accelerate the entire process. Briefly, the construction of each single gene knockout mutant is carried out by allelic exchange of the chromosomal gene with a mutant allele disrupted by the insertion of a kanamycin resistance cassette. When a double mutant strain is required, antibiotic marker exchange is performed in either one of the single mutants, using any of the three plasmid derivatives that carry the kanamycin resistance gene disrupted by either a chloramphenicol, gentamycin, or streptomycin resistance cassette. The single mutant strain, carrying now an antibiotic resistance marker other than kanamycin, can be used to introduce a second mutation using the original plasmid constructs, to generate a double mutant. The process can be repeated sequentially to generate multiple mutants. We have validated this method by generating strains carrying different combinations of mutations in genes encoding different transcriptional regulators of the Hrp type III secretion system in Pseudomonas syringae. We have also tested the genetic organisation and stability of the resulting mutant strains during growth in laboratory conditions as well as in planta. | 2006 | 16750581 |
| 263 | 10 | 0.9997 | Selection and characterization of a promoter for expression of single-copy recombinant genes in Gram-positive bacteria. BACKGROUND: In the past ten years there has been a growing interest in engineering Gram-positive bacteria for biotechnological applications, including vaccine delivery and production of recombinant proteins. Usually, bacteria are manipulated using plasmid expression vectors. The major limitation of this approach is due to the fact that recombinant plasmids are often lost from the bacterial culture upon removal of antibiotic selection. We have developed a genetic system based on suicide vectors on conjugative transposons allowing stable integration of recombinant DNA into the chromosome of transformable and non-transformable Gram-positive bacteria. RESULTS: The aim of this work was to select a strong chromosomal promoter from Streptococcus gordonii to improve this genetic system making it suitable for expression of single-copy recombinant genes. To achieve this task, a promoterless gene encoding a chloramphenicol acetyltransferase (cat), was randomly integrated into the S. gordonii chromosome and transformants were selected for chloramphenicol resistance. Three out of eighteen chloramphenicol resistant transformants selected exhibited 100% stability of the phenotype and only one of them, GP215, carried the cat gene integrated as a single copy. A DNA fragment of 600 base pairs exhibiting promoter activity was isolated from GP215 and sequenced. The 5' end of its corresponding mRNA was determined by primer extention analysis and the putative -10 and a -35 regions were identified. To study the possibility of using this promoter (PP) for single copy heterologous gene expression, we created transcriptional fusions of PP with genes encoding surface recombinant proteins in a vector capable of integrating into the conjugative transposon Tn916. Surface recombinant proteins whose expression was controlled by the PP promoter were detected in Tn916-containing strains of S. gordonii and Bacillus subtilis after single copy chromosomal integration of the recombinant insertion vectors into the resident Tn916. The surface recombinant protein synthesized under the control of PP was also detected in Enterococcus faecalis after conjugal transfer of a recombinant Tn916 containing the transcriptional fusion. CONCLUSION: We isolated and characterized a S. gordonii chromosomal promoter. We demonstrated that this promoter can be used to direct expression of heterologous genes in different Gram-positive bacteria, when integrated in a single copy into the chromosome. | 2005 | 15651989 |
| 9287 | 11 | 0.9997 | Use of DNA probes and plasmid capture in a search for new interesting environmental genes. Adaptation to a stressed environment leads to organisms bearing DNA, encoding defense mechanisms. These mechanisms can be heavy metal resistance, catabolism of organic xenobiotics or stress reactions. Genes responsible for these mechanisms can be used for monitoring changing environments and therefore it can be important to store such bacteria in a bank. DNA-probing will be presented by the use of DNA fragments (of Alcaligenes eutrophus) coding for heavy metal resistance or xenobiotic degradation. Some strains do not grow on petri dishes and accordingly cannot be isolated from soils. In order to isolate plasmids from such strains, coding for heavy metal resistances or xenobiotic degradations, an exogenous plasmid isolation method was developed. In this method, the endogenous population is conjugated with Pseudomonas or Alcaligenes strains bearing a retrotransfer plasmid like RP4. In that way new plasmids from various sources including non-culturable strains could be obtained. With these methods, a large number of specimens adapted to stressed situations can be isolated or constructed (in the case of the exogenous plasmid isolation method). They form a source of interesting genetic material that can be used to restore polluted areas in natural areas, if necessary with the aid of genetic engineering (in vitro or in vivo techniques). Full knowledge of such bacteria and their resistance mechanisms or degradation pathways, can lead to new constructions able to attack recalcitrant mixtures of different organics and to resist heavy metals. | 1993 | 8272850 |
| 9297 | 12 | 0.9997 | Xer recombination for the automatic deletion of selectable marker genes from plasmids in enteric bacteria. Antibiotic resistance genes are widely used to select bacteria transformed with plasmids and to prevent plasmid loss from cultures, yet antibiotics represent contaminants in the biopharmaceutical manufacturing process, and retaining antibiotic resistance genes in vaccines and biological therapies is discouraged by regulatory agencies. To overcome these limitations, we have developed X-mark™, a novel technology that leverages Xer recombination to generate selectable marker gene-free plasmids for downstream therapeutic applications. Using this technique, X-mark plasmids with antibiotic resistance genes flanked by XerC/D target sites are generated in Escherichia coli cytosol aminopeptidase (E. coli pepA) mutants, which are deficient in Xer recombination on plasmids, and subsequently transformed into enteric bacteria with a functional Xer system. This results in rapid deletion of the resistance gene at high resolution (100%) and stable replication of resolved plasmids for more than 40 generations in the absence of antibiotic selective pressure. This technology is effective in both Escherichia coli and Salmonella enterica bacteria due to the high degree of homology between accessory sequences, including strains that have been developed as oral vaccines for clinical use. X-mark effectively eliminates any regulatory and safety concerns around antibiotic resistance carryover in biopharmaceutical products, such as vaccines and therapeutic proteins. Graphical Abstract. | 2022 | 35601876 |
| 6311 | 13 | 0.9997 | Development of an antibiotic marker-free platform for heterologous protein production in Streptomyces. BACKGROUND: The industrial use of enzymes produced by microorganisms is continuously growing due to the need for sustainable solutions. Nevertheless, many of the plasmids used for recombinant production of proteins in bacteria are based on the use of antibiotic resistance genes as selection markers. The safety concerns and legal requirements surrounding the increased use of antibiotic resistance genes have made the development of new antibiotic-free approaches essential. RESULTS: In this work, a system completely free of antibiotic resistance genes and useful for the production of high yields of proteins in Streptomyces is described. This system is based on the separation of the two components of the yefM/yoeBsl (antitoxin/toxin) operon; the toxin (yoeBsl) gene, responsible for host death, is integrated into the genome and the antitoxin gene (yefMsl), which inactivates the toxin, is located in the expression plasmid. To develop this system, the toxin gene was integrated into the genome of a strain lacking the complete operon, and the antibiotic resistance gene integrated along with the toxin was eliminated by Cre recombinase to generate a final host strain free of any antibiotic resistance marker. In the same way, the antibiotic resistance gene from the final expression plasmid was removed by Dre recombinase. The usefulness of this system was analysed by checking the production of two hydrolases from different Streptomyces. Production of both proteins, with potential industrial use, was high and stable over time after strain storage and after serial subcultures. These results support the robustness and stability of the positive selection system developed. CONCLUSIONS: The total absence of antibiotic resistance genes makes this system a powerful tool for using Streptomyces as a host to produce proteins at the industrial level. This work is the first Streptomyces antibiotic marker-free system to be described. Graphical abstract Antibiotic marker-free platform for protein expression in Streptomyces. The antitoxin gene present in the expression plasmid counteracts the effect of the toxin gene in the genome. In absence of the expression plasmid, the toxin causes cell death ensuring that only plasmid-containing cells persist. | 2017 | 28950904 |
| 260 | 14 | 0.9997 | Improved antibiotic resistance gene cassette for marker exchange mutagenesis in Ralstonia solanacearum and Burkholderia species. Marker exchange mutagenesis is a fundamental approach to understanding gene function at a molecular level in bacteria. New plasmids carrying a kanamycin resistance gene or a trimethoprim resistance gene were constructed to provide antibiotic resistance cassettes for marker exchange mutagenesis in Ralstonia solanacearum and many antibiotic-resistant Burkholderia spp. Insertion sequences present in the flanking sequences of the antibiotic resistance cassette were removed to prevent aberrant gene replacement and polar mutation during mutagenesis in wild-type bacteria. Plasmids provided in this study would be convenient for use in gene cassettes for gene replacement in other Gram-negative bacteria. | 2011 | 21538255 |
| 4168 | 15 | 0.9997 | Various pathways leading to the acquisition of antibiotic resistance by natural transformation. Natural transformation can lead to exchange of DNA between taxonomically diverse bacteria. In the case of chromosomal DNA, homology-based recombination with the recipient genome is usually necessary for heritable stability. In our recent study, we have shown that natural transformation can promote the transfer of transposons, IS elements, and integrons and gene cassettes, largely independent of the genetic relationship between the donor and recipient bacteria. Additional results from our study suggest that natural transformation with species-foreign DNA might result in the uptake of a wide range of DNA fragments; leading to changes in the antimicrobial susceptibility profile and contributing to the generation of antimicrobial resistance in bacteria. | 2012 | 23482877 |
| 9310 | 16 | 0.9997 | Bacterial resistance to antibiotics. Effective antibacterial drugs have been available for nearly 50 years. After the introduction of each new such drug, whether chemically synthesized or a naturally occurring antibiotic, bacterial resistance to it has emerged. The genetic mechanisms by which bacteria have acquired resistance were quite unexpected; a new evolutionary pathways has been revealed. Although some antibiotic resistance has resulted from mutational changes in structural proteins--targets for the drugs' action--most has resulted from the acquisition of new, ready-made genes from an external source--that is, from another bacterium. Vectors of the resistance genes are plasmids--heritable DNA molecules that are transmissible between bacterial cells. Plasmids without antibiotic-resistance genes are common in all kinds of bacteria. Resistance plasmids have resulted from the insertion of new DNA sequences into previously existing plasmids. Thus, the spread of antibiotic resistance is at three levels: bacteria between people or animals; plasmids between bacteria; and transposable genes between plasmids. | 1984 | 6319093 |
| 9305 | 17 | 0.9997 | Control of genes for conjugative transfer of plasmids and other mobile elements. Conjugative transfer is a primary means of spread of mobile genetic elements (plasmids and transposons) between bacteria.It leads to the dissemination and evolution of the genes (such as those conferring resistance to antibiotics) which are carried by the plasmid. Expression of the plasmid genes needed for conjugative transfer is tightly regulated so as to minimise the burden on the host. For plasmids such as those belonging to the IncP group this results in downregulation of the transfer genes once all bacteria have a functional conjugative apparatus. For F-like plasmids (apart from F itself which is a derepressed mutant) tight control results in very few bacteria having a conjugative apparatus. Chance encounters between the rare transfer-proficient bacteria and a potential recipient initiate a cascade of transfer which can continue until all potential recipients have acquired the plasmid. Other systems express their transfer genes in response to specific stimuli. For the pheromone-responsive plasmids of Enterococcus it is small peptide signals from potential recipients which trigger the conjugative transfer genes. For the Ti plasmids of Agrobacterium it is the presence of wounded plants which are susceptible to infection which stimulates T-DNA transfer to plants. Transfer and integration of T-DNA induces production of opines which the plasmid-positive bacteria can utilise. They multiply and when they reach an appropriate density their plasmid transfer system is switched on to allow transfer of the Ti plasmid to other bacteria. Finally some conjugative transfer systems are induced by the antibiotics to which the elements confer resistance. Understanding these control circuits may help to modify management of microbial communities where plasmid transfer is either desirable or undesirable. z 1998 Published by Elsevier Science B.V. | 1998 | 25508777 |
| 9403 | 18 | 0.9997 | Molecular genetics and pathogenesis of Clostridium perfringens. Clostridium perfringens is the causative agent of a number of human diseases, such as gas gangrene and food poisoning, and many diseases of animals. Recently significant advances have been made in the development of C. perfringens genetics. Studies on bacteriocin plasmids and conjugative R plasmids have led to the cloning and analysis of many C. perfringens genes and the construction of shuttle plasmids. The relationship of antibiotic resistance genes to similar genes from other bacteria has been elucidated. A detailed physical map of the C. perfringens chromosome has been prepared, and numerous genes have been located on that map. Reproducible transformation methods for the introduction of plasmids into C. perfringens have been developed, and several genes coding for the production of extracellular toxins and enzymes have been cloned. Now that it is possible to freely move genetic information back and forth between C. perfringens and Escherichia coli, it will be possible to apply modern molecular methods to studies on the pathogenesis of C. perfringens infections. | 1991 | 1779929 |
| 9268 | 19 | 0.9997 | The expression of integron arrays is shaped by the translation rate of cassettes. Integrons are key elements in the rise and spread of multidrug resistance in Gram-negative bacteria. These genetic platforms capture cassettes containing promoterless genes and stockpile them in arrays of variable length. In the current integron model, expression of cassettes is granted by the P(c) promoter in the platform and is assumed to decrease as a function of its distance. Here we explored this model using a large collection of 136 antibiotic resistance cassettes and show the effect of distance is in fact negligible. Instead, cassettes have a strong impact in the expression of downstream genes because their translation rate affects the stability of the whole polycistronic mRNA molecule. Hence, cassettes with reduced translation rates decrease the expression and resistance phenotype of cassettes downstream. Our data puts forward an integron model in which expression is contingent on the translation of cassettes upstream, rather than on the distance to the P(c). | 2024 | 39455579 |