Plasmid carriage can limit bacteria-phage coevolution. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
925701.0000Plasmid carriage can limit bacteria-phage coevolution. Coevolution with bacteriophages is a major selective force shaping bacterial populations and communities. A variety of both environmental and genetic factors has been shown to influence the mode and tempo of bacteria-phage coevolution. Here, we test the effects that carriage of a large conjugative plasmid, pQBR103, had on antagonistic coevolution between the bacterium Pseudomonas fluorescens and its phage, SBW25ϕ2. Plasmid carriage limited bacteria-phage coevolution; bacteria evolved lower phage-resistance and phages evolved lower infectivity in plasmid-carrying compared with plasmid-free populations. These differences were not explained by effects of plasmid carriage on the costs of phage resistance mutations. Surprisingly, in the presence of phages, plasmid carriage resulted in the evolution of high frequencies of mucoid bacterial colonies. Mucoidy can provide weak partial resistance against SBW25ϕ2, which may have limited selection for qualitative resistance mutations in our experiments. Taken together, our results suggest that plasmids can have evolutionary consequences for bacteria that go beyond the direct phenotypic effects of their accessory gene cargo.201526268992
927410.9998Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. Although plasmids can provide beneficial functions to their host bacteria, they might confer a physiological or energetic cost. This study examines how natural selection may reduce the cost of carrying conjugative plasmids with drug-resistance markers in the absence of antibiotic selection. We studied two plasmids, R1 and RP4, both of which carry multiple drug resistance genes and were shown to impose an initial fitness cost on Escherichia coli. To determine if and how the cost could be reduced, we subjected plasmid-containing bacteria to 1100 generations of evolution in batch cultures. Analysis of the evolved populations revealed that plasmid loss never occurred, but that the cost was reduced through genetic changes in both the plasmids and the bacteria. Changes in the plasmids were inferred by the demonstration that evolved plasmids no longer imposed a cost on their hosts when transferred to a plasmid-free clone of the ancestral E. coli. Changes in the bacteria were shown by the lowered cost when the ancestral plasmids were introduced into evolved bacteria that had been cured of their (evolved) plasmids. Additionally, changes in the bacteria were inferred because conjugative transfer rates of evolved R1 plasmids were lower in the evolved host than in the ancestral host. Our results suggest that once a conjugative bacterial plasmid has invaded a bacterial population it will remain even if the original selection is discontinued.200314704155
928420.9998The population and evolutionary dynamics of homologous gene recombination in bacterial populations. In bacteria, recombination is a rare event, not a part of the reproductive process. Nevertheless, recombination -- broadly defined to include the acquisition of genes from external sources, i.e., horizontal gene transfer (HGT) -- plays a central role as a source of variation for adaptive evolution in many species of bacteria. Much of niche expansion, resistance to antibiotics and other environmental stresses, virulence, and other characteristics that make bacteria interesting and problematic, is achieved through the expression of genes and genetic elements obtained from other populations of bacteria of the same and different species, as well as from eukaryotes and archaea. While recombination of homologous genes among members of the same species has played a central role in the development of the genetics and molecular biology of bacteria, the contribution of homologous gene recombination (HGR) to bacterial evolution is not at all clear. Also, not so clear are the selective pressures responsible for the evolution and maintenance of transformation, the only bacteria-encoded form of HGR. Using a semi-stochastic simulation of mutation, recombination, and selection within bacterial populations and competition between populations, we explore (1) the contribution of HGR to the rate of adaptive evolution in these populations and (2) the conditions under which HGR will provide a bacterial population a selective advantage over non-recombining or more slowly recombining populations. The results of our simulation indicate that, under broad conditions: (1) HGR occurring at rates in the range anticipated for bacteria like Streptococcus pneumoniae, Escherichia coli, Haemophilus influenzae, and Bacillus subtilis will accelerate the rate at which a population adapts to environmental conditions; (2) once established in a population, selection for this capacity to increase rates of adaptive evolution can maintain bacteria-encoded mechanisms of recombination and prevent invasion of non-recombining populations, even when recombination engenders a modest fitness cost; and (3) because of the density- and frequency-dependent nature of HGR in bacteria, this capacity to increase rates of adaptive evolution is not sufficient as a selective force to provide a recombining population a selective advantage when it is rare. Under realistic conditions, homologous gene recombination will increase the rate of adaptive evolution in bacterial populations and, once established, selection for higher rates of evolution will promote the maintenance of bacteria-encoded mechanisms for HGR. On the other hand, increasing rates of adaptive evolution by HGR is unlikely to be the sole or even a dominant selective pressure responsible for the original evolution of transformation.200919680442
961230.9998Using experimental evolution to explore natural patterns between bacterial motility and resistance to bacteriophages. Resistance of bacteria to phages may be gained by alteration of surface proteins to which phages bind, a mechanism that is likely to be costly as these molecules typically have critical functions such as movement or nutrient uptake. To address this potential trade-off, we combine a systematic study of natural bacteria and phage populations with an experimental evolution approach. We compare motility, growth rate and susceptibility to local phages for 80 bacteria isolated from horse chestnut leaves and, contrary to expectation, find no negative association between resistance to phages and bacterial motility or growth rate. However, because correlational patterns (and their absence) are open to numerous interpretations, we test for any causal association between resistance to phages and bacterial motility using experimental evolution of a subset of bacteria in both the presence and absence of naturally associated phages. Again, we find no clear link between the acquisition of resistance and bacterial motility, suggesting that for these natural bacterial populations, phage-mediated selection is unlikely to shape bacterial motility, a key fitness trait for many bacteria in the phyllosphere. The agreement between the observed natural pattern and the experimental evolution results presented here demonstrates the power of this combined approach for testing evolutionary trade-offs.201121509046
938640.9998Bacteriophages limit the existence conditions for conjugative plasmids. Bacteriophages are a major cause of bacterial mortality and impose strong selection on natural bacterial populations, yet their effects on the dynamics of conjugative plasmids have rarely been tested. We combined experimental evolution, mathematical modeling, and individual-based simulations to explain how the ecological and population genetics effects of bacteriophages upon bacteria interact to determine the dynamics of conjugative plasmids and their persistence. The ecological effects of bacteriophages on bacteria are predicted to limit the existence conditions for conjugative plasmids, preventing persistence under weak selection for plasmid accessory traits. Experiments showed that phages drove faster extinction of plasmids in environments where the plasmid conferred no benefit, but they also revealed more complex effects of phages on plasmid dynamics under these conditions, specifically, the temporary maintenance of plasmids at fixation followed by rapid loss. We hypothesized that the population genetic effects of bacteriophages, specifically, selection for phage resistance mutations, may have caused this. Further mathematical modeling and individual-based simulations supported our hypothesis, showing that conjugative plasmids may hitchhike with phage resistance mutations in the bacterial chromosome. IMPORTANCE: Conjugative plasmids are infectious loops of DNA capable of transmitting DNA between bacterial cells and between species. Because plasmids often carry extra genes that allow bacteria to live in otherwise-inhospitable environments, their dynamics are central to understanding bacterial adaptive evolution. The plasmid-bacterium interaction has typically been studied in isolation, but in natural bacterial communities, bacteriophages, viruses that infect bacteria, are ubiquitous. Using experiments, mathematical models, and computer simulations we show that bacteriophages drive plasmid dynamics through their ecological and evolutionary effects on bacteria and ultimately limit the conditions allowing plasmid existence. These results advance our understanding of bacterial adaptation and show that bacteriophages could be used to select against plasmids carrying undesirable traits, such as antibiotic resistance.201526037122
382850.9998Interaction with a phage gene underlie costs of a β-lactamase. The fitness cost of an antibiotic resistance gene (ARG) can differ across host strains, creating refuges that allow the maintenance of an ARG in the absence of direct selection for its resistance phenotype. Despite the importance of such ARG-host interactions for predicting ARG dynamics, the basis of ARG fitness costs and their variability between hosts are not well understood. We determined the genetic basis of a host-dependent cost of a β-lactamase, bla(TEM-116*), that conferred a significant cost in one Escherichia coli strain but was close to neutral in 11 other Escherichia spp. strains. Selection of a bla(TEM-116*)-encoding plasmid in the strain in which it initially had a high cost resulted in rapid and parallel compensation for that cost through mutations in a P1-like phage gene, relA(P1). When the wild-type relA(P1) gene was added to a strain in which it was not present and in which bla(TEM-116*) was neutral, it caused the ARG to become costly. Thus, relA(P1) is both necessary and sufficient to explain bla(TEM-116*) costs in at least some host backgrounds. To our knowledge, these findings represent the first demonstrated case of the cost of an ARG being influenced by a genetic interaction with a phage gene. The interaction between a phage gene and a plasmid-borne ARG highlights the complexity of selective forces determining the maintenance and spread of ARGs and, by extension, encoding phage and plasmids in natural bacterial communities.IMPORTANCEAntibiotic resistance genes (ARGs) play a major role in the increasing problem of antibiotic resistance in clinically relevant bacteria. Selection of these genes occurs in the presence of antibiotics, but their eventual success also depends on the sometimes substantial costs they impose on host bacteria in antibiotic-free environments. We evolved an ARG that confers resistance to penicillin-type antibiotics in one host in which it did confer a cost and in one host in which it did not. We found that costs were rapidly and consistently reduced through parallel genetic changes in a gene encoded by a phage that was infecting the costly host. The unmutated version of this gene was sufficient to cause the ARG to confer a cost in a host in which it was originally neutral, demonstrating an antagonism between the two genetic elements and underlining the range and complexity of pressures determining ARG dynamics in natural populations.202438194254
383660.9998Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations. Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution.201222048956
382770.9998The fitness cost of horizontally transferred and mutational antimicrobial resistance in Escherichia coli. Antimicrobial resistance (AMR) in bacteria implies a tradeoff between the benefit of resistance under antimicrobial selection pressure and the incurred fitness cost in the absence of antimicrobials. The fitness cost of a resistance determinant is expected to depend on its genetic support, such as a chromosomal mutation or a plasmid acquisition, and on its impact on cell metabolism, such as an alteration in an essential metabolic pathway or the production of a new enzyme. To provide a global picture of the factors that influence AMR fitness cost, we conducted a systematic review and meta-analysis focused on a single species, Escherichia coli. By combining results from 46 high-quality studies in a multilevel meta-analysis framework, we find that the fitness cost of AMR is smaller when provided by horizontally transferable genes such as those encoding beta-lactamases, compared to mutations in core genes such as those involved in fluoroquinolone and rifampicin resistance. We observe that the accumulation of acquired AMR genes imposes a much smaller burden on the host cell than the accumulation of AMR mutations, and we provide quantitative estimates of the additional cost of a new gene or mutation. These findings highlight that gene acquisition is more efficient than the accumulation of mutations to evolve multidrug resistance, which can contribute to the observed dominance of horizontally transferred genes in the current AMR epidemic.202337455716
898980.9998EPISTATIC INTERACTIONS CAN LOWER THE COST OF RESISTANCE TO MULTIPLE CONSUMERS. It is widely assumed that resistance to consumers (e.g., predators or pathogens) comes at a "cost," that is, when the consumer is absent the resistant organisms are less fit than their susceptible counterparts. It is unclear what factors determine this cost. We demonstrate that epistasis between genes that confer resistance to two different consumers can alter the cost of resistance. We used as a model system the bacterium Escherichia coli and two different viruses (bacteriophages), T4 and Λ, that prey upon E. coli. Epistasis tended to reduce the costs of multiple resistance in this system. However, the extent of cost savings and its statistical significance depended on the environment in which fitness was measured, whether the null hypothesis for gene interaction was additive or multiplicative, and subtle differences among mutations that conferred the same resistance phenotype.199928565201
931290.9998Why There Are No Essential Genes on Plasmids. Mobile genetic elements such as plasmids are important for the evolution of prokaryotes. It has been suggested that there are differences between functions coded for by mobile genes and those in the "core" genome and that these differences can be seen between plasmids and chromosomes. In particular, it has been suggested that essential genes, such as those involved in the formation of structural proteins or in basic metabolic functions, are rarely located on plasmids. We model competition between genotypically varying bacteria within a single population to investigate whether selection favors a chromosomal location for essential genes. We find that in general, chromosomal locations for essential genes are indeed favored. This is because the inheritance of chromosomes is more stable than that for plasmids. We define the "degradation" rate as the rate at which chance genetic processes, for example, mutation, deletion, or translocation, render essential genes nonfunctioning. The only way in which plasmids can be a location for functioning essential genes is if chromosomal genes degrade faster than plasmid genes. If the two degradation rates are equal, or if plasmid genes degrade faster than chromosomal genes, functioning essential genes will be found only on chromosomes.201525540453
4268100.9998Population Bottlenecks Strongly Influence the Evolutionary Trajectory to Fluoroquinolone Resistance in Escherichia coli. Experimental evolution is a powerful tool to study genetic trajectories to antibiotic resistance under selection. A confounding factor is that outcomes may be heavily influenced by the choice of experimental parameters. For practical purposes (minimizing culture volumes), most experimental evolution studies with bacteria use transmission bottleneck sizes of 5 × 106 cfu. We currently have a poor understanding of how the choice of transmission bottleneck size affects the accumulation of deleterious versus high-fitness mutations when resistance requires multiple mutations, and how this relates outcome to clinical resistance. We addressed this using experimental evolution of resistance to ciprofloxacin in Escherichia coli. Populations were passaged with three different transmission bottlenecks, including single cell (to maximize genetic drift) and bottlenecks spanning the reciprocal of the frequency of drug target mutations (108 and 1010). The 1010 bottlenecks selected overwhelmingly mutations in drug target genes, and the resulting genotypes corresponded closely to those found in resistant clinical isolates. In contrast, both the 108 and single-cell bottlenecks selected mutations in three different gene classes: 1) drug targets, 2) efflux pump repressors, and 3) transcription-translation genes, including many mutations with low fitness. Accordingly, bottlenecks smaller than the average nucleotide substitution rate significantly altered the experimental outcome away from genotypes observed in resistant clinical isolates. These data could be applied in designing experimental evolution studies to increase their predictive power and to explore the interplay between different environmental conditions, where transmission bottlenecks might vary, and resulting evolutionary trajectories.202032031639
9258110.9998Plasmid Viability Depends on the Ecological Setting of Hosts within a Multiplasmid Community. Plasmids are extrachromosomal genetic elements, some of which disperse horizontally between different strains and species of bacteria. They are a major factor in the dissemination of virulence factors and antibiotic resistance. Understanding the ecology of plasmids has a notable anthropocentric value, and therefore, the interactions between bacterial hosts and individual plasmids have been studied in detail. However, bacterial systems often carry multiple genetically distinct plasmids, but dynamics within these multiplasmid communities have remained unstudied. Here, we set to investigate the survival of 11 mobilizable or conjugative plasmids under five different conditions where the hosts had a differing ecological status in comparison to other bacteria in the system. The key incentive was to determine whether plasmid dynamics are reproducible and whether there are tradeoffs in plasmid fitness that stem from the ecological situation of their initial hosts. Growth rates and maximum population densities increased in all communities and treatments over the 42-day evolution experiment, although plasmid contents at the end varied notably. Large multiresistance-conferring plasmids were unfit when the community also contained smaller plasmids with fewer resistance genes. This suggests that restraining the use of a few antibiotics can make bacterial communities sensitive to others. In general, the presence or absence of antibiotic selection and plasmid-free hosts (of various fitnesses) has a notable influence on which plasmids survive. These tradeoffs in different settings can help explain, for example, why some resistance plasmids have an advantage during a rapid proliferation of antibiotic-sensitive pathogens whereas others dominate in alternative situations. IMPORTANCE Conjugative and mobilizable plasmids are ubiquitous in bacterial systems. Several different plasmids can compete within a single bacterial community. We here show that the ecological setting of the host bacteria has a notable effect on the survival of individual plasmids. Selection for opportunistic genes such as antibiotic resistance genes and the presence of plasmid-free hosts can determine which plasmids survive in the system. Host bacteria appear to adapt specifically to a situation where there are multiple plasmids present instead of alleviating the plasmid-associated fitness costs of individual plasmids. Plasmids providing antibiotic resistance survived under all conditions even if there was a constant migration of higher-fitness plasmid-free hosts and no selection via antibiotics. This study is one of the first to observe the behavior of multiple genetically different plasmids as a part of a single system.202235416702
9382120.9998The evolution of mutator genes in bacterial populations: the roles of environmental change and timing. Recent studies have found high frequencies of bacteria with increased genomic rates of mutation in both clinical and laboratory populations. These observations may seem surprising in light of earlier experimental and theoretical studies. Mutator genes (genes that elevate the genomic mutation rate) are likely to induce deleterious mutations and thus suffer an indirect selective disadvantage; at the same time, bacteria carrying them can increase in frequency only by generating beneficial mutations at other loci. When clones carrying mutator genes are rare, however, these beneficial mutations are far more likely to arise in members of the much larger nonmutator population. How then can mutators become prevalent? To address this question, we develop a model of the population dynamics of bacteria confronted with ever-changing environments. Using analytical and simulation procedures, we explore the process by which initially rare mutator alleles can rise in frequency. We demonstrate that subsequent to a shift in environmental conditions, there will be relatively long periods of time during which the mutator subpopulation can produce a beneficial mutation before the ancestral subpopulations are eliminated. If the beneficial mutation arises early enough, the overall frequency of mutators will climb to a point higher than when the process began. The probability of producing a subsequent beneficial mutation will then also increase. In this manner, mutators can increase in frequency over successive selective sweeps. We discuss the implications and predictions of these theoretical results in relation to antibiotic resistance and the evolution of mutation rates.200312871898
9260130.9998The Evolution of Plasmid Transfer Rate in Bacteria and Its Effect on Plasmid Persistence. AbstractPlasmids are extrachromosomal segments of DNA that can transfer genes between bacterial cells. Many plasmid genes benefit bacteria but cause harm to human health by granting antibiotic resistance to pathogens. Transfer rate is a key parameter for predicting plasmid dynamics, but observed rates are highly variable, and the effects of selective forces on their evolution are unclear. We apply evolutionary analysis to plasmid conjugation models to investigate selective pressures affecting plasmid transfer rate, emphasizing host versus plasmid control, the costs of plasmid transfer, and the role of recipient cells. Our analyses show that plasmid-determined transfer rates can be predicted with three parameters (host growth rate, plasmid loss rate, and the cost of plasmid transfer on growth) under some conditions. We also show that low-frequency genetic variation in transfer rate can accumulate, facilitating rapid adaptation to changing conditions. Furthermore, reduced transfer rates due to host control have limited effects on plasmid prevalence until low enough to prevent plasmid persistence. These results provide a framework to predict plasmid transfer rate evolution in different environments and demonstrate the limited impact of host mechanisms to control the costs incurred when plasmids are present.202134559608
4276140.9998Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms. The evolution of multi-antibiotic resistance in bacterial pathogens, often resulting from de novo mutations, is creating a public health crisis. Phages show promise for combating antibiotic-resistant bacteria, the efficacy of which, however, may also be limited by resistance evolution. Here, we suggest that phages may be used as supplements to antibiotics in treating initially sensitive bacteria to prevent resistance evolution, as phages are unaffected by most antibiotics and there should be little cross-resistance to antibiotics and phages. In vitro experiments using the bacterium Pseudomonas fluorescens, a lytic phage, and the antibiotic kanamycin supported this prediction: an antibiotic-phage combination dramatically decreased the chance of bacterial population survival that indicates resistance evolution, compared with antibiotic treatment alone, whereas the phage alone did not affect bacterial survival. This effect of the combined treatment in preventing resistance evolution was robust to immigration of bacteria from an untreated environment, but not to immigration from environment where the bacteria had coevolved with the phage. By contrast, an isogenic hypermutable strain constructed from the wild-type P. fluorescens evolved resistance to all treatments regardless of immigration, but typically suffered very large fitness costs. These results suggest that an antibiotic-phage combination may show promise as an antimicrobial strategy.201223028398
4277150.9998Exposure to phages has little impact on the evolution of bacterial antibiotic resistance on drug concentration gradients. The use of phages for treating bacterial pathogens has recently been advocated as an alternative to antibiotic therapy. Here, we test a hypothesis that bacteria treated with phages may show more limited evolution of antibiotic resistance as the fitness costs of resistance to phages may add to those of antibiotic resistance, further reducing the growth performance of antibiotic-resistant bacteria. We did this by studying the evolution of phage-exposed and phage-free Pseudomonas fluorescens cultures on concentration gradients of single drugs, including cefotaxime, chloramphenicol, and kanamycin. During drug treatment, the level of bacterial antibiotic resistance increased through time and was not affected by the phage treatment. Exposure to phages did not cause slower growth in antibiotic-resistant bacteria, although it did so in antibiotic-susceptible bacteria. We observed significant reversion of antibiotic resistance after drug use being terminated, and the rate of reversion was not affected by the phage treatment. The results suggest that the fitness costs caused by resistance to phages are unlikely to be an important constraint on the evolution of bacterial antibiotic resistance in heterogeneous drug environments. Further studies are needed for the interaction of fitness costs of antibiotic resistance with other factors.201424665341
8999160.9998Growth-Dependent Predation and Generalized Transduction of Antimicrobial Resistance by Bacteriophage. Bacteriophage (phage) are both predators and evolutionary drivers for bacteria, notably contributing to the spread of antimicrobial resistance (AMR) genes by generalized transduction. Our current understanding of this complex relationship is limited. We used an interdisciplinary approach to quantify how these interacting dynamics can lead to the evolution of multidrug-resistant bacteria. We cocultured two strains of methicillin-resistant Staphylococcus aureus, each harboring a different antibiotic resistance gene, with generalized transducing phage. After a growth phase of 8 h, bacteria and phage surprisingly coexisted at a stable equilibrium in our culture, the level of which was dependent on the starting concentration of phage. We detected double-resistant bacteria as early as 7 h, indicating that transduction of AMR genes had occurred. We developed multiple mathematical models of the bacteria and phage relationship and found that phage-bacteria dynamics were best captured by a model in which phage burst size decreases as the bacteria population reaches stationary phase and where phage predation is frequency-dependent. We estimated that one in every 10(8) new phage generated was a transducing phage carrying an AMR gene and that double-resistant bacteria were always predominantly generated by transduction rather than by growth. Our results suggest a shift in how we understand and model phage-bacteria dynamics. Although rates of generalized transduction could be interpreted as too rare to be significant, they are sufficient in our system to consistently lead to the evolution of multidrug-resistant bacteria. Currently, the potential of phage to contribute to the growing burden of AMR is likely underestimated. IMPORTANCE Bacteriophage (phage), viruses that can infect and kill bacteria, are being investigated through phage therapy as a potential solution to the threat of antimicrobial resistance (AMR). In reality, however, phage are also natural drivers of bacterial evolution by transduction when they accidentally carry nonphage DNA between bacteria. Using laboratory work and mathematical models, we show that transduction leads to evolution of multidrug-resistant bacteria in less than 8 h and that phage production decreases when bacterial growth decreases, allowing bacteria and phage to coexist at stable equilibria. The joint dynamics of phage predation and transduction lead to complex interactions with bacteria, which must be clarified to prevent phage from contributing to the spread of AMR.202235311576
9387170.9998Indirect Fitness Benefits Enable the Spread of Host Genes Promoting Costly Transfer of Beneficial Plasmids. Bacterial genes that confer crucial phenotypes, such as antibiotic resistance, can spread horizontally by residing on mobile genetic elements (MGEs). Although many mobile genes provide strong benefits to their hosts, the fitness consequences of the process of transfer itself are less clear. In previous studies, transfer has been interpreted as a parasitic trait of the MGEs because of its costs to the host but also as a trait benefiting host populations through the sharing of a common gene pool. Here, we show that costly donation is an altruistic act when it spreads beneficial MGEs favoured when it increases the inclusive fitness of donor ability alleles. We show mathematically that donor ability can be selected when relatedness at the locus modulating transfer is sufficiently high between donor and recipients, ensuring high frequency of transfer between cells sharing donor alleles. We further experimentally demonstrate that either population structure or discrimination in transfer can increase relatedness to a level selecting for chromosomal transfer alleles. Both mechanisms are likely to occur in natural environments. The simple process of strong dilution can create sufficient population structure to select for donor ability. Another mechanism observed in natural isolates, discrimination in transfer, can emerge through coselection of transfer and discrimination alleles. Our work shows that horizontal gene transfer in bacteria can be promoted by bacterial hosts themselves and not only by MGEs. In the longer term, the success of cells bearing beneficial MGEs combined with biased transfer leads to an association between high donor ability, discrimination, and mobile beneficial genes. However, in conditions that do not select for altruism, host bacteria promoting transfer are outcompeted by hosts with lower transfer rate, an aspect that could be relevant in the fight against the spread of antibiotic resistance.201627270455
9259180.9998Static recipient cells as reservoirs of antibiotic resistance during antibiotic therapy. How does taking the full course of antibiotics prevent antibiotic resistant bacteria establishing in patients? We address this question by testing the possibility that horizontal/lateral gene transfer (HGT) is critical for the accumulation of the antibiotic-resistance phenotype while bacteria are under antibiotic stress. Most antibiotics prevent bacterial reproduction, some by preventing de novo gene expression. Nevertheless, in some cases and at some concentrations, the effects of most antibiotics on gene expression may not be irreversible. If the stress is removed before the bacteria are cleared from the patients by normal turnover, gene expression restarts, converting the residual population to phenotypic resistance. Using mathematical models we investigate how static recipients of resistance genes carried by plasmids accumulate resistance genes, and how specifically an environment cycling between presence and absence of the antibiotic uniquely favors the evolution of horizontally mobile resistance genes. We found that the presence of static recipients can substantially increase the persistence of the plasmid and that this effect is most pronounced when the cost of carriage of the plasmid decreases the cell's growth rate by as much as a half or more. In addition, plasmid persistence can be enhanced even when conjugation rates are as low as half the rate required for the plasmid to persist as a parasite on its own.200616723146
9273190.9998Temporal dynamics of bacteria-plasmid coevolution under antibiotic selection. Horizontally acquired genes can be costly to express even if they encode useful traits, such as antibiotic resistance. We previously showed that when selected with tetracycline, Escherichia coli carrying the tetracycline-resistance plasmid RK2 evolved mutations on both replicons that together provided increased tetracycline resistance at reduced cost. Here we investigate the temporal dynamics of this intragenomic coevolution. Using genome sequencing we show that the order of adaptive mutations was highly repeatable across three independently evolving populations. Each population first gained a chromosomal mutation in ompF which shortened lag phase and increased tetracycline resistance. This was followed by mutations impairing the plasmid-encoded tetracycline efflux pump, and finally, additional resistance-associated chromosomal mutations. Thus, reducing the cost of the horizontally acquired tetracycline resistance was contingent on first evolving a degree of chromosomally encoded resistance. We conclude therefore that the trajectory of bacteria-plasmid coevolution was constrained to a single repeatable path.201930209344