# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9280 | 0 | 1.0000 | Evolutionary Changes after Translational Challenges Imposed by Horizontal Gene Transfer. Genes acquired by horizontal gene transfer (HGT) may provide the recipient organism with potentially new functions, but proper expression level and integration of the transferred genes in the novel environment are not granted. Notably, transferred genes can differ from the receiving genome in codon usage preferences, leading to impaired translation and reduced functionality. Here, we characterize the genomic and proteomic changes undergone during experimental evolution of Escherichia coli after HGT of three synonymous versions, presenting very different codon usage preference, of an antibiotic resistance gene. The experimental evolution was conducted with and without the corresponding antibiotic and the mutational patterns and proteomic profiles after 1,000 generations largely depend on the experimental growth conditions (e.g., mutations in antibiotic off-target genes), and on the synonymous gene version transferred (e.g., mutations in genes responsive to translational stress). The transfer of an exogenous gene extensively modifies the whole proteome, and these proteomic changes are different for the different version of the transferred gene. Additionally, we identified conspicuous changes in global regulators and in intermediate metabolism, confirmed the evolutionary ratchet generated by mutations in DNA repair genes and highlighted the plasticity of bacterial genomes accumulating large and occasionally transient duplications. Our results support a central role of HGT in fuelling evolution as a powerful mechanism promoting rapid, often dramatic genotypic and phenotypic changes. The profound reshaping of the pre-existing geno/phenotype allows the recipient bacteria to explore new ways of functioning, far beyond the mere acquisition of a novel function. | 2019 | 30753446 |
| 9284 | 1 | 0.9998 | The population and evolutionary dynamics of homologous gene recombination in bacterial populations. In bacteria, recombination is a rare event, not a part of the reproductive process. Nevertheless, recombination -- broadly defined to include the acquisition of genes from external sources, i.e., horizontal gene transfer (HGT) -- plays a central role as a source of variation for adaptive evolution in many species of bacteria. Much of niche expansion, resistance to antibiotics and other environmental stresses, virulence, and other characteristics that make bacteria interesting and problematic, is achieved through the expression of genes and genetic elements obtained from other populations of bacteria of the same and different species, as well as from eukaryotes and archaea. While recombination of homologous genes among members of the same species has played a central role in the development of the genetics and molecular biology of bacteria, the contribution of homologous gene recombination (HGR) to bacterial evolution is not at all clear. Also, not so clear are the selective pressures responsible for the evolution and maintenance of transformation, the only bacteria-encoded form of HGR. Using a semi-stochastic simulation of mutation, recombination, and selection within bacterial populations and competition between populations, we explore (1) the contribution of HGR to the rate of adaptive evolution in these populations and (2) the conditions under which HGR will provide a bacterial population a selective advantage over non-recombining or more slowly recombining populations. The results of our simulation indicate that, under broad conditions: (1) HGR occurring at rates in the range anticipated for bacteria like Streptococcus pneumoniae, Escherichia coli, Haemophilus influenzae, and Bacillus subtilis will accelerate the rate at which a population adapts to environmental conditions; (2) once established in a population, selection for this capacity to increase rates of adaptive evolution can maintain bacteria-encoded mechanisms of recombination and prevent invasion of non-recombining populations, even when recombination engenders a modest fitness cost; and (3) because of the density- and frequency-dependent nature of HGR in bacteria, this capacity to increase rates of adaptive evolution is not sufficient as a selective force to provide a recombining population a selective advantage when it is rare. Under realistic conditions, homologous gene recombination will increase the rate of adaptive evolution in bacterial populations and, once established, selection for higher rates of evolution will promote the maintenance of bacteria-encoded mechanisms for HGR. On the other hand, increasing rates of adaptive evolution by HGR is unlikely to be the sole or even a dominant selective pressure responsible for the original evolution of transformation. | 2009 | 19680442 |
| 9282 | 2 | 0.9998 | Could DNA uptake be a side effect of bacterial adhesion and twitching motility? DNA acquisition promotes the spread of resistance to antibiotics and virulence among bacteria. It is also linked to several natural phenomena including recombination, genome dynamics, adaptation and speciation. Horizontal DNA transfer between bacteria occurs via conjugation, transduction or competence for natural transformation by DNA uptake. Among these, competence is the only mechanism of transformation initiated and entirely controlled by the chromosome of the recipient bacteria. While the molecular mechanisms allowing the uptake of extracellular DNA are increasingly characterized, the function of competence for natural transformation by DNA uptake, the selective advantage maintaining it and the reasons why bacteria take up DNA in the first place are still debated. In this synthesis, I review some of the literature and discuss the four hypotheses on how and why do bacteria take up DNA. I argue that DNA uptake by bacteria is an accidental by-product of bacterial adhesion and twitching motility. Adhesion and motility are generally increased in stressful conditions, which may explain why bacteria increase DNA uptake in these conditions. In addition to its fundamental scientific relevance, the new hypothesis suggested here has significant clinical implications and finds further support from the fact that antibiotics sometimes fail to eliminate the targeted bacterium while inevitably causing stress to others. The widespread misuse of antibiotics may thus not only be selecting for resistant strains, but may also be causing bacteria to take up more DNA with the consequent increase in the chances of acquiring drug resistance and virulence-a scenario in full concordance with the previously reported induction of competence genes by antibiotics in Streptococcus pneumoniae and Legionella pneumophila. | 2013 | 23381940 |
| 9615 | 3 | 0.9998 | Persistence and resistance as complementary bacterial adaptations to antibiotics. Bacterial persistence represents a simple of phenotypic heterogeneity, whereby a proportion of cells in an isogenic bacterial population can survive exposure to lethal stresses such as antibiotics. In contrast, genetically based antibiotic resistance allows for continued growth in the presence of antibiotics. It is unclear, however, whether resistance and persistence are complementary or alternative evolutionary adaptations to antibiotics. Here, we investigate the co-evolution of resistance and persistence across the genus Pseudomonas using comparative methods that correct for phylogenetic nonindependence. We find that strains of Pseudomonas vary extensively in both their intrinsic resistance to antibiotics (ciprofloxacin and rifampicin) and persistence following exposure to these antibiotics. Crucially, we find that persistence correlates positively to antibiotic resistance across strains. However, we find that different genes control resistance and persistence implying that they are independent traits. Specifically, we find that the number of type II toxin-antitoxin systems (TAs) in the genome of a strain is correlated to persistence, but not resistance. Our study shows that persistence and antibiotic resistance are complementary, but independent, evolutionary adaptations to stress and it highlights the key role played by TAs in the evolution of persistence. | 2016 | 26999656 |
| 9296 | 4 | 0.9998 | Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. Living organisms are defined by the genes they possess. Control of expression of this gene set, both temporally and in response to the environment, determines whether an organism can survive changing conditions and can compete for the resources it needs to reproduce. Bacteria are no exception; changes to the genome will, in general, threaten the ability of the microbe to survive, but acquisition of new genes may enhance its chances of survival by allowing growth in a previously hostile environment. For example, acquisition of an antibiotic resistance gene by a bacterial pathogen can permit it to thrive in the presence of an antibiotic that would otherwise kill it; this may compromise clinical treatments. Many forces, chemical and genetic, can alter the genetic content of DNA by locally changing its nucleotide sequence. Notable for genetic change in bacteria are transposable elements and site-specific recombination systems such as integrons. Many of the former can mobilize genes from one replicon to another, including chromosome-plasmid translocation, thus establishing conditions for interspecies gene transfer. Balancing this, transposition activity can result in loss or rearrangement of DNA sequences. This chapter discusses bacterial DNA transfer systems, transposable elements and integrons, and the contributions each makes towards the evolution of bacterial genomes, particularly in relation to bacterial pathogenesis. It highlights the variety of phylogenetically distinct transposable elements, the variety of transposition mechanisms, and some of the implications of rearranging DNA, and addresses the effects of genetic change on the fitness of the microbe. | 2004 | 15148416 |
| 9306 | 5 | 0.9998 | Establishment Genes Present on pLS20 Family of Conjugative Plasmids Are Regulated in Two Different Ways. During conjugation, a conjugative DNA element is transferred from a donor to a recipient cell via a connecting channel. Conjugation has clinical relevance because it is the major route for spreading antibiotic resistance and virulence genes. The conjugation process can be divided into different steps. The initial steps carried out in the donor cell culminate in the transfer of a single DNA strand (ssDNA) of the conjugative element into the recipient cell. However, stable settlement of the conjugative element in the new host requires at least two additional events: conversion of the transferred ssDNA into double-stranded DNA and inhibition of the hosts' defence mechanisms to prevent degradation of the transferred DNA. The genes involved in this late step are historically referred to as establishment genes. The defence mechanisms of the host must be inactivated rapidly and-importantly-transiently, because prolonged inactivation would make the cell vulnerable to the attack of other foreign DNA, such as those of phages. Therefore, expression of the establishment genes in the recipient cell has to be rapid but transient. Here, we studied regulation of the establishment genes present on the four clades of the pLS20 family of conjugative plasmids harboured by different Bacillus species. Evidence is presented that two fundamentally different mechanisms regulate the establishment genes present on these plasmids. Identification of the regulatory sequences were critical in revealing the establishment regulons. Remarkably, whereas the conjugation genes involved in the early steps of the conjugation process are conserved and are located in a single large operon, the establishment genes are highly variable and organised in multiple operons. We propose that the mosaical distribution of establishment genes in multiple operons is directly related to the variability of defence genes encoded by the host bacterial chromosomes. | 2021 | 34946067 |
| 9612 | 6 | 0.9998 | Using experimental evolution to explore natural patterns between bacterial motility and resistance to bacteriophages. Resistance of bacteria to phages may be gained by alteration of surface proteins to which phages bind, a mechanism that is likely to be costly as these molecules typically have critical functions such as movement or nutrient uptake. To address this potential trade-off, we combine a systematic study of natural bacteria and phage populations with an experimental evolution approach. We compare motility, growth rate and susceptibility to local phages for 80 bacteria isolated from horse chestnut leaves and, contrary to expectation, find no negative association between resistance to phages and bacterial motility or growth rate. However, because correlational patterns (and their absence) are open to numerous interpretations, we test for any causal association between resistance to phages and bacterial motility using experimental evolution of a subset of bacteria in both the presence and absence of naturally associated phages. Again, we find no clear link between the acquisition of resistance and bacterial motility, suggesting that for these natural bacterial populations, phage-mediated selection is unlikely to shape bacterial motility, a key fitness trait for many bacteria in the phyllosphere. The agreement between the observed natural pattern and the experimental evolution results presented here demonstrates the power of this combined approach for testing evolutionary trade-offs. | 2011 | 21509046 |
| 9342 | 7 | 0.9998 | Natural transformation in Gram-negative bacteria thriving in extreme environments: from genes and genomes to proteins, structures and regulation. Extremophilic prokaryotes live under harsh environmental conditions which require far-reaching cellular adaptations. The acquisition of novel genetic information via natural transformation plays an important role in bacterial adaptation. This mode of DNA transfer permits the transfer of genetic information between microorganisms of distant evolutionary lineages and even between members of different domains. This phenomenon, known as horizontal gene transfer (HGT), significantly contributes to genome plasticity over evolutionary history and is a driving force for the spread of fitness-enhancing functions including virulence genes and antibiotic resistances. In particular, HGT has played an important role for adaptation of bacteria to extreme environments. Here, we present a survey of the natural transformation systems in bacteria that live under extreme conditions: the thermophile Thermus thermophilus and two desiccation-resistant members of the genus Acinetobacter such as Acinetobacter baylyi and Acinetobacter baumannii. The latter is an opportunistic pathogen and has become a world-wide threat in health-care institutions. We highlight conserved and unique features of the DNA transporter in Thermus and Acinetobacter and present tentative models of both systems. The structure and function of both DNA transporter are described and the mechanism of DNA uptake is discussed. | 2021 | 34542714 |
| 9266 | 8 | 0.9998 | Integron activity accelerates the evolution of antibiotic resistance. Mobile integrons are widespread genetic platforms that allow bacteria to modulate the expression of antibiotic resistance cassettes by shuffling their position from a common promoter. Antibiotic stress induces the expression of an integrase that excises and integrates cassettes, and this unique recombination and expression system is thought to allow bacteria to 'evolve on demand' in response to antibiotic pressure. To test this hypothesis, we inserted a custom three-cassette integron into Pseudomonas aeruginosa and used experimental evolution to measure the impact of integrase activity on adaptation to gentamicin. Crucially, integrase activity accelerated evolution by increasing the expression of a gentamicin resistance cassette through duplications and by eliminating redundant cassettes. Importantly, we found no evidence of deleterious off-target effects of integrase activity. In summary, integrons accelerate resistance evolution by rapidly generating combinatorial variation in cassette composition while maintaining genomic integrity. | 2021 | 33634790 |
| 8923 | 9 | 0.9998 | The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli. Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions. Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100 genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutrient stress genes have also been shown to be important for the growth of various bacterial pathogens in vivo To better understand the genetic network that underpins nutrient stress in E. coli, we performed a genome-scale cross of strains harboring deletions in some 82 nutrient stress genes with the entire E. coli gene deletion collection (Keio) to create 315,400 double deletion mutants. An analysis of the growth of the resulting strains on rich microbiological media revealed an average of 23 synthetic sick or lethal genetic interactions for each nutrient stress gene, suggesting that the network defining nutrient stress is surprisingly complex. A vast majority of these interactions involved genes of unknown function or genes of unrelated pathways. The most profound synthetic lethal interactions were between nutrient acquisition and biosynthesis. Further, the interaction map reveals remarkable metabolic robustness in E. coli through pathway redundancies. In all, the genetic interaction network provides a powerful tool to mine and identify missing links in nutrient synthesis and to further characterize genes of unknown function in E. coli Moreover, understanding of bacterial growth under nutrient stress could aid in the development of novel antibiotic discovery platforms. IMPORTANCE: With the rise of antibiotic drug resistance, there is an urgent need for new antibacterial drugs. Here, we studied a group of genes that are essential for the growth of Escherichia coli under nutrient limitation, culture conditions that arguably better represent nutrient availability during an infection than rich microbiological media. Indeed, many such nutrient stress genes are essential for infection in a variety of pathogens. Thus, the respective proteins represent a pool of potential new targets for antibacterial drugs that have been largely unexplored. We have created all possible double deletion mutants through a genetic cross of nutrient stress genes and the E. coli deletion collection. An analysis of the growth of the resulting clones on rich media revealed a robust, dense, and complex network for nutrient acquisition and biosynthesis. Importantly, our data reveal new genetic connections to guide innovative approaches for the development of new antibacterial compounds targeting bacteria under nutrient stress. | 2016 | 27879333 |
| 9623 | 10 | 0.9998 | Prokaryotic toxin-antitoxin systems--the role in bacterial physiology and application in molecular biology. Bacteria have developed multiple complex mechanisms ensuring an adequate response to environmental changes. In this context, bacterial cell division and growth are subject to strict control to ensure metabolic balance and cell survival. A plethora of studies cast light on toxin-antitoxin (TA) systems as metabolism regulators acting in response to environmental stress conditions. Many of those studies suggest direct relations between the TA systems and the pathogenic potential or antibiotic resistance of relevant bacteria. Other studies point out that TA systems play a significant role in ensuring stability of mobile genetic material. The evolutionary origin and relations between various TA systems are still a subject of a debate. The impact of toxin-antitoxin systems on bacteria physiology prompted their application in molecular biology as tools allowing cloning of some hard-to-maintain genes, plasmid maintenance and production of recombinant proteins. | 2011 | 21394325 |
| 9312 | 11 | 0.9997 | Why There Are No Essential Genes on Plasmids. Mobile genetic elements such as plasmids are important for the evolution of prokaryotes. It has been suggested that there are differences between functions coded for by mobile genes and those in the "core" genome and that these differences can be seen between plasmids and chromosomes. In particular, it has been suggested that essential genes, such as those involved in the formation of structural proteins or in basic metabolic functions, are rarely located on plasmids. We model competition between genotypically varying bacteria within a single population to investigate whether selection favors a chromosomal location for essential genes. We find that in general, chromosomal locations for essential genes are indeed favored. This is because the inheritance of chromosomes is more stable than that for plasmids. We define the "degradation" rate as the rate at which chance genetic processes, for example, mutation, deletion, or translocation, render essential genes nonfunctioning. The only way in which plasmids can be a location for functioning essential genes is if chromosomal genes degrade faster than plasmid genes. If the two degradation rates are equal, or if plasmid genes degrade faster than chromosomal genes, functioning essential genes will be found only on chromosomes. | 2015 | 25540453 |
| 9605 | 12 | 0.9997 | Gene Expression Variability Underlies Adaptive Resistance in Phenotypically Heterogeneous Bacterial Populations. The root cause of the antibiotic resistance crisis is the ability of bacteria to evolve resistance to a multitude of antibiotics and other environmental toxins. The regulation of adaptation is difficult to pinpoint due to extensive phenotypic heterogeneity arising during evolution. Here, we investigate the mechanisms underlying general bacterial adaptation by evolving wild-type Escherichia coli populations to dissimilar chemical toxins. We demonstrate the presence of extensive inter- and intrapopulation phenotypic heterogeneity across adapted populations in multiple traits, including minimum inhibitory concentration, growth rate, and lag time. To search for a common response across the heterogeneous adapted populations, we measured gene expression in three stress-response networks: the mar regulon, the general stress response, and the SOS response. While few genes were differentially expressed, clustering revealed that interpopulation gene expression variability in adapted populations was distinct from that of unadapted populations. Notably, we observed both increases and decreases in gene expression variability upon adaptation. Sequencing select genes revealed that the observed gene expression trends are not necessarily attributable to genetic changes. To further explore the connection between gene expression variability and adaptation, we propagated single-gene knockout and CRISPR (clustered regularly interspaced short palindromic repeats) interference strains and quantified impact on adaptation to antibiotics. We identified significant correlations that suggest genes with low expression variability have greater impact on adaptation. This study provides evidence that gene expression variability can be used as an indicator of bacterial adaptive resistance, even in the face of the pervasive phenotypic heterogeneity underlying adaptation. | 2015 | 27623410 |
| 9267 | 13 | 0.9997 | Off-Target Integron Activity Leads to Rapid Plasmid Compensatory Evolution in Response to Antibiotic Selection Pressure. Integrons are mobile genetic elements that have played an important role in the dissemination of antibiotic resistance. Under stress, the integron can generate combinatorial variation in resistance cassette expression by cassette reshuffling, accelerating the evolution of resistance. However, the flexibility of the integron integrase site recognition motif hints at potential off-target effects of the integrase on the rest of the genome that may have important evolutionary consequences. Here, we test this hypothesis by selecting for increased-piperacillin-resistance populations of Pseudomonas aeruginosa with a mobile integron containing a difficult-to-mobilize β-lactamase cassette to minimize the potential for adaptive cassette reshuffling. We found that integron activity can decrease the overall survival rate but also improve the fitness of the surviving populations. Off-target inversions mediated by the integron accelerated plasmid adaptation by disrupting costly conjugative genes otherwise mutated in control populations lacking a functional integrase. Plasmids containing integron-mediated inversions were associated with lower plasmid costs and higher stability than plasmids carrying mutations albeit at the cost of a reduced conjugative ability. These findings highlight the potential for integrons to create structural variation that can drive bacterial evolution, and they provide an interesting example showing how antibiotic pressure can drive the loss of conjugative genes. IMPORTANCE Tackling the public health challenge created by antibiotic resistance requires understanding the mechanisms driving its evolution. Mobile integrons are widespread genetic platforms heavily involved in the spread of antibiotic resistance. Through the action of the integrase enzyme, integrons allow bacteria to capture, excise, and shuffle antibiotic resistance gene cassettes. This integrase enzyme is characterized by its ability to recognize a wide range of recombination sites, which allows it to easily capture diverse resistance cassettes but which may also lead to off-target reactions with the rest of the genome. Using experimental evolution, we tested the off-target impact of integron activity. We found that integrons increased the fitness of the surviving bacteria through extensive genomic rearrangements of the plasmids carrying the integrons, reducing their ability to spread horizontally. These results show that integrons not only accelerate resistance evolution but also can generate extensive structural variation, driving bacterial evolution beyond antibiotic resistance. | 2023 | 36840554 |
| 9621 | 14 | 0.9997 | Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. About half of all bacteria carry genes for CRISPR-Cas adaptive immune systems(1), which provide immunological memory by inserting short DNA sequences from phage and other parasitic DNA elements into CRISPR loci on the host genome(2). Whereas CRISPR loci evolve rapidly in natural environments(3,4), bacterial species typically evolve phage resistance by the mutation or loss of phage receptors under laboratory conditions(5,6). Here we report how this discrepancy may in part be explained by differences in the biotic complexity of in vitro and natural environments(7,8). Specifically, by using the opportunistic pathogen Pseudomonas aeruginosa and its phage DMS3vir, we show that coexistence with other human pathogens amplifies the fitness trade-offs associated with the mutation of phage receptors, and therefore tips the balance in favour of the evolution of CRISPR-based resistance. We also demonstrate that this has important knock-on effects for the virulence of P. aeruginosa, which became attenuated only if the bacteria evolved surface-based resistance. Our data reveal that the biotic complexity of microbial communities in natural environments is an important driver of the evolution of CRISPR-Cas adaptive immunity, with key implications for bacterial fitness and virulence. | 2019 | 31645729 |
| 9283 | 15 | 0.9997 | Vibrio cholerae: Measuring Natural Transformation Frequency. Many bacteria can become naturally competent to take up extracellular DNA across their outer and inner membranes by a dedicated competence apparatus. Whereas some studies show that the DNA delivered to the cytoplasm may be used for genome repair or for nutrition, it can also be recombined onto the chromosome by homologous recombination: a process called natural transformation. Along with conjugation and transduction, natural transformation represents a mechanism for horizontal transfer of genetic material, e.g., antibiotic resistance genes, which can confer new beneficial characteristics onto the recipient bacteria. Described here are protocols for quantifying the frequency of transformation for the human pathogen Vibrio cholerae, one of several Vibrio species recently shown to be capable of natural transformation. | 2014 | 25367272 |
| 9293 | 16 | 0.9997 | Plasmid-free cheater cells commonly evolve during laboratory growth. It has been nearly a century since the isolation and use of penicillin, heralding the discovery of a wide range of different antibiotics. In addition to clinical applications, such antibiotics have been essential laboratory tools, allowing for selection and maintenance of laboratory plasmids that encode cognate resistance genes. However, antibiotic resistance mechanisms can additionally function as public goods. For example, extracellular beta-lactamases produced by resistant cells that subsequently degrade penicillin and related antibiotics allow neighboring plasmid-free susceptible bacteria to survive antibiotic treatment. How such cooperative mechanisms impact selection of plasmids during experiments in laboratory conditions is poorly understood. Here, we show in multiple bacterial species that the use of plasmid-encoded beta-lactamases leads to significant curing of plasmids in surface-grown bacteria. Furthermore, such curing was also evident for aminoglycoside phosphotransferase and tetracycline antiporter resistance mechanisms. Alternatively, antibiotic selection in liquid growth led to more robust plasmid maintenance, although plasmid loss was still observed. The net outcome of such plasmid loss is the generation of a heterogenous population of plasmid-containing and plasmid-free cells, leading to experimental confounds that are not widely appreciated.IMPORTANCEPlasmids are routinely used in microbiology as readouts of cell biology or tools to manipulate cell function. Central to these studies is the assumption that all cells in an experiment contain the plasmid. Plasmid maintenance in a host cell typically depends on a plasmid-encoded antibiotic resistance marker, which provides a selective advantage when the plasmid-containing cell is grown in the presence of antibiotic. Here, we find that growth of plasmid-containing bacteria on a surface and to a lesser extent in liquid culture in the presence of three distinct antibiotic families leads to the evolution of a significant number of plasmid-free cells, which rely on the resistance mechanisms of the plasmid-containing cells. This process generates a heterogenous population of plasmid-free and plasmid-containing bacteria, an outcome which could confound further experimentation. | 2024 | 38446071 |
| 9269 | 17 | 0.9997 | The Stringent Response Promotes Antibiotic Resistance Dissemination by Regulating Integron Integrase Expression in Biofilms. Class 1 integrons are genetic systems that enable bacteria to capture and express gene cassettes. These integrons, when isolated in clinical contexts, most often carry antibiotic resistance gene cassettes. They play a major role in the dissemination of antibiotic resistance among Gram-negative bacteria. The key element of integrons is the integrase, which allows gene cassettes to be acquired and shuffled. Planktonic culture experiments have shown that integrase expression is regulated by the bacterial SOS response. In natural settings, however, bacteria generally live in biofilms, which are characterized by strong antibiotic resilience and by increased expression of stress-related genes. Here, we report that under biofilm conditions, the stringent response, which is induced upon starvation, (i) increases basal integrase and SOS regulon gene expression via induction of the SOS response and (ii) exerts biofilm-specific regulation of the integrase via the Lon protease. This indicates that biofilm environments favor integron-mediated acquisition of antibiotic resistance and other adaptive functions encoded by gene cassettes. IMPORTANCE: Multidrug-resistant bacteria are becoming a worldwide health problem. Integrons are bacterial genetic platforms that allow the bacteria to capture and express gene cassettes. In clinical settings, integrons play a major role in the dissemination of antibiotic resistance gene cassettes among Gram-negative bacteria. Cassette capture is catalyzed by the integron integrase, whose expression is induced by DNA damage and controlled by the bacterial SOS response in laboratory planktonic cultures. In natural settings, bacteria usually grow in heterogeneous environments known as biofilms, which have very different conditions than planktonic cultures. Integrase regulation has not been investigated in biofilms. Our results showed that in addition to the SOS response, the stringent response (induced upon starvation) is specifically involved in the regulation of class 1 integron integrases in biofilms. This study shows that biofilms are favorable environments for integron-mediated acquisition/exchange of antibiotic resistance genes by bacteria and for the emergence of multidrug-resistant bacteria. | 2016 | 27531906 |
| 9607 | 18 | 0.9997 | Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution. Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress response processes known as adaptive resistance. Adaptive resistance fosters transient tolerance increases and the emergence of mutations conferring heritable drug resistance. In order to extend the applicable lifetime of new antibiotics, we must seek to hinder the occurrence of bacterial adaptive resistance; however, the regulation of adaptation is difficult to identify due to immense heterogeneity emerging during evolution. This study specifically seeks to generate heterogeneity by adapting bacteria to different stresses and then examines gene expression trends across the disparate populations in order to pinpoint key genes and pathways associated with adaptive resistance. The targets identified here may eventually inform strategies for impeding adaptive resistance and prolonging the effectiveness of antibiotic treatment. | 2017 | 28217741 |
| 8995 | 19 | 0.9997 | Interaction between mutations and regulation of gene expression during development of de novo antibiotic resistance. Bacteria can become resistant not only by horizontal gene transfer or other forms of exchange of genetic information but also by de novo by adaptation at the gene expression level and through DNA mutations. The interrelationship between changes in gene expression and DNA mutations during acquisition of resistance is not well documented. In addition, it is not known whether the DNA mutations leading to resistance always occur in the same order and whether the final result is always identical. The expression of >4,000 genes in Escherichia coli was compared upon adaptation to amoxicillin, tetracycline, and enrofloxacin. During adaptation, known resistance genes were sequenced for mutations that cause resistance. The order of mutations varied within two sets of strains adapted in parallel to amoxicillin and enrofloxacin, respectively, whereas the buildup of resistance was very similar. No specific mutations were related to the rather modest increase in tetracycline resistance. Ribosome-sensed induction and efflux pump activation initially protected the cell through induction of expression and allowed it to survive low levels of antibiotics. Subsequently, mutations were promoted by the stress-induced SOS response that stimulated modulation of genetic instability, and these mutations resulted in resistance to even higher antibiotic concentrations. The initial adaptation at the expression level enabled a subsequent trial and error search for the optimal mutations. The quantitative adjustment of cellular processes at different levels accelerated the acquisition of antibiotic resistance. | 2014 | 24841263 |