Bacterial proton motive force as an unprecedented target to control antimicrobial resistance. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
922201.0000Bacterial proton motive force as an unprecedented target to control antimicrobial resistance. Novel antibacterial therapies are urgently required to tackle the increasing number of multidrug-resistant pathogens. Identification of new antimicrobial targets is critical to avoid possible cross-resistance issues. Bacterial proton motive force (PMF), an energetic pathway located on the bacterial membrane, crucially regulates various biological possesses such as adenosine triphosphate synthesis, active transport of molecules, and rotation of bacterial flagella. Nevertheless, the potential of bacterial PMF as an antibacterial target remains largely unexplored. The PMF generally comprises electric potential (ΔΨ) and transmembrane proton gradient (ΔpH). In this review, we present an overview of bacterial PMF, including its functions and characterizations, highlighting the representative antimicrobial agents that specifically target either ΔΨ or ΔpH. At the same time, we also discuss the adjuvant potential of bacterial PMF-targeting compounds. Lastly, we highlight the value of PMF disruptors in preventing the transmission of antibiotic resistance genes. These findings suggest that bacterial PMF represents an unprecedented target, providing a comprehensive approach to controlling antimicrobial resistance.202336896761
922110.9994Breaking antimicrobial resistance by disrupting extracytoplasmic protein folding. Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here, we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse β-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug-resistant Pseudomonas aeruginosa. This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers.202235025730
912020.9993The culmination of multidrug-resistant efflux pumps vs. meager antibiotic arsenal era: Urgent need for an improved new generation of EPIs. Efflux pumps function as an advanced defense system against antimicrobials by reducing the concentration of drugs inside the bacteria and extruding the substances outside. Various extraneous substances, including antimicrobials, toxic heavy metals, dyes, and detergents, have been removed by this protective barrier composed of diverse transporter proteins found in between the cell membrane and the periplasm within the bacterial cell. In this review, multiple efflux pump families have been analytically and widely outlined, and their potential applications have been discussed in detail. Additionally, this review also discusses a variety of biological functions of efflux pumps, including their role in the formation of biofilms, quorum sensing, their survivability, and the virulence in bacteria, and the genes/proteins associated with efflux pumps have also been explored for their potential relevance to antimicrobial resistance and antibiotic residue detection. A final discussion centers around efflux pump inhibitors, particularly those derived from plants.202337138605
911930.9993Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview. Multidrug efflux pumps function at the frontline to protect bacteria against antimicrobials by decreasing the intracellular concentration of drugs. This protective barrier consists of a series of transporter proteins, which are located in the bacterial cell membrane and periplasm and remove diverse extraneous substrates, including antimicrobials, organic solvents, toxic heavy metals, etc., from bacterial cells. This review systematically and comprehensively summarizes the functions of multiple efflux pumps families and discusses their potential applications. The biological functions of efflux pumps including their promotion of multidrug resistance, biofilm formation, quorum sensing, and survival and pathogenicity of bacteria are elucidated. The potential applications of efflux pump-related genes/proteins for the detection of antibiotic residues and antimicrobial resistance are also analyzed. Last but not least, efflux pump inhibitors, especially those of plant origin, are discussed.202235453271
912840.9993Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.202439065030
914950.9993Smart Multifunctional Polymer Systems as Alternatives or Supplements of Antibiotics To Overcome Bacterial Resistance. In recent years, infectious diseases have again become a critical threat to global public health largely due to the challenges posed by antimicrobial resistance. Conventional antibiotics have played a crucial role in combating bacterial infections; however, their efficacy is significantly impaired by widespread drug resistance. Natural antimicrobial peptides (AMPs) and their polymeric mimics demonstrate great potential for killing bacteria with low propensity of resistance as they target the microbial membrane rather than a specific molecular target, but they are also toxic to the host eukaryotic cells. To minimize antibiotics systemic spread and the required dose that promote resistance and to advocate practical realization of the promising activity of AMPs and polymers, smart systems to target bacteria are highly sought after. This review presents bacterial recognition by various specific targeting molecules and the delivery systems of active components in supramolecules. Bacteria-induced activations of antimicrobial-based nanoformulations are also included. Recent advances in the bacteria targeting and delivery of synthetic antimicrobial agents may assist in developing new classes of highly selective antimicrobial systems which can improve bactericidal efficacy and greatly minimize the spread of bacterial resistance.202235471022
914660.9992Emergence of microbial resistance against nanoparticles: Mechanisms and strategies. Antimicrobial nanoparticles have gained the status of a new generation of drugs that can kill bacterial pathogens by multiple means; however, nanoparticle resistance acquired by some bacterial pathogens has evoked a cause of concern. Several reports suggested that bacteria can develop nanoparticles, specifically metal nanoparticle resistance, by mechanisms: nanoparticle transformation-induced oxidative stress, membrane alterations, reversible adaptive resistance, irreversible modifications to cell division, and a change in bacterial motility and resistance. Surface properties, concentration and aggregation of nanoparticles, biofilm forming and metal exclusion capacity, and R plasmid and flagellin synthesis by bacteria are crucial factors in the development of nanoparticle resistance in bacteria. Studies reported the resistance reversal by modifying the surface corona of nanoparticles or inhibiting flagellin production by bacterial pathogens. Furthermore, strict regulation regarding the use and disposal of nano-waste across the globe, the firm knowledge of microbe-nanoparticle interaction, and the regulated disposal of nanoparticles in soil and water is required to prevent microbes from developing nanoparticle resistance.202336778867
914570.9992A mechanistic perspective on targeting bacterial drug resistance with nanoparticles. Bacterial infections are an important cause of mortality worldwide owing to the prevalence of drug resistant bacteria. Bacteria develop resistance against antimicrobial drugs by several mechanisms such as enzyme inactivation, reduced cell permeability, modifying target site or enzyme, enhanced efflux because of high expression of efflux pumps, biofilm formation or drug-resistance gene expression. New and alternative ways such as nanoparticle (NP) applications are being established to overcome the growing multidrug-resistance in bacteria. NPs have unique antimicrobial characteristics that make them appropriate for medical application to overcome antibiotic resistance. The proposed antibacterial mechanisms of NPs are cell membrane damage, changing cell wall penetration, reactive oxygen species (ROS) production, effect on DNA and proteins, and impact on biofilm formation. The present review mainly focuses on discussing various mechanisms of bacterial drug resistance and the applications of NPs as alternative antibacterial systems. Combination therapy of NPs and antibiotics as a novel approach in medicine towards antimicrobial resistance is also discussed.202133703979
913380.9992Overcoming antimicrobial resistance by targeting resistance mechanisms. Three mechanisms of antimicrobial resistance predominate in bacteria: antibiotic inactivation, target site modification, and altered uptake by way of restricted entry and/or enhanced efflux. Many of these involve enzymes or transport proteins whose activity can be targeted directly in an attemptto compromise resistance and, thus, potentiate antimicrobial activity. Alternatively, novel agents unaffected by these resistance mechanisms can be developed. Given the ongoing challenge posed by antimicrobial resistance in bacteria, targeting resistance in this way may be our best hope at prolonging the antibiotic era.200111291743
917190.9992Small molecules modulating AHL-based quorum sensing to attenuate bacteria virulence and biofilms as promising antimicrobial drugs. Clinically significant antibiotic resistance is one of the greatest challenges of the twenty-first century. Yet new antibiotics are currently being developed at a much slower pace than our growing need for such drugs. Instead of focusing on conventional therapeutics that target in vitro bacterial viability, an alternative therapy is to target virulence factors and biofilms. Such anti-virulence strategies have attracted more and more attention recently, for it would add both supplement and diversity to our current antimicrobial library. This approach has several potential advantages including imposing less evolutionary pressure on the development of antibiotic resistance, increasing the antibacterial targets and preserving the host endogenous microbiome. Quorum sensing is an intercellular communication process in bacterial communities, which can regulate coordinated expression of virulence factors and biofilms. N-Acyl homoserine lactones (AHLs) are autoinducers generated by a variety of Gram-negative bacteria. These signals combining with their cognate LuxR-type receptors trigger the expression of virulence genes. In this critical review, we summarize various structural types of small molecules targeting AHL-based quorum sensing to attenuate bacteria virulence factors and biofilms.201424164200
8289100.9992Roles of Regulatory RNAs for Antibiotic Resistance in Bacteria and Their Potential Value as Novel Drug Targets. The emergence of antibiotic resistance mechanisms among bacterial pathogens increases the demand for novel treatment strategies. Lately, the contribution of non-coding RNAs to antibiotic resistance and their potential value as drug targets became evident. RNA attenuator elements in mRNA leader regions couple expression of resistance genes to the presence of the cognate antibiotic. Trans-encoded small RNAs (sRNAs) modulate antibiotic tolerance by base-pairing with mRNAs encoding functions important for resistance such as metabolic enzymes, drug efflux pumps, or transport proteins. Bacteria respond with extensive changes of their sRNA repertoire to antibiotics. Each antibiotic generates a unique sRNA profile possibly causing downstream effects that may help to overcome the antibiotic challenge. In consequence, regulatory RNAs including sRNAs and their protein interaction partners such as Hfq may prove useful as targets for antimicrobial chemotherapy. Indeed, several compounds have been developed that kill bacteria by mimicking ligands for riboswitches controlling essential genes, demonstrating that regulatory RNA elements are druggable targets. Drugs acting on sRNAs are considered for combined therapies to treat infections. In this review, we address how regulatory RNAs respond to and establish resistance to antibiotics in bacteria. Approaches to target RNAs involved in intrinsic antibiotic resistance or virulence for chemotherapy will be discussed.201728529506
9528110.9992Polycarbonates with Potent and Selective Antimicrobial Activity toward Gram-Positive Bacteria. The resistance developed by life-threatening bacteria toward conventional antibiotics has become a major concern in public health. To combat antibiotic resistance, there has been a significant interest in the development of antimicrobial cationic polymers due to the ease of synthesis and low manufacturing cost compared to host-defense peptides (HDPs). Herein, we report the design and synthesis of amphiphilic polycarbonates containing primary amino groups. These polymers exhibit potent antimicrobial activity and excellent selectivity to Gram-positive bacteria, including multidrug resistant pathogens. Fluorescence and TEM studies suggest that these polymers are likely to kill bacteria by disrupting bacterial membranes. These polymers also show low tendency to elicit resistance in bacteria. Their further development may lead to new antimicrobial agents combating drug-resistance.201728064500
9129120.9992Overcoming Intrinsic and Acquired Resistance Mechanisms Associated with the Cell Wall of Gram-Negative Bacteria. The global increase in multi-drug-resistant bacteria is severely impacting our ability to effectively treat common infections. For Gram-negative bacteria, their intrinsic and acquired resistance mechanisms are heightened by their unique cell wall structure. The cell wall, while being a target of some antibiotics, represents a barrier due to the inability of most antibacterial compounds to traverse and reach their intended target. This means that its composition and resulting mechanisms of resistance must be considered when developing new therapies. Here, we discuss potential antibiotic targets within the most well-characterised resistance mechanisms associated with the cell wall in Gram-negative bacteria, including the outer membrane structure, porins and efflux pumps. We also provide a timely update on the current progress of inhibitor development in these areas. Such compounds could represent new avenues for drug discovery as well as adjuvant therapy to help us overcome antibiotic resistance.202032961699
9215130.9992Bacterial type IV secretion systems and spread of antimicrobial resistance: a study of potential inhibitors to T4SS-based resistance spread. Antimicrobial resistance (AMR) is a major global health threat, mainly driven by the rapid spread of resistance genes through horizontal gene transfer (HGT). The Type IV Secretion System (T4SS) acts as a crucial molecular machinery that facilitates this process, allowing bacteria to transfer DNA, effector proteins, and virulence factors. This review systematically explores the structural and functional diversity of T4SS, its role in spreading AMR, and current methods for its inhibition. T4SS consists of a multi-protein complex that spans bacterial membranes, mediating conjugative plasmid transfer, host-pathogen interactions, and bacterial competition. Key components include ATPases, pilus structures, and membrane-associated proteins that show both conserved features and species-specific adaptations. These traits enable functional specialization across Gram-positive and Gram-negative bacteria, significantly contributing to the spread of vital resistance genes like extended-spectrum β-lactamases and carbapenemases via mobile genetic elements. Several approaches have been developed to inhibit T4SS and combat AMR. Small molecules targeting ATPase activity or protein interactions are promising, as are natural phytochemicals that interfere with conjugation. Bacteriophage therapy provides another strategy by specifically targeting plasmid-carrying bacteria. Host immune responses, such as innate immune recognition and secretory immunoglobulins, also show potential to influence T4SS activity. Although progress has been made, challenges remain, especially in developing selective inhibition methods that do not harm beneficial microbiota or host cells. Future research should focus on high-resolution structural studies to support rational drug design and preclinical testing of combination therapies that include T4SS inhibitors with existing antibiotics. Gaining a deeper understanding of T4SS regulation and host-pathogen interactions will be vital for creating targeted AMR strategies that also maintain ecological balance.202540956426
9144140.9992Metal nanoparticles: understanding the mechanisms behind antibacterial activity. As the field of nanomedicine emerges, there is a lag in research surrounding the topic of nanoparticle (NP) toxicity, particularly concerned with mechanisms of action. The continuous emergence of bacterial resistance has challenged the research community to develop novel antibiotic agents. Metal NPs are among the most promising of these because show strong antibacterial activity. This review summarizes and discusses proposed mechanisms of antibacterial action of different metal NPs. These mechanisms of bacterial killing include the production of reactive oxygen species, cation release, biomolecule damages, ATP depletion, and membrane interaction. Finally, a comprehensive analysis of the effects of NPs on the regulation of genes and proteins (transcriptomic and proteomic) profiles is discussed.201728974225
8343150.9992Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Bacteria can be adapted to adverse and detrimental conditions that induce general and specific responses to DNA damage as well as acid, heat, cold, starvation, oxidative, envelope, and osmotic stresses. The stress-triggered regulatory systems are involved in bacterial survival processes, such as adaptation, physiological changes, virulence potential, and antibiotic resistance. Antibiotic susceptibility to several antibiotics is reduced due to the activation of stress responses in cellular physiology by the stimulation of resistance mechanisms, the promotion of a resistant lifestyle (biofilm or persistence), and/or the induction of resistance mutations. Hence, the activation of bacterial stress responses poses a serious threat to the efficacy and clinical success of antibiotic therapy. Bacterial stress responses can be potential targets for therapeutic alternatives to antibiotics. An understanding of the regulation of stress response in association with antibiotic resistance provides useful information for the discovery of novel antimicrobial adjuvants and the development of effective therapeutic strategies to control antibiotic resistance in bacteria. Therefore, this review discusses bacterial stress responses linked to antibiotic resistance in Gram-negative bacteria and also provides information on novel therapies targeting bacterial stress responses that have been identified as potential candidates for the effective control of Gram-negative antibiotic-resistant bacteria.202235889104
9115160.9992RND Efflux Pump Induction: A Crucial Network Unveiling Adaptive Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. The rise of multi-drug-resistant (MDR) pathogenic bacteria presents a grave challenge to global public health, with antimicrobial resistance ranking as the third leading cause of mortality worldwide. Understanding the mechanisms underlying antibiotic resistance is crucial for developing effective treatments. Efflux pumps, particularly those of the resistance-nodulation-cell division (RND) superfamily, play a significant role in expelling molecules from bacterial cells, contributing to the emergence of multi-drug resistance. These are transmembrane transporters naturally produced by Gram-negative bacteria. This review provides comprehensive insights into the modulation of RND efflux pump expression in bacterial pathogens by numerous and common molecules (bile, biocides, pharmaceuticals, additives, plant extracts, etc.). The interplay between these molecules and efflux pump regulators underscores the complexity of antibiotic resistance mechanisms. The clinical implications of efflux pump induction by non-antibiotic compounds highlight the challenges posed to public health and the urgent need for further investigation. By addressing antibiotic resistance from multiple angles, we can mitigate its impact and preserve the efficacy of antimicrobial therapies.202438927168
9122170.9992The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria. Antibiotic resistance is a global issue that threatens our progress in healthcare and life expectancy. In recent years, antimicrobial peptides (AMPs) have been considered as promising alternatives to the classic antibiotics. AMPs are potentially superior due to their lower rate of resistance development, since they primarily target the bacterial membrane ('Achilles' heel' of the bacteria). However, bacteria have developed mechanisms of AMP resistance, including the removal of AMPs to the extracellular space by efflux pumps such as the MtrCDE or AcrAB-TolC systems, and the internalization of AMPs to the cytoplasm by the Sap transporter, followed by proteolytic digestion. In this review, we focus on AMP transport as a resistance mechanism compiling all the experimental evidence for the involvement of efflux in AMP resistance in Gram-negative bacteria and combine this information with the analysis of the structures of the efflux systems involved. Finally, we expose some open questions with the aim of arousing the interest of the scientific community towards the AMPs-efflux pumps interactions. All the collected information broadens our understanding of AMP removal by efflux pumps and gives some clues to assist the rational design of AMP-derivatives as inhibitors of the efflux pumps.202235749576
9125180.9992Coevolution of Resistance Against Antimicrobial Peptides. Antimicrobial peptides (AMPs) are produced by all forms of life, ranging from eukaryotes to prokaryotes, and they are a crucial component of innate immunity, involved in clearing infection by inhibiting pathogen colonization. In the recent past, AMPs received high attention due to the increase of extensive antibiotic resistance by these pathogens. AMPs exhibit a diverse spectrum of activity against bacteria, fungi, parasites, and various types of cancer. AMPs are active against various bacterial pathogens that cause disease in animals and plants. However, because of the coevolution of host and pathogen interaction, bacteria have developed the mechanisms to sense and exhibit an adaptive response against AMPs. These resistance mechanisms are playing an important role in bacterial virulence within the host. Here, we have discussed the different resistance mechanisms used by gram-positive and gram-negative bacteria to sense and combat AMP actions. Understanding the mechanism of AMP resistance may provide directions toward the development of novel therapeutic strategies to control multidrug-resistant pathogens.202032119634
8286190.9992RNA Modifications in Pathogenic Bacteria: Impact on Host Adaptation and Virulence. RNA modifications are involved in numerous biological processes and are present in all RNA classes. These modifications can be constitutive or modulated in response to adaptive processes. RNA modifications play multiple functions since they can impact RNA base-pairings, recognition by proteins, decoding, as well as RNA structure and stability. However, their roles in stress, environmental adaptation and during infections caused by pathogenic bacteria have just started to be appreciated. With the development of modern technologies in mass spectrometry and deep sequencing, recent examples of modifications regulating host-pathogen interactions have been demonstrated. They show how RNA modifications can regulate immune responses, antibiotic resistance, expression of virulence genes, and bacterial persistence. Here, we illustrate some of these findings, and highlight the strategies used to characterize RNA modifications, and their potential for new therapeutic applications.202134440299