Antibiotic resistance modifying ability of phytoextracts in anthrax biological agent Bacillus anthracis and emerging superbugs: a review of synergistic mechanisms. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
922501.0000Antibiotic resistance modifying ability of phytoextracts in anthrax biological agent Bacillus anthracis and emerging superbugs: a review of synergistic mechanisms. BACKGROUND AND OBJECTIVES: The chemotherapeutic management of infections has become challenging due to the global emergence of antibiotic resistant pathogenic bacteria. The recent expansion of studies on plant-derived natural products has lead to the discovery of a plethora of phytochemicals with the potential to combat bacterial drug resistance via various mechanisms of action. This review paper summarizes the primary antibiotic resistance mechanisms of bacteria and also discusses the antibiotic-potentiating ability of phytoextracts and various classes of isolated phytochemicals in reversing antibiotic resistance in anthrax agent Bacillus anthracis and emerging superbug bacteria. METHODS: Growth inhibitory indices and fractional inhibitory concentration index were applied to evaluate the in vitro synergistic activity of phytoextract-antibiotic combinations in general. FINDINGS: A number of studies have indicated that plant-derived natural compounds are capable of significantly reducing the minimum inhibitory concentration of standard antibiotics by altering drug-resistance mechanisms of B. anthracis and other superbug infection causing bacteria. Phytochemical compounds allicin, oleanolic acid, epigallocatechin gallate and curcumin and Jatropha curcas extracts were exceptional synergistic potentiators of various standard antibiotics. CONCLUSION: Considering these facts, phytochemicals represents a valuable and novel source of bioactive compounds with potent antibiotic synergism to modulate bacterial drug-resistance.202134856999
911610.9994Photosensitizer associated with efflux pump inhibitors as a strategy for photodynamic therapy against bacterial resistance. Antimicrobial resistance is currently one of the biggest challenges in controlling infectious diseases and was listed among the top 10 threats to global health by the World Health Organization (WHO) in 2023. The antibiotics misuse has led to the widespread emergence of antimicrobial resistance, marking the beginning of the alarming increase in antibiotic resistance. In this context, Antimicrobial Photodynamic Therapy (aPDT) has garnered significant attention from the scientific community due to its potential to effectively eliminate multidrug-resistant pathogenic bacteria and its low propensity to induce drug resistance, which bacteria can quickly develop against traditional antibiotic treatments. However, some efflux pumps can expel diverse substrates from inside the cell, including photosensitizers used in aPDT, contributing to multidrug-resistance mechanisms. Efflux Pump Inhibitors are potential solutions to combat resistance mediated by these pumps and can play a crucial role in enhancing aPDT's effectiveness against multidrug-resistant bacteria. Therefore, combining efflux pumps inhibitors with photosensitizers can possible to eliminate the pathogen more efficiently. This review summarizes the mechanisms in which bacteria resist conventional antibiotic treatment, with a particular emphasis on efflux pump-mediated resistance, and present aPDT as a promising strategy to combat antibiotic resistance. Additionally, we highlighted several molecules of photosensitizer associated with efflux pump inhibitors as potential strategies to optimize aPDT, aiming to offer a perspective on future research directions on aPDT for overcoming the limitations of antibiotic resistance.202539731789
944120.9994Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. BACKGROUND: Antibiotic resistance is currently the most serious global threat to the effective treatment of bacterial infections. Antibiotic resistance has been established to adversely affect both clinical and therapeutic outcomes, with consequences ranging from treatment failures and the need for expensive and safer alternative drugs to the cost of higher rates of morbidity and mortality, longer hospitalization, and high-healthcare costs. The search for new antibiotics and other antimicrobials continues to be a pressing need in humanity's battle against bacterial infections. Antibiotic resistance appears inevitable, and there is a continuous lack of interest in investing in new antibiotic research by pharmaceutical industries. This review summarized some new strategies for tackling antibiotic resistance in bacteria. METHODS: To provide an overview of the recent research, we look at some new strategies for preventing resistance and/or reviving bacteria's susceptibility to already existing antibiotics. RESULTS: Substantial pieces of evidence suggest that antimicrobials interact with host immunity, leading to potent indirect effects that improve antibacterial activities and may result in more swift and complete bactericidal effects. A new class of antibiotics referred to as immuno-antibiotics and the targeting of some biochemical resistance pathway components including inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria can be considered as new emerging strategies to combat antibiotic resistance in bacteria. CONCLUSION: This review highlighted and discussed immuno-antibiotics and inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria as new weapons against antibiotic resistance in bacteria.202235949048
953830.9994The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Bacterial drug resistance is rapidly developing as one of the greatest threats to human health. Bacteria will adopt corresponding strategies to crack the inhibitory effect of antibiotics according to the antibacterial mechanism of antibiotics, involving the mutation of drug target, secreting hydrolase, and discharging antibiotics out of cells through an efflux pump, etc. In recent years, bacteria are found to constantly evolve new resistance mechanisms to antibiotics, including target protective protein, changes in cell morphology, and so on, endowing them with multiple defense systems against antibiotics, leading to the emergence of multi-drug resistant (MDR) bacteria and the unavailability of drugs in clinics. Correspondingly, researchers attempt to uncover the mystery of bacterial resistance to develop more convenient and effective antibacterial strategies. Although traditional antibiotics still play a significant role in the treatment of diseases caused by sensitive pathogenic bacteria, they gradually lose efficacy in the MDR bacteria. Therefore, highly effective antibacterial compounds, such as phage therapy and CRISPER-Cas precision therapy, are gaining an increasing amount of attention, and are considered to be the treatments with the moist potential with regard to resistance against MDR in the future. In this review, nine identified drug resistance mechanisms are summarized, which enhance the retention rate of bacteria under the action of antibiotics and promote the distribution of drug-resistant bacteria (DRB) in the population. Afterwards, three kinds of potential antibacterial methods are introduced, in which new antibacterial compounds exhibit broad application prospects with different action mechanisms, the phage therapy has been successfully applied to infectious diseases caused by super bacteria, and the CRISPER-Cas precision therapy as a new technology can edit drug-resistant genes in pathogenic bacteria at the gene level, with high accuracy and flexibility. These antibacterial methods will provide more options for clinical treatment, and will greatly alleviate the current drug-resistant crisis.202236139994
911240.9993Non-antibiotic methods against Pseudomonas aeruginosa include QS inhibitors: a narrative review. The prevalence of antibiotic resistance is a growing worldwide problem in the control of pathogens, particularly negative bacteria that are resistant to antibiotics, Pseudomonas aeruginosa (PA) is one of these bacteria. The development of new effective antibiotics is time-consuming and costly, and the new antibiotics may become resistant again. Therefore, non-antibiotic clinical treatment for antibiotic-resistant PA infection is necessary and needs to be strengthened. The antibiotic resistance (AR) mechanism of PA is complex. Biofilm formation is one of the reasons why its resistance is difficult to overcome. The formation of biofilms is mainly regulated by quorum sensing (QS). QS is a mechanism by which PA increases its virulence by producing small diffusible molecules, which regulates a series of genes associated with virulence and nutrient acquisition. QS inhibitors are potions that obstruct QS systems in bacteria and destruction of virulence. This review summarizes AR mechanism of PA, Basic knowledge of QS of PA and some non-antibiotic methods for inhibiting PA, including QS inhibitors, which have potential and far-reaching significance for antibiotic-resistant PA's clinical treatment. The review helps to provide new ideas and new schemes for clinical anti-PA infection research and treatment, and has positive significance for delaying the occurrence of bacterial drug resistance and antibiotic use management.202134044573
953950.9993Materials for restoring lost Activity: Old drugs for new bugs. The escalation of bacterial resistance to conventional medical antibiotics is a serious concern worldwide. Improvements to current therapies are urgently needed to address this problem. The synergistic combination of antibiotics with other agents is a strategic solution to combat multi-drug-resistant bacteria. Although these combinations decrease the required high dosages and therefore, reduce the toxicity of both agents without compromising the bactericidal effect, they cannot stop the development of further resistance. Recent studies have shown certain elements restore the ability of antibiotics to destroy bacteria that have acquired resistance to them. Due to these synergistic activities, organic and inorganic molecules have been investigated with the goal of restoring antibiotics in new approaches that mitigate the risk of expanding resistance. Herein, we summarize recent studies that restore antibiotics once thought to be ineffective, but have returned to our armamentarium through innovative, combinatorial efforts. A special focus is placed on the mechanisms that allow the synergistic combinations to combat bacteria. The promising data that demonstrated restoration of antimicrobials, supports the notion to find more combinations that can combat antibiotic-resistant bacteria.202235461913
980360.9993Combating antibiotic resistance in bacteria. Combinations of certain antibiotics select against resistant strains of bacteria. This finding may provide a strategy of combating antibiotic resistant bacteria.200723100665
818270.9993Antibiotics in Food Chain: The Consequences for Antibiotic Resistance. Antibiotics have been used as essential therapeutics for nearly 100 years and, increasingly, as a preventive agent in the agricultural and animal industry. Continuous use and misuse of antibiotics have provoked the development of antibiotic resistant bacteria that progressively increased mortality from multidrug-resistant bacterial infections, thereby posing a tremendous threat to public health. The goal of our review is to advance the understanding of mechanisms of dissemination and the development of antibiotic resistance genes in the context of nutrition and related clinical, agricultural, veterinary, and environmental settings. We conclude with an overview of alternative strategies, including probiotics, essential oils, vaccines, and antibodies, as primary or adjunct preventive antimicrobial measures or therapies against multidrug-resistant bacterial infections. The solution for antibiotic resistance will require comprehensive and incessant efforts of policymakers in agriculture along with the development of alternative therapeutics by experts in diverse fields of microbiology, biochemistry, clinical research, genetic, and computational engineering.202033066005
816780.9993Metal complexes against multidrug-resistant bacteria: recent advances (2020-present). The increasing prevalence of multidrug-resistant (MDR) bacterial infections worldwide represents a critical challenge to contemporary healthcare, with high mortality rates attributed primarily to biofilm formation and the widespread dissemination of antibiotic resistance genes. Metal complexes have emerged as promising candidates for combating resistant pathogens owing to their distinctive multi-target mechanisms. These compounds demonstrate dual functionality by effectively penetrating bacterial biofilms while simultaneously exerting antimicrobial effects through multiple pathways, including the production of reactive oxygen species (ROS) and interference with essential metal homeostasis. The growing inadequacy of conventional antibiotics against resistant infections necessitates the development of novel metal-based antimicrobial agents with low resistance propensity, high efficacy, and minimal toxicity profiles. The clinical validation of metallodrugs like auranofin provides a crucial foundation for designing next-generation anti-MDR therapeutics. Notably, complexes of gold (Au), silver (Ag), copper (Cu), gallium (Ga), iridium (Ir), and ruthenium (Ru) demonstrate multifaceted mechanisms of action through selective targeting of bacterial resistance mechanisms. These attributes enable them to provide a strategic framework for developing next-generation metal-based antibacterials. This review systematically summarizes the recent advances (2020-present) in the design and application of the complexes of these six metals against MDR bacteria, emphasizing their structural motifs, antimicrobial potency, and mechanistic insights. The presented insights provide novel approaches to combat the intensifying global challenge of antibiotic resistance.202541091096
954490.9993Nano-Strategies to Fight Multidrug Resistant Bacteria-"A Battle of the Titans". Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.201830013539
9540100.9993Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.201122029522
9115110.9993RND Efflux Pump Induction: A Crucial Network Unveiling Adaptive Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. The rise of multi-drug-resistant (MDR) pathogenic bacteria presents a grave challenge to global public health, with antimicrobial resistance ranking as the third leading cause of mortality worldwide. Understanding the mechanisms underlying antibiotic resistance is crucial for developing effective treatments. Efflux pumps, particularly those of the resistance-nodulation-cell division (RND) superfamily, play a significant role in expelling molecules from bacterial cells, contributing to the emergence of multi-drug resistance. These are transmembrane transporters naturally produced by Gram-negative bacteria. This review provides comprehensive insights into the modulation of RND efflux pump expression in bacterial pathogens by numerous and common molecules (bile, biocides, pharmaceuticals, additives, plant extracts, etc.). The interplay between these molecules and efflux pump regulators underscores the complexity of antibiotic resistance mechanisms. The clinical implications of efflux pump induction by non-antibiotic compounds highlight the challenges posed to public health and the urgent need for further investigation. By addressing antibiotic resistance from multiple angles, we can mitigate its impact and preserve the efficacy of antimicrobial therapies.202438927168
9519120.9993A comprehensive review on pharmacology of efflux pumps and their inhibitors in antibiotic resistance. The potential for the build-up of resistance to a particular antibiotic endangers its therapeutic application over time. In recent decades, antibiotic resistance has become one of the most severe threats to public health. It can be attributed to the relentless and unchecked use of antibiotics in healthcare sectors, cell culture, animal husbandry, and agriculture. Some classic examples of resistance mechanisms employed by bacteria include developing antibiotic degrading enzymes, modifying target sites previously targeted by antibiotics, and developing efflux mechanisms. Studies have shown that while some efflux pumps selectively extrude certain antibiotics, others extrude a structurally diverse class of antibiotics. Such extrusion of a structurally diverse class of antibiotics gives rise to multi-drug resistant (MDR) bacteria. These mechanisms are observed in gram-positive and gram-negative bacteria alike. Therefore, efflux pumps find their place in the list of high-priority targets for the treatment of antibiotic-resistance in bacteria mediated by efflux. Studies showed a significant escalation in bacteria's susceptibility to a particular antibiotic drug when tested with an efflux pump inhibitor (EPI) compared to when it was tested with the antibiotic drug alone. This review discusses the pharmacology, current status, and the future of EPIs in antibiotic resistance.202133964293
9804130.9993Antimicrobial Peptides as an Alternative for the Eradication of Bacterial Biofilms of Multi-Drug Resistant Bacteria. Bacterial resistance is an emergency public health problem worldwide, compounded by the ability of bacteria to form biofilms, mainly in seriously ill hospitalized patients. The World Health Organization has published a list of priority bacteria that should be studied and, in turn, has encouraged the development of new drugs. Herein, we explain the importance of studying new molecules such as antimicrobial peptides (AMPs) with potential against multi-drug resistant (MDR) and extensively drug-resistant (XDR) bacteria and focus on the inhibition of biofilm formation. This review describes the main causes of antimicrobial resistance and biofilm formation, as well as the main and potential AMP applications against these bacteria. Our results suggest that the new biomacromolecules to be discovered and studied should focus on this group of dangerous and highly infectious bacteria. Alternative molecules such as AMPs could contribute to eradicating biofilm proliferation by MDR/XDR bacteria; this is a challenging undertaking with promising prospects.202235336016
9546140.9993Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria. Bacterial resistance has intensified in recent years due to the uncontrolled use of conventional drugs, and new bacterial strains with multiple resistance have been reported. This problem may be solved by using antimicrobial peptides (AMPs), which fulfill their bactericidal activity without developing much bacterial resistance. The rapid interaction between AMPs and the bacterial cell membrane means that the bacteria cannot easily develop resistance mechanisms. In addition, various drugs for clinical use have lost their effect as a conventional treatment; however, the synergistic effect of AMPs with these drugs would help to reactivate and enhance antimicrobial activity. Their efficiency against multi-resistant and extensively resistant bacteria has positioned them as promising molecules to replace or improve conventional drugs. In this review, we examined the importance of antimicrobial peptides and their successful activity against critical and high-priority bacteria published in the WHO list.202134064302
9142150.9993Mechanism of antibacterial phytoconstituents: an updated review. The increase of multiple drug resistance bacteria significantly diminishes the effectiveness of antibiotic armory and subsequently exaggerates the level of therapeutic failure. Phytoconstituents are exceptional substitutes for resistance-modifying vehicles. The plants appear to be a deep well for the discovery of novel antibacterial compounds. This is owing to the numerous enticing characteristics of plants, they are easily accessible and inexpensive, extracts or chemicals derived from plants typically have significant levels of action against infections, and they rarely cause serious adverse effects. The enormous selection of phytochemicals offers very distinct chemical structures that may provide both novel mechanisms of antimicrobial activity and deliver us with different targets in the interior of the bacterial cell. They can directly affect bacteria or act together with the crucial events of pathogenicity, in this manner decreasing the aptitude of bacteria to create resistance. Abundant phytoconstituents demonstrate various mechanisms of action toward multi drug resistance bacteria. Overall, this comprehensive review will provide insights into the potential of phytoconstituents as alternative treatments for bacterial infections, particularly those caused by multi drug resistance strains. By examining the current state of research in this area, the review will shed light on potential future directions for the development of new antimicrobial therapies.202438913205
9549160.9993Mechanism of escape from the antibacterial activity of metal-based nanoparticles in clinically relevant bacteria: A systematic review. The emergency of antibiotic-resistant bacteria in severe infections is increasing, especially in nosocomial environments. The ESKAPE group is of special importance in the groups of multi-resistant bacteria due to its high capacity to generate resistance to antibiotics and bactericides. Therefore, metal-based nanomaterials are an attractive alternative to combat them because they have been demonstrated to damage biomolecules in the bacterial cells. However, there is a concern about bacteria developing resistance to NPs and their harmful effects due to environmental accumulation. Therefore, this systematic review aims to report the clinically relevant bacteria that have developed resistance to the NPs. According to the results of this systematic review, various mechanisms to counteract the antimicrobial activity of various NP types have been proposed. These mechanisms can be grouped into the following categories: production of extracellular compounds, metal efflux pumps, ROS response, genetic changes, DNA repair, adaptative morphogenesis, and changes in the plasma membrane.202437907198
9548170.9993Molecular Mechanisms of Bacterial Resistance to Metal and Metal Oxide Nanoparticles. The increase in bacterial resistance to one or several antibiotics has become a global health problem. Recently, nanomaterials have become a tool against multidrug-resistant bacteria. The metal and metal oxide nanoparticles are one of the most studied nanomaterials against multidrug-resistant bacteria. Several in vitro studies report that metal nanoparticles have antimicrobial properties against a broad spectrum of bacterial species. However, until recently, the bacterial resistance mechanisms to the bactericidal action of the nanoparticles had not been investigated. Some of the recently reported resistance mechanisms include electrostatic repulsion, ion efflux pumps, expression of extracellular matrices, and the adaptation of biofilms and mutations. The objective of this review is to summarize the recent findings regarding the mechanisms used by bacteria to counteract the antimicrobial effects of nanoparticles.201931181755
9516180.9993Genetic Mechanisms of Antibiotic Resistance and the Role of Antibiotic Adjuvants. The ever increasing number of multidrug-resistant microorganism pathogens has become a great and global public health threat. Antibiotic mechanisms of action and the opposing mechanisms of resistance are intimately associated, but comprehension of the biochemical and molecular functions of such drugs is not a simple exercise. Both the environment, and genetic settings contribute to alterations in phenotypic resistance (natural bacterial evolution), and make it difficult to control the emergence and impacts of antibiotic resistance. Under such circumstances, comprehension of how bacteria develop and/or acquire antibiotic resistance genes (ARG) has a critical role in developing propositions to fight against these superbugs, and to search for new drugs. In this review, we present and discuss both general information and examples of common genetic and molecular mechanisms related to antibiotic resistance, as well as how the expression and interactions of ARGs are important to drug resistance. At the same time, we focus on the recent achievements in the search for antibiotic adjuvants, which help combat antibiotic resistance through deactivation of bacterial mechanisms of action such as β-lactamases. Recent advances involving the use of anti-resistance drugs such as: efflux pump inhibitors; anti-virulence drugs; drugs against quorum sensing; and against type II/III secretion systems are revealed. Such antibiotic adjuvants (as explored herein) collaborate against the problems of antibiotic resistance, and may restore or prolong the therapeutic activity of known antibiotics.201829412107
9447190.9993Modern vaccine development via reverse vaccinology to combat antimicrobial resistance. With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.202235642852