# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9253 | 0 | 1.0000 | Horizontally transferred genetic elements and their role in pathogenesis of bacterial disease. This article reviews the roles that laterally transferred genes (LTG) play in the virulence of bacterial pathogens. The features of LTG that allow them to be recognized in bacterial genomes are described, and the mechanisms by which LTG are transferred between and within bacteria are reviewed. Genes on plasmids, integrative and conjugative elements, prophages, and pathogenicity islands are highlighted. Virulence genes that are frequently laterally transferred include genes for bacterial adherence to host cells, type 3 secretion systems, toxins, iron acquisition, and antimicrobial resistance. The specific roles of LTG in pathogenesis are illustrated by specific reference to Escherichia coli, Salmonella, pyogenic streptococci, and Clostridium perfringens. | 2014 | 24318976 |
| 4165 | 1 | 0.9998 | A modular master on the move: the Tn916 family of mobile genetic elements. The Tn916 family is a group of mobile genetic elements that are widespread among many commensal and pathogenic bacteria. These elements are found primarily, but not exclusively, in the Firmicutes. They are integrated into the bacterial genome and are capable of conjugative transfer to a new host and, often, intracellular transposition to a different genomic site - hence their name: 'conjugative transposons', or 'integrative conjugative elements'. An increasing variety of Tn916 relatives are being reported from different bacteria, harbouring genes coding for resistance to various antibiotics and the potential to encode other functions, such as lantibiotic immunity. This family of mobile genetic elements has an extraordinary ability to acquire accessory genes, making them important vectors in the dissemination of various traits among environmental, commensal and clinical bacteria. These elements are also responsible for genome rearrangements, providing considerable raw material on which natural selection can act. Therefore, the study of this family of mobile genetic elements is essential for a better understanding and control of the current rise of antibiotic resistance among pathogenic bacteria. | 2009 | 19464182 |
| 9830 | 2 | 0.9997 | Mechanisms of Conjugative Transfer and Type IV Secretion-Mediated Effector Transport in Gram-Positive Bacteria. Conjugative DNA transfer is the most important means to transfer antibiotic resistance genes and virulence determinants encoded by plasmids, integrative conjugative elements (ICE), and pathogenicity islands among bacteria. In gram-positive bacteria, there exist two types of conjugative systems, (i) type IV secretion system (T4SS)-dependent ones, like those encoded by the Enterococcus, Streptococcus, Staphylococcus, Bacillus, and Clostridia mobile genetic elements and (ii) T4SS-independent ones, as those found on Streptomyces plasmids. Interestingly, very recently, on the Streptococcus suis genome, the first gram-positive T4SS not only involved in conjugative DNA transfer but also in effector translocation to the host was detected. Although no T4SS core complex structure from gram-positive bacteria is available, several structures from T4SS protein key factors from Enterococcus and Clostridia plasmids have been solved. In this chapter, we summarize the current knowledge on the molecular mechanisms and structure-function relationships of the diverse conjugation machineries and emerging research needs focused on combatting infections and spread of multiple resistant gram-positive pathogens. | 2017 | 29536357 |
| 4133 | 3 | 0.9997 | Importance of integrons in the diffusion of resistance. Horizontal transfer of resistance genes is a successful mechanism for the transmission and dissemination of multiple drug resistance among bacterial pathogens. The impact of horizontally transmitted genetic determinants in the evolution of resistance is particularly evident when resistance genes are physically associated in clusters and transferred en bloc to the recipient cell. Recent advances in the molecular characterisation of antibiotic resistance mechanisms have highlighted the existence of genetic structures. called integrons, involved in the acquisition of resistance genes. These DNA elements have frequently been reported in multi-drug resistant strains isolated from animals and humans, and are located either on the bacterial chromosome or on broad-host-range plasmids. The role of integrons in the development of multiple resistance relies on their unique capacity to cluster and express drug resistance genes. Moreover, the spread of resistance genes among different replicons and their exchange between plasmid and bacterial chromosome are facilitated by the integration of integrons into transposable elements. The association of a highly efficient gene capture and expression system, together with the capacity for vertical and horizontal transmission of resistance genes represents a powerful weapon used by bacteria to combat the assault of antibiotics. | 2001 | 11432416 |
| 9314 | 4 | 0.9997 | Phage Transduction of Staphylococcus aureus. Bacteriophage transduction is the major mechanism of horizontal gene transfer (HGT) among many bacteria. In Staphylococcus aureus, the phage-mediated acquisition of mobile genetic elements (MGEs) that encode virulence and antibiotic resistance genes largely contribute to its evolutionary adaptation and genetic plasticity. In molecular biology, generalized transduction is routinely used as a technique to manipulate and construct bacterial strains. Here, we describe optimized protocols for generalized transduction, applicable for the transfer of plasmid or chromosomal deoxyribonucleic acid (DNA) from donor to recipient S. aureus strains. | 2024 | 37966605 |
| 4377 | 5 | 0.9997 | Pathogenicity and other genomic islands in plant pathogenic bacteria. SUMMARY Pathogenicity islands (PAIs) were first described in uropathogenic E. coli. They are now defined as regions of DNA that contain virulence genes and are present in the genome of pathogenic strains, but absent from or only rarely present in non-pathogenic variants of the same or related strains. Other features include a variable G+C content, distinct boundaries from the rest of the genome and the presence of genes related to mobile elements such as insertion sequences, integrases and transposases. Although PAIs have now been described in a wide range of both plant and animal pathogens it has become evident that the general features of PAIs are displayed by a number of regions of DNA with functions other than pathogenicity, such as symbiosis and antibiotic resistance, and the general term genomic islands has been adopted. This review will describe a range of genomic islands in plant pathogenic bacteria including those that carry effector genes, phytotoxins and the type III protein secretion cluster. The review will also consider some medically important bacteria in order to discuss the range, acquisition and stabilization of genomic islands. | 2003 | 20569400 |
| 9254 | 6 | 0.9997 | Horizontal gene transfer in human pathogens. Horizontal gene transfer has a tremendous impact on the genome plasticity, adaptation and evolution of bacteria. Horizontally transferred mobile genetic elements are involved in the dissemination of antibiotic resistance and virulence genes, thus contributing to the emergence of novel "superbugs". This review provides update on various mechanisms of horizontal gene transfer and examines how horizontal gene transfer contributes to the evolution of pathogenic bacteria. Special focus is paid to the role horizontal gene transfer plays in pathogenicity of the emerging human pathogens: hypervirulent Clostridium difficile and Escherichia coli (including the most recent haemolytic uraemic syndrome outbreak strain) and methicillin-resistant Staphylococcus aureus (MRSA), which have been associated with largest outbreaks of infection recently. | 2015 | 23862575 |
| 9836 | 7 | 0.9997 | Staphylococcus aureus mobile genetic elements. Among the bacteria groups, most of them are known to be beneficial to human being whereas only a minority is being recognized as harmful. The pathogenicity of bacteria is due, in part, to their rapid adaptation in the presence of selective pressures exerted by the human host. In addition, through their genomes, bacteria are subject to mutations, various rearrangements or horizontal gene transfer among and/or within bacterial species. Bacteria's essential metabolic functions are generally encoding by the core genes. Apart of the core genes, there are several number of mobile genetic elements (MGE) acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. These MGE namely bacteriophages, transposons, plasmids, and pathogenicity islands represent about 15% Staphylococcus aureus genomes. The acquisition of most of the MGE is made by horizontal genomic islands (GEI), recognized as discrete DNA segments between closely related strains, transfer. The GEI contributes to the wide spread of microorganisms with an important effect on their genome plasticity and evolution. The GEI are also involve in the antibiotics resistance and virulence genes dissemination. In this review, we summarize the mobile genetic elements of S. aureus. | 2014 | 24728610 |
| 4134 | 8 | 0.9997 | Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes. In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes. | 2014 | 26104453 |
| 9837 | 9 | 0.9997 | Mobilizable genomic islands, different strategies for the dissemination of multidrug resistance and other adaptive traits. Mobile genetic elements are near ubiquitous DNA segments that revealed a surprising variety of strategies for their propagation among prokaryotes and between eukaryotes. In bacteria, conjugative elements were shown to be key drivers of evolution and adaptation by efficiently disseminating genes involved in pathogenicity, symbiosis, metabolic pathways, and antibiotic resistance. Conjugative plasmids of the incompatibility groups A and C (A/C) are important vehicles for the dissemination of antibiotic resistance and the consequent global emergence and spread of multi-resistant pathogenic bacteria. Beyond their own mobility, A/C plasmids were also shown to drive the mobility of unrelated non-autonomous mobilizable genomic islands, which may also confer further advantageous traits. In this commentary, we summarize the current knowledge on different classes of A/C-dependent mobilizable genomic islands and we discuss other DNA hitchhikers and their implication in bacterial evolution. Furthermore, we glimpse at the complex genetic network linking autonomous and non-autonomous mobile genetic elements, and at the associated flow of genetic information between bacteria. | 2017 | 28439449 |
| 4168 | 10 | 0.9997 | Various pathways leading to the acquisition of antibiotic resistance by natural transformation. Natural transformation can lead to exchange of DNA between taxonomically diverse bacteria. In the case of chromosomal DNA, homology-based recombination with the recipient genome is usually necessary for heritable stability. In our recent study, we have shown that natural transformation can promote the transfer of transposons, IS elements, and integrons and gene cassettes, largely independent of the genetic relationship between the donor and recipient bacteria. Additional results from our study suggest that natural transformation with species-foreign DNA might result in the uptake of a wide range of DNA fragments; leading to changes in the antimicrobial susceptibility profile and contributing to the generation of antimicrobial resistance in bacteria. | 2012 | 23482877 |
| 9826 | 11 | 0.9997 | Horizontal genetic exchange, evolution, and spread of antibiotic resistance in bacteria. Some transformable bacteria have acquired target-mediated antibiotic resistance by horizontal genetic exchange of fragments of chromosomal genes. The resistant strains express variants of the antibiotic target that are metabolically active but exhibit a lowered affinity for the antibiotic. The alleles encoding these resistant proteins are mosaics comprising DNA derived from the host and other bacteria, often members of a different species. Examples include penicillin-resistant penicillin-binding proteins (PBPs) in Streptococcus pneumoniae and the pathogenic Neisseria species and sulfonamide-resistant dihydropterate synthase in Neisseria meningitidis. Distinct mosaic alleles encoding antibiotic resistance have arisen on multiple occasions, indicating the mobility of chromosomal genes in these species. Mosaic genes can arise at any chromosomal locus, and S. pneumoniae organisms with high-level penicillin resistance have acquired mosaic PBP genes at three bacterial bpb loci. Furthermore, horizontal genetic exchange permits movement of alleles among bacterial lineages, increasing the opportunities for the spread of antibiotic resistance. | 1998 | 9710667 |
| 4376 | 12 | 0.9997 | Genetic exchanges are more frequent in bacteria encoding capsules. Capsules allow bacteria to colonize novel environments, to withstand numerous stresses, and to resist antibiotics. Yet, even though genetic exchanges with other cells should be adaptive under such circumstances, it has been suggested that capsules lower the rates of homologous recombination and horizontal gene transfer. We analysed over one hundred pan-genomes and thousands of bacterial genomes for the evidence of an association between genetic exchanges (or lack thereof) and the presence of a capsule system. We found that bacteria encoding capsules have larger pan-genomes, higher rates of horizontal gene transfer, and higher rates of homologous recombination in their core genomes. Accordingly, genomes encoding capsules have more plasmids, conjugative elements, transposases, prophages, and integrons. Furthermore, capsular loci are frequent in plasmids, and can be found in prophages. These results are valid for Bacteria, independently of their ability to be naturally transformable. Since we have shown previously that capsules are commonly present in nosocomial pathogens, we analysed their co-occurrence with antibiotic resistance genes. Genomes encoding capsules have more antibiotic resistance genes, especially those encoding efflux pumps, and they constitute the majority of the most worrisome nosocomial bacteria. We conclude that bacteria with capsule systems are more genetically diverse and have fast-evolving gene repertoires, which may further contribute to their success in colonizing novel niches such as humans under antibiotic therapy. | 2018 | 30576310 |
| 9309 | 13 | 0.9997 | Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes).The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation. | 2008 | 18193080 |
| 9835 | 14 | 0.9997 | Genomic islands: tools of bacterial horizontal gene transfer and evolution. Bacterial genomes evolve through mutations, rearrangements or horizontal gene transfer. Besides the core genes encoding essential metabolic functions, bacterial genomes also harbour a number of accessory genes acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. The horizontal gene transfer contributes to the diversification and adaptation of microorganisms, thus having an impact on the genome plasticity. A significant part of the horizontal gene transfer is or has been facilitated by genomic islands (GEIs). GEIs are discrete DNA segments, some of which are mobile and others which are not, or are no longer mobile, which differ among closely related strains. A number of GEIs are capable of integration into the chromosome of the host, excision, and transfer to a new host by transformation, conjugation or transduction. GEIs play a crucial role in the evolution of a broad spectrum of bacteria as they are involved in the dissemination of variable genes, including antibiotic resistance and virulence genes leading to generation of hospital 'superbugs', as well as catabolic genes leading to formation of new metabolic pathways. Depending on the composition of gene modules, the same type of GEIs can promote survival of pathogenic as well as environmental bacteria. | 2009 | 19178566 |
| 4045 | 15 | 0.9997 | Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine. BACKGROUND: Antimicrobial resistance has become a major challenge in veterinary medicine, particularly in the context of bacterial pathogens that play a role in both humans and animals. OBJECTIVES: This review serves as an update on acquired resistance mechanisms in bacterial pathogens of human and animal origin, including examples of transfer of resistant pathogens between hosts and of resistance genes between bacteria. RESULTS: Acquired resistance is based on resistance-mediating mutations or on mobile resistance genes. Although mutations are transferred vertically, mobile resistance genes are also transferred horizontally (by transformation, transduction or conjugation/mobilization), contributing to the dissemination of resistance. Mobile genes specifying any of the three major resistance mechanisms - enzymatic inactivation, reduced intracellular accumulation or modification of the cellular target sites - have been found in a variety of bacteria that may be isolated from animals. Such resistance genes are associated with plasmids, transposons, gene cassettes, integrative and conjugative elements or other mobile elements. Bacteria, including zoonotic pathogens, can be exchanged between animals and humans mainly via direct contact, but also via dust, aerosols or foods. Proof of the direction of transfer of resistant bacteria can be difficult and depends on the location of resistance genes or mutations in the chromosomal DNA or on a mobile element. CONCLUSION: The wide variety in resistance and resistance transfer mechanisms will continue to ensure the success of bacterial pathogens in the future. Our strategies to counteract resistance and preserve the efficacy of antimicrobial agents need to be equally diverse and resourceful. | 2017 | 27581211 |
| 9295 | 16 | 0.9997 | Biological activities specified by antibiotic resistance plasmids. Bacteria can display resistance to a wide spectrum of noxious agents and environmental conditions, and these properties are often mediated by genes located on extrachromosomal DNA elements called plasmids. Replication, vertical and horizontal transmission and evolution of these elements are discussed, and examples of the genes responsible for the resistance phenotypes are given. Selective forces that drive the evolution of new combinations of bacterial properties of particular importance in clinical situations are analysed. | 1986 | 3542928 |
| 4350 | 17 | 0.9997 | Tandem mobilization of anti-phage defenses alongside SCCmec elements in staphylococci. Recent research has identified multiple immune systems that bacteria use to protect themselves from viral infections. However, little is known about the mechanisms by which these systems horizontally spread, especially among bacterial pathogens. Here, we investigate antiviral defenses in staphylococci, opportunistic pathogens that constitute leading causes of antibiotic-resistant infections. We show that these organisms harbor a variety of anti-phage defenses encoded within or near SCC (staphylococcal cassette chromosome) mec cassettes, mobile genomic islands that confer methicillin resistance. Importantly, we demonstrate that SCCmec-encoded recombinases mobilize not only SCCmec, but also tandem SCC-like cassettes enriched in genes coding for diverse defense systems. Further, we show that phage infection stimulates cassette mobilization (i.e. excision and circularization). Thus, our findings indicate that SCC/SCCmec cassettes not only spread antibiotic resistance but can also play a role in mobilizing anti-phage defenses. | 2024 | 39394251 |
| 9286 | 18 | 0.9997 | Bacterial sex in dental plaque. Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity. | 2013 | 23741559 |
| 9308 | 19 | 0.9997 | Integrons: natural tools for bacterial genome evolution. Integrons were first identified as the primary mechanism for antibiotic resistance gene capture and dissemination among Gram-negative bacteria. More recently, their role in genome evolution has been extended with the discovery of larger integron structures, the super-integrons, as genuine components of the genomes of many species throughout the gamma-proteobacterial radiation. The functional platforms of these integrons appear to be sedentary, whereas their gene cassette contents are highly variable. Nevertheless, the gene cassettes for which an activity has been experimentally demonstrated encode proteins related to simple adaptive functions and their recruitment is seen as providing the bacterial host with a selective advantage. The widespread occurrence of the integron system among Gram-negative bacteria is discussed, with special focus on the super-integrons. Some of the adaptive functions encoded by these genes are also reviewed, and implications of integron-mediated genome evolution in the emergence of novel bacterial species are highlighted. | 2001 | 11587934 |