# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9249 | 0 | 1.0000 | Type IV secretion systems and genomic islands-mediated horizontal gene transfer in Pseudomonas and Haemophilus. Bacterial secretion systems, such as type IV secretion systems (T4SSs) are multi-subunit machines transferring macromolecules across membranes. Besides proteins, T4SSs also transfer nucleoprotein complexes, thus having a significant impact on the evolution of bacterial species. By T4SS-mediated horizontal gene transfer bacteria can acquire a broad spectrum of fitness genes allowing them to thrive in the wide variety of environments. Furthermore, acquisition of antibiotic-resistance and virulence genes can lead to the emergence of novel 'superbugs'. This review provides an update on the investigation of T4SSs. It highlights the role T4SSs play in the horizontal gene transfer, particularly in the evolution of catabolic pathways, antibiotic-resistance and virulence in Haemophilus and Pseudomonas. | 2015 | 25183653 |
| 9248 | 1 | 0.9999 | Towards an integrated model of bacterial conjugation. Bacterial conjugation is one of the main mechanisms for horizontal gene transfer. It constitutes a key element in the dissemination of antibiotic resistance and virulence genes to human pathogenic bacteria. DNA transfer is mediated by a membrane-associated macromolecular machinery called Type IV secretion system (T4SS). T4SSs are involved not only in bacterial conjugation but also in the transport of virulence factors by pathogenic bacteria. Thus, the search for specific inhibitors of different T4SS components opens a novel approach to restrict plasmid dissemination. This review highlights recent biochemical and structural findings that shed new light on the molecular mechanisms of DNA and protein transport by T4SS. Based on these data, a model for pilus biogenesis and substrate transfer in conjugative systems is proposed. This model provides a renewed view of the mechanism that might help to envisage new strategies to curb the threating expansion of antibiotic resistance. | 2015 | 25154632 |
| 9835 | 2 | 0.9998 | Genomic islands: tools of bacterial horizontal gene transfer and evolution. Bacterial genomes evolve through mutations, rearrangements or horizontal gene transfer. Besides the core genes encoding essential metabolic functions, bacterial genomes also harbour a number of accessory genes acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. The horizontal gene transfer contributes to the diversification and adaptation of microorganisms, thus having an impact on the genome plasticity. A significant part of the horizontal gene transfer is or has been facilitated by genomic islands (GEIs). GEIs are discrete DNA segments, some of which are mobile and others which are not, or are no longer mobile, which differ among closely related strains. A number of GEIs are capable of integration into the chromosome of the host, excision, and transfer to a new host by transformation, conjugation or transduction. GEIs play a crucial role in the evolution of a broad spectrum of bacteria as they are involved in the dissemination of variable genes, including antibiotic resistance and virulence genes leading to generation of hospital 'superbugs', as well as catabolic genes leading to formation of new metabolic pathways. Depending on the composition of gene modules, the same type of GEIs can promote survival of pathogenic as well as environmental bacteria. | 2009 | 19178566 |
| 9723 | 3 | 0.9998 | Deciphering the genetic network and programmed regulation of antimicrobial resistance in bacterial pathogens. Antimicrobial resistance (AMR) in bacteria is an important global health problem affecting humans, animals, and the environment. AMR is considered as one of the major components in the "global one health". Misuse/overuse of antibiotics in any one of the segments can impact the integrity of the others. In the presence of antibiotic selective pressure, bacteria tend to develop several defense mechanisms, which include structural changes of the bacterial outer membrane, enzymatic processes, gene upregulation, mutations, adaptive resistance, and biofilm formation. Several components of mobile genetic elements (MGEs) play an important role in the dissemination of AMR. Each one of these components has a specific function that lasts long, irrespective of any antibiotic pressure. Integrative and conjugative elements (ICEs), insertion sequence elements (ISs), and transposons carry the antimicrobial resistance genes (ARGs) on different genetic backbones. Successful transfer of ARGs depends on the class of plasmids, regulons, ISs proximity, and type of recombination systems. Additionally, phage-bacterial networks play a major role in the transmission of ARGs, especially in bacteria from the environment and foods of animal origin. Several other functional attributes of bacteria also get successfully modified to acquire ARGs. These include efflux pumps, toxin-antitoxin systems, regulatory small RNAs, guanosine pentaphosphate signaling, quorum sensing, two-component system, and clustered regularly interspaced short palindromic repeats (CRISPR) systems. The metabolic and virulence state of bacteria is also associated with a range of genetic and phenotypic resistance mechanisms. In spite of the availability of a considerable information on AMR, the network associations between selection pressures and several of the components mentioned above are poorly understood. Understanding how a pathogen resists and regulates the ARGs in response to antimicrobials can help in controlling the development of resistance. Here, we provide an overview of the importance of genetic network and regulation of AMR in bacterial pathogens. | 2022 | 36506027 |
| 9342 | 4 | 0.9998 | Natural transformation in Gram-negative bacteria thriving in extreme environments: from genes and genomes to proteins, structures and regulation. Extremophilic prokaryotes live under harsh environmental conditions which require far-reaching cellular adaptations. The acquisition of novel genetic information via natural transformation plays an important role in bacterial adaptation. This mode of DNA transfer permits the transfer of genetic information between microorganisms of distant evolutionary lineages and even between members of different domains. This phenomenon, known as horizontal gene transfer (HGT), significantly contributes to genome plasticity over evolutionary history and is a driving force for the spread of fitness-enhancing functions including virulence genes and antibiotic resistances. In particular, HGT has played an important role for adaptation of bacteria to extreme environments. Here, we present a survey of the natural transformation systems in bacteria that live under extreme conditions: the thermophile Thermus thermophilus and two desiccation-resistant members of the genus Acinetobacter such as Acinetobacter baylyi and Acinetobacter baumannii. The latter is an opportunistic pathogen and has become a world-wide threat in health-care institutions. We highlight conserved and unique features of the DNA transporter in Thermus and Acinetobacter and present tentative models of both systems. The structure and function of both DNA transporter are described and the mechanism of DNA uptake is discussed. | 2021 | 34542714 |
| 9493 | 5 | 0.9998 | Regulatory integration of horizontally-transferred genes in bacteria. Horizontal transfer of genetic material is a fact of microbial life and bacteria can obtain new DNA sequences through the processes of conjugation, transduction and transformation. This offers the bacterium the possibility of evolving rapidly by importing new genes that code for new traits that may assist in environmental adaptation. Research in this area has focused in particular on the role of horizontal transfer in the dissemination through bacterial populations of genes for resistance to antimicrobial agents, including antibiotics. It is becoming clear that many other phenotypic characteristics have been acquired through horizontal routes and that these include traits contributing to pathogenesis and symbiosis. An important corollary to the acquisition of new genes is the problem of how best to integrate them in the existing gene regulatory circuits of the recipient so that fitness is not compromised initially and can be enhanced in the future through optimal expression of the new genes. | 2009 | 19273337 |
| 9215 | 6 | 0.9998 | Bacterial type IV secretion systems and spread of antimicrobial resistance: a study of potential inhibitors to T4SS-based resistance spread. Antimicrobial resistance (AMR) is a major global health threat, mainly driven by the rapid spread of resistance genes through horizontal gene transfer (HGT). The Type IV Secretion System (T4SS) acts as a crucial molecular machinery that facilitates this process, allowing bacteria to transfer DNA, effector proteins, and virulence factors. This review systematically explores the structural and functional diversity of T4SS, its role in spreading AMR, and current methods for its inhibition. T4SS consists of a multi-protein complex that spans bacterial membranes, mediating conjugative plasmid transfer, host-pathogen interactions, and bacterial competition. Key components include ATPases, pilus structures, and membrane-associated proteins that show both conserved features and species-specific adaptations. These traits enable functional specialization across Gram-positive and Gram-negative bacteria, significantly contributing to the spread of vital resistance genes like extended-spectrum β-lactamases and carbapenemases via mobile genetic elements. Several approaches have been developed to inhibit T4SS and combat AMR. Small molecules targeting ATPase activity or protein interactions are promising, as are natural phytochemicals that interfere with conjugation. Bacteriophage therapy provides another strategy by specifically targeting plasmid-carrying bacteria. Host immune responses, such as innate immune recognition and secretory immunoglobulins, also show potential to influence T4SS activity. Although progress has been made, challenges remain, especially in developing selective inhibition methods that do not harm beneficial microbiota or host cells. Future research should focus on high-resolution structural studies to support rational drug design and preclinical testing of combination therapies that include T4SS inhibitors with existing antibiotics. Gaining a deeper understanding of T4SS regulation and host-pathogen interactions will be vital for creating targeted AMR strategies that also maintain ecological balance. | 2025 | 40956426 |
| 9247 | 7 | 0.9998 | Horizontal gene transfer and the origin of species: lessons from bacteria. In bacteria, horizontal gene transfer (HGT) is widely recognized as the mechanism responsible for the widespread distribution of antibiotic resistance genes, gene clusters encoding biodegradative pathways and pathogenicity determinants. We propose that HGT is also responsible for speciation and sub-speciation in bacteria, and that HGT mechanisms exist in eukaryotes. | 2000 | 10707066 |
| 9724 | 8 | 0.9998 | Characteristics of phage-plasmids and their impact on microbial communities. Bacteria host various foreign genetic elements, most notably plasmids and bacteriophages (or phages). Historically, these two classes were seen as separate, but recent research has shown considerable interplay between them. Phage-plasmids (P-Ps) exhibit characteristics of both phages and plasmids, allowing them to exist extrachromosomally within bacterial hosts as plasmids, but also to infect and lyse bacteria as phages. This dual functionality enables P-Ps to utilize the modes of transmission of both phage and plasmids, facilitating the rapid dissemination of genetic material, including antibiotic resistance and virulence genes, throughout bacterial populations. Additionally, P-Ps have been found to encode toxin-antitoxin and CRISPR-Cas adaptive immune systems, which enhance bacterial survival under stress and provide immunity against other foreign genetic elements. Despite a growing body of literature on P-Ps, large gaps remain in our understanding of their ecological roles and environmental prevalence. This review aims to synthesise existing knowledge and identify research gaps on the impacts of P-Ps on microbial communities. | 2024 | 39611587 |
| 9838 | 9 | 0.9998 | Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmids are genetic elements that play a role in bacterial evolution by providing new genes that promote adaptation to diverse conditions. Plasmids are also known to reduce bacterial competitiveness in the absence of selection for plasmid-encoded traits. It is easier to understand plasmid persistence when considering the evidence that plasmid maintenance can improve during co-evolution with the bacterial host, i.e. the chromosome. However, bacteria isolated from nature often harbor diverse mobile elements: phages, transposons, genomic islands and even other plasmids. Recent interest has emerged on the role such elements play on the persistence and evolution of plasmids. Here, we mainly review interactions between different plasmids, but also discuss their interactions with other genetic elements. We focus on interactions that impact fundamental plasmid traits, such as the fitness effect imposed on their hosts and the transfer efficiency into new host cells. We illustrate these phenomena with examples concerning clinically relevant organisms and the spread of plasmids carrying antibiotic resistance genes and virulence factors. | 2019 | 30771401 |
| 9263 | 10 | 0.9998 | The F-pilus biomechanical adaptability accelerates conjugative dissemination of antimicrobial resistance and biofilm formation. Conjugation is used by bacteria to propagate antimicrobial resistance (AMR) in the environment. Central to this process are widespread conjugative F-pili that establish the connection between donor and recipient cells, thereby facilitating the spread of IncF plasmids among enteropathogenic bacteria. Here, we show that the F-pilus is highly flexible but robust at the same time, properties that increase its resistance to thermochemical and mechanical stresses. By a combination of biophysical and molecular dynamics methods, we establish that the presence of phosphatidylglycerol molecules in the F-pilus contributes to the structural stability of the polymer. Moreover, this structural stability is important for successful delivery of DNA during conjugation and facilitates rapid formation of biofilms in harsh environmental conditions. Thus, our work highlights the importance of F-pilus structural adaptations for the efficient spread of AMR genes in a bacterial population and for the formation of biofilms that protect against the action of antibiotics. | 2023 | 37019921 |
| 9285 | 11 | 0.9998 | Bacterial genetic exchange in nature. Most bacteria are haploid organisms containing only one copy of each gene per cell for most of the growth cycle. This means that the chance for correcting random mutations in bacterial genes would depend entirely on the complementarity inherent in DNA structures, unless homologous DNA sequences can be imported from outside the cell. Bacteria, like all living organisms have evolved at least one autonomous mechanism, conjugation, for exchanging portions of genetic materials between two related cells. The ecological benefits of conjugation include the expansion of metabolic versatility and resistance to hazardous environmental conditions. Natural bacterial genetic exchange also occurs through virus infections (transduction) and through the uptake of extracellular DNA (transformation). The origin and ecological benefits of transduction and transformation are difficult to assess because they are driven by factors external to the affected cell. Bacterial genetic exchange has implications for the evolution of phenotypes that are either beneficial to humans, such as biodegradation of toxic xenobiotic chemicals, or that are detrimental, such as the evolution of pathogenesis and the spread of antibiotic resistance. Understanding natural bacterial genetic exchange mechanisms is also relevant to the assessment of dispersal risks associated with genetically engineered bacteria and recombinant genes in the environment. | 1995 | 8533067 |
| 9709 | 12 | 0.9998 | Role of Plasmids in Plant-Bacteria Interactions. Plants are colonized by diverse microorganisms, which may positively or negatively influence the plant fitness. The positive impact includes nutrient acquisition, enhancement of resistance to biotic and abiotic stresses, both important factors for plant growth and survival, while plant pathogenic bacteria can cause diseases. Plant pathogens are adapted to negate or evade plant defense mechanisms, e.g. by the injection of effector proteins into the host cells or by avoiding the recognition by the host. Plasmids play an important role in the rapid bacterial adaptation to stresses and changing environmental conditions. In the plant environment, plasmids can further provide a selective advantage for the host bacteria, e.g. by carrying genes encoding metabolic pathways, metal and antibiotic resistances, or pathogenicity-related genes. However, we are only beginning to understand the role of mobile genetic elements and horizontal gene transfer for plant-associated bacteria. In this review, we aim to provide a short update on what is known about plasmids and horizontal gene transfer of plant associated bacteria and their role in plant-bacteria interactions. Furthermore, we discuss tools available to study the plant-associated mobilome, its transferability, and its bacterial hosts. | 2019 | 30070649 |
| 9246 | 13 | 0.9997 | Horizontal Gene Transfer Systems for Spread of Antibiotic Resistance in Gram-Negative Bacteria. Antibiotic-resistant bacteria have become a significant global threat to public health due to the increasing difficulty in treatment. These bacteria acquire resistance by incorporating various antibiotic resistance genes (ARGs) through specialized gene transfer mechanisms, allowing them to evade antibiotic attacks. Conjugation, transformation, and transduction are well-established mechanisms that drive the acquisition and dissemination of ARGs in Gram-negative bacteria. In particular, the horizontal transfer of plasmids carrying multiple ARGs is highly problematic, as it can instantly convert susceptible bacteria into multidrug-resistant ones. Transduction, mediated by bacteriophages that package ARG-containing chromosomal DNA from host cells, also plays a crucial role in ARG spread without requiring direct cell-to-cell contact. Recently, a novel horizontal gene transfer (HGT) mechanism involving outer membrane vesicles (OMVs) has been identified as a key player in ARG dissemination. OMVs-nanoscale, spherical structures produced by bacteria during growth-have been found to carry small plasmids and chromosomal DNA fragments containing ARGs from their host bacteria. This newly discovered transfer process, termed "vesiduction," enables intercellular DNA exchange and further contributes to the spread of antibiotic resistance. Additionally, mobile genetic elements such as transposons, insertion sequences, and site-specific recombination systems like integrons facilitate rearrangement of ARGs, including their translocation between chromosomes and plasmids. This review explores the molecular mechanisms underlying the HGT of ARGs, with a particular focus on clinically isolated antibiotic-resistant Gram-negative bacteria. | 2025 | 40370256 |
| 9664 | 14 | 0.9997 | Distribution of Genetic Determinants Associated with CRISPR-Cas Systems and Resistance to Antibiotics in the Genomes of Archaea and Bacteria. The CRISPR-Cas system represents an adaptive immune mechanism found across diverse Archaea and Bacteria, allowing them to defend against invading genetic elements such as viruses and plasmids. Despite its broad distribution, the prevalence and complexity of CRISPR-Cas systems differ significantly between these domains. This study aimed to characterize and compare the genomic distribution, structural features, and functional implications of CRISPR-Cas systems and associated antibiotic resistance genes in 30 archaeal and 30 bacterial genomes. Through bioinformatic analyses of CRISPR arrays, cas gene architectures, direct repeats (DRs), and thermodynamic properties, we observed that Archaea exhibit a higher number and greater complexity of CRISPR loci, with more diverse cas gene subtypes exclusively of Class 1. Bacteria, in contrast, showed fewer CRISPR loci, comprising a mix of Class 1 and Class 2 systems, with Class 1 representing the majority (~75%) of the detected systems. Notably, Bacteria lacking CRISPR-Cas systems displayed a higher prevalence of antibiotic resistance genes, suggesting a possible inverse correlation between the presence of these immune systems and the acquisition of such genes. Phylogenetic and thermodynamic analyses further highlighted domain-specific adaptations and conservation patterns. These findings support the hypothesis that CRISPR-Cas systems play a dual role: first, as a defense mechanism preventing the integration of foreign genetic material-reflected in the higher complexity and diversity of CRISPR loci in Archaea-and second, as a regulator of horizontal gene transfer, evidenced by the lower frequency of antibiotic resistance genes in organisms with active CRISPR-Cas systems. Together, these results underscore the evolutionary and functional diversification of CRISPR-Cas systems in response to environmental and selective pressures. | 2025 | 40572209 |
| 4009 | 15 | 0.9997 | Unraveling the role of mobile genetic elements in antibiotic resistance transmission and defense strategies in bacteria. Irrational antibiotic use contributes to the development of antibiotic resistance in bacteria, which is a major cause of healthcare-associated infections globally. Molecular research has shown that multiple resistance frequently develops from the uptake of pre-existing resistance genes, which are subsequently intensified under selective pressures. Resistant genes spread and are acquired through mobile genetic elements which are essential for facilitating horizontal gene transfer. MGEs have been identified as carriers of genetic material and are a significant player in evolutionary processes. These include insertion sequences, transposons, integrative and conjugative elements, plasmids, and genomic islands, all of which can transfer between and within DNA molecules. With an emphasis on pathogenic bacteria, this review highlights the salient features of the MGEs that contribute to the development and spread of antibiotic resistance. MGEs carry non-essential genes, including AMR and virulence genes, which can enhance the adaptability and fitness of their bacterial hosts. These elements employ evolutionary strategies to facilitate their replication and dissemination, thus enabling survival without positive selection for the harboring of beneficial genes. | 2025 | 40810119 |
| 9286 | 16 | 0.9997 | Bacterial sex in dental plaque. Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity. | 2013 | 23741559 |
| 9245 | 17 | 0.9997 | Type IV Coupling Proteins as Potential Targets to Control the Dissemination of Antibiotic Resistance. The increase of infections caused by multidrug-resistant bacteria, together with the loss of effectiveness of currently available antibiotics, represents one of the most serious threats to public health worldwide. The loss of human lives and the economic costs associated to the problem of the dissemination of antibiotic resistance require immediate action. Bacteria, known by their great genetic plasticity, are capable not only of mutating their genes to adapt to disturbances and environmental changes but also of acquiring new genes that allow them to survive in hostile environments, such as in the presence of antibiotics. One of the major mechanisms responsible for the horizontal acquisition of new genes (e.g., antibiotic resistance genes) is bacterial conjugation, a process mediated by mobile genetic elements such as conjugative plasmids and integrative conjugative elements. Conjugative plasmids harboring antibiotic resistance genes can be transferred from a donor to a recipient bacterium in a process that requires physical contact. After conjugation, the recipient bacterium not only harbors the antibiotic resistance genes but it can also transfer the acquired plasmid to other bacteria, thus contributing to the spread of antibiotic resistance. Conjugative plasmids have genes that encode all the proteins necessary for the conjugation to take place, such as the type IV coupling proteins (T4CPs) present in all conjugative plasmids. Type VI coupling proteins constitute a heterogeneous family of hexameric ATPases that use energy from the ATP hydrolysis for plasmid transfer. Taking into account their essential role in bacterial conjugation, T4CPs are attractive targets for the inhibition of bacterial conjugation and, concomitantly, the limitation of antibiotic resistance dissemination. This review aims to compile present knowledge on T4CPs as a starting point for delving into their molecular structure and functioning in future studies. Likewise, the scientific literature on bacterial conjugation inhibitors has been reviewed here, in an attempt to elucidate the possibility of designing T4CP-inhibitors as a potential solution to the dissemination of multidrug-resistant bacteria. | 2020 | 32903459 |
| 9295 | 18 | 0.9997 | Biological activities specified by antibiotic resistance plasmids. Bacteria can display resistance to a wide spectrum of noxious agents and environmental conditions, and these properties are often mediated by genes located on extrachromosomal DNA elements called plasmids. Replication, vertical and horizontal transmission and evolution of these elements are discussed, and examples of the genes responsible for the resistance phenotypes are given. Selective forces that drive the evolution of new combinations of bacterial properties of particular importance in clinical situations are analysed. | 1986 | 3542928 |
| 9722 | 19 | 0.9997 | The Role of Temperate Phages in Bacterial Pathogenicity. Bacteriophages are viruses that infect bacteria and archaea and are classified as virulent or temperate phages based on their life cycles. A temperate phage, also known as a lysogenic phage, integrates its genomes into host bacterial chromosomes as a prophage. Previous studies have indicated that temperate phages are beneficial to their susceptible bacterial hosts by introducing additional genes to bacterial chromosomes, creating a mutually beneficial relationship. This article reviewed three primary ways temperate phages contribute to the bacterial pathogenicity of foodborne pathogens, including phage-mediated virulence gene transfer, antibiotic resistance gene mobilization, and biofilm formation. This study provides insights into mechanisms of phage-bacterium interactions in the context of foodborne pathogens and provokes new considerations for further research to avoid the potential of phage-mediated harmful gene transfer in agricultural environments. | 2023 | 36985115 |