# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 921 | 0 | 1.0000 | Evaluation antibiotic resistance and presence of blaOXA-51, blaOXA-58 and blaOXA-23 genes in Acinetobacter baumannii strains via multiplex PCR. The resistance of Acinetobacter baumannii to most antibiotics is increasing. The presence of metallo-beta-lactamase and carbapenemase enzymes has led to the resistance of these bacteria to carbapenems as one of the major classes of broad-spectrum antibiotics and has raised concerns in human societies. This research evaluated the presence of bla(OXA-51), bla(OXA-58) and bla(OXA-23) genes in A. baumannii strains during a 12 months period. One hundred strains were isolated from the patients hospitalized in ICU of Ali Asghar and Shahid Rajaee trauma hospitals in Shiraz. Bacterial identity was determined by biochemical tests and antibiotic resistance was determined by disk diffusion method. The isolated strains were then evaluated in terms of carrying bla(OXA-23), bla(OXA-51) and bla(OXA-58) genes, using the multiplex PCR method. The results showed that A. baumannii was resistant to carbapenems but most strains were susceptible to tigecyclin and colistin. The majority of strains carried the bla(OXA-23) and bla(OXA-51) genes, but very few carried the bla (OXA-58) gene. The results revealed that the antibiotic resistance of A. baumannii is increasing, which causes a more outbreak of this organism. | 2021 | 34803000 |
| 2124 | 1 | 0.9999 | Evaluation of Phenotypic and Genotypic Characteristics of Carbapnemases-producing Enterobacteriaceae and Its Prevalence in a Referral Hospital in Tehran City. BACKGROUND & OBJECTIVE: Carbapenem-resistant Enterobacteriaceae is a growing concern worldwide including Iran. The emergence of this pathogen is worrying as carbapenem is one of the 'last-line' antibiotics for treatment of infections caused by multi drug resistant gram- negative bacteria. The main objective of this study was to determine the prevalence of carbapenem-resistant Enterobacteriaceae in a referral hospital in Tehran, Iran. METHODS: In this study, all positive isolates of Enterobacteriaceae recorded in blood, urine, and other body fluids were studied during April 2017 to April 2018 in a referral hospital in Tehran. All cases of resistance to carbapenems were first tested by modified Hodge test. All cases with positive or negative test, after gene extraction, were examined genotypically based on the primers designed for the three Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-β-lactamase (NDM), and OXA-48 genes by conventional PCR method. RESULTS: 108 isolates (13.6%) were resistant to all cephalosporins as well as to imipenem and meropenem. In a genotypic study, including 45 isolates, 13 isolates were positive for OXA-48 gene, 11 isolates for OXA-48 and NDM genes, 11 isolates for OXA-48, NDM and KPC genes, 4 isolates for OXA-48 genes and KPC, 3 isolates for NDM, one isolate for KPC. On the other hand, two isolates were negative for all three genes examined. CONCLUSION: OXA-48 gene was one of the most common genes resistant to carbapenems in Iran. According to studies, the prevalence of antibiotic resistance in Iran is rising dramatically, which reduces the choice of antibiotics to treat severe infections in the future. | 2020 | 32215024 |
| 923 | 2 | 0.9999 | Prevalence of Oxacillinase Genes in Clinical Multidrug-Resistant Gram-Negative Bacteria. BACKGROUND: The emergence of OXA-type beta-lactamases has become a significant threat to public healthcare systems and may lead to prolonged hospital stays and increased mortality rates among affected patients. This study aimed to determine the prevalence of oxacillinase resistance (OXA) genes in multidrug-resistant (MDR) Gram-negative bacteria. METHODS: One hundred and six clinical isolates were collected from a stock of Gram-negative isolates and were identified and tested for antibiotic susceptibility and presence of OXA genes using polymerase chain reaction (PCR). RESULTS: The most common detected isolate was Klebsiella pneumoniae (36.8%), followed by Escherichia coli (33%), Pseudomonas aeruginosa (16%), and Acinetobacter baumannii (14.2%). Out of these isolates, 97.4%, 87.2%, 84.6%, and 79.5% were resistant to ampicillin/sulbactam, cefotaxime, ceftazidime, and aztreonam, respectively. PCR results confirmed the presence of one or more OXA genes in 34% of the samples studied. The blaOXA-1 and blaOXA-10 genes were the most highly detected genes, followed by blaOXA-4 and blaOXA-51. The total number of Pseudomonas aeruginosa isolates was confirmed to carry at least one OXA gene (70.6%), whereas Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were confirmed to carry at least one OXA gene (53.3, 28.2, and 22.9%, respectively). There was a significant association (p < 0.05) between the resistance genes and the type of isolate. CONCLUSIONS: Pseudomonas aeruginosa and Acinetobacter baumannii are the most common MDR Gram-negative strains carrying OXA-type beta-lactamase genes. Monitoring of MDR pathogens in Gram-negative bacteria must be continuously undertaken to implement effective measures for infection control and prevention. | 2025 | 40066541 |
| 931 | 3 | 0.9999 | Epidemiological characteristics and antimicrobial susceptibility among carbapenem-resistant non-fermenting bacteria in Brazil. INTRODUCTION: Non-fermenting Gram-negative bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii are widespread in the environment and are increasingly associated with nosocomial infections. Extensive and indiscriminate use of antibiotics in hospitals has contributed to an increased number of infections caused by these microorganisms, that are resistant to a wide variety of antimicrobials, including β-lactams. This study aimed to isolate and identify carbapenem-resistant Acinetobacter spp. and P. aeruginosa from hospitalized patients, to determine their antimicrobial susceptibility patterns and to screen for blaOXA-23, blaOXA-24, blaOXA-51, blaOXA-58, and blaOXA-143 genes among the isolated bacteria. METHODOLOGY: Antimicrobial resistance patterns were performed using the disk-diffusion method. Genetic markers related to carbapenem resistance were screened by polymerase chain reaction. RESULTS: Carbapenem-resistant Acinetobacter spp. (n = 44) and P. aeruginosa (n = 28) samples were isolated from patients admitted to a tertiary hospital. Polymyxin B was the only effective drug for all isolates. Considering the oxacillinase gene screening, genetic markers were observed only in Acinetobacter isolates. The most frequent genotype observed was blaOXA-23+/blaOXA-51+ (45.5%), followed by blaOXA-51+/blaOXA-143+ (41%). The oxacillinase genes blaOXA-24 and blaOXA-58 were not detected. High mortality rates (> 70%) were observed. CONCLUSIONS: The data suggest the need for rational use of antimicrobials associated with early diagnosis of multidrug-resistant bacteria, especially considering non-fermenting Gram-negative rods, which are widespread in hospitals. The findings of blaoxa-51(-) strains suggest the occurrence and spread of non-A. baumannii species throughout our hospitals. Effective implementation of surveillance programs in hospitals is needed to reduce infectious and resistant intra- and inter-species bacteria. | 2016 | 27367001 |
| 924 | 4 | 0.9999 | Screening of Antimicrobial Resistance Genes and Epidemiological Features in Hospital and Community-Associated Carbapenem-Resistant Pseudomonas aeruginosa Infections. INTRODUCTION: Researching carbapenem-resistant isolates enables the identification of carbapenemase-producing bacteria and prevents their spread. METHODS: P. aeruginosa isolates were recovered from Medicine Faculty of Recep Tayyip Erdoğan University and identified by conventional methods and the automated Vitek 2 Compact system. Antimicrobial susceptibility experiments were performed in accordance with CLSI criteria and the automated Vitek 2 Compact system. The PCR method was investigated for the presence of β-lactamase resistance genes. PFGE typing was performed to show clonal relation among samples. RESULTS: Seventy P. aeruginosa isolates were isolated from seventy patients. Of the patients, 67.1% had contact with the health service in the last 90 days and 75.7% of the patients had received antimicrobial therapy in the previous 90 days. Twenty-four isolates were carbapenem resistant, 2 isolates were multidrug-resistant except colistin, and none of the samples had colistin resistance. The gene encoding β-lactamase or metallo-β-lactamase was found in a total of 36 isolates. The bla (VEB) and bla (PER) genes were identified in 1 and 5 isolates alone or 17 and 13 isolates in combination with other resistance genes, respectively. The bla (NDM) was the most detected metallo-β-lactamase encoding gene (n=18), followed by bla (KPC) (n=12). bla (IMP) and bla (VIM) were detected in 5 and 1 isolates, respectively. Also, the association of bla (VEB)-bla (PER) and bla (VEB)-bla (KPC)-bla (NDM) was found to be very high. Much more resistance genes and co-occurrence were detected in hospital-acquired samples than community-acquired samples. No difference was found between the community and hospital-associated isolates according to PFGE results. Simultaneously from 6 patients, other microorganisms were also isolated and 5 of them died. CONCLUSION: The average length of stay (days) was found to be significantly higher in HAI group than CAI group. The death of 5 patients with fewer or no resistance genes showed that the co-existence of other microorganisms in addition to resistance genes was important on death. | 2021 | 33907430 |
| 935 | 5 | 0.9998 | Evaluating the Saliva of Burn ICU Patients for Resistant Infections Harbor Metallo-β-Lactamase Genes. Pseudomonas aeruginosa and Acinetobacter baumannii are the bacteria which increasingly account for nosocomial infections. Due to high virulence, the rate of Multi-Drug Resistance (MDR) and limited availability of new agents, these infections create significant clinical burdens, making it important to identify the possible sources of their occurrence. The aim of this study was to assess non-lactose fermenting bacteria and their metallo-β-lactamase (MBLs) genes expression in the Burn Intensive Care Unit (BICU) patients' saliva samples. This cross-sectional study was conducted from 2017 to 2018 on 124 saliva samples of BICU patients. Identified isolates were evaluated for drug susceptibility by disc diffusion method. MBLs production isolates were detected by Modified Hodge test and Imipenem-EDTA Combined disk. MBLs related genes were evaluated by polymerase chain reaction (PCR). A total of 86 Gram negative non-lactose fermenting bacteria (38; A. baumannii) and (48; P. aeruginosa), were detected. All of the A. baumannii isolates were resistant to Carbapenems, while more than 90% of them were sensitive to Colistin. However, the highest sensitivity in P. aeruginosa isolates was related to Carbapenems and Colistin. More than 95% of A. baumannii and 32% of P. aeruginosa were detected MDR. MBLs production was confirmed in 9 (33.33%) P. aeruginosa and 18 (66.67%) A. baumannii isolates. The blaVIM was the most prevalent gene, while this gene was detected in all of MBLs positive strains. This study confirmed the prevalence of carbapenemase producer Gram-negative bacilli in the saliva of BICU patients. The results of the present study provide a new data set about saliva infection source that could lead to the proper antibiotic regimen and better control of drug resistance. | 2020 | 31930340 |
| 922 | 6 | 0.9998 | Insertion Sequences within Oxacillinases Genes as Molecular Determinants of Acinetobacter baumannii Resistance to Carbapenems-A Pilot Study. Carbapenem-resistant Acinetobacter baumannii is one of the major problems among hospitalized patients. The presence of multiple virulence factors results in bacteria persistence in the hospital environment. It facilitates bacterial transmission between patients, causing various types of infections, mostly ventilator-associated pneumonia and wound and bloodstream infections. A. baumannii has a variable number of resistance mechanisms, but the most commonly produced are carbapenem-hydrolyzing class D β-lactamases (CHDLs). In our study, the presence of bla(OXA-23), bla(OXA-40) and bla(OXA-51) genes was investigated among 88 clinical isolates of A. baumannii, including 53 (60.2%) strains resistant to both carbapenems (meropenem and imipenem) and 35 (39.8%) strains susceptible to at least meropenem. Among these bacteria, all the isolates carried the bla(OXA-51) gene. The bla(OXA-23) and bla(OXA-40) genes were detected in two (5.7%) and three (8.6%) strains, respectively. Among the OXA-23 carbapenemase-producing A. baumannii strains (n = 55), insertion sequences (ISAba1) were detected upstream of the bla(OXA-23) gene in fifty-two (94.5%) carbapenem-resistant and two (3.6%) meropenem-susceptible isolates. A. baumannii clinical strains from Poland have a similar antimicrobial resistance profile as those worldwide, with the presence of ISAba1 among bla(OXA-23)-positive isolates also being quite common. Carbapenem resistance among A. baumannii strains is associated with the presence of CHDLs, especially when insertion sequences are present. | 2024 | 39458366 |
| 2123 | 7 | 0.9998 | Phenotypic and genotypic detection of resistance mechanisms in carbapenem-resistant gram-negative bacteria isolated from Egyptian ICU patients with first emergence of NDM-1 producing Klebsiella oxytoca. BACKGROUND AND OBJECTIVES: Carbapenems are considered the last resort to treat several infections, particularly in intensive care units (ICUs). However, increasing carbapenem resistance is problematic because it leads to high morbidity and mortality rates. This study aimed to determine the rate of carbapenem resistance among Gram-negative bacteria collected from patients in ICUs and to identify their resistance mechanisms using phenotypic and genotypic methods. MATERIALS AND METHODS: Antimicrobial susceptibility testing was carried out using the disc diffusion method among 180 Gram-negative bacterial isolates. Productions of carbapenemases, metallo-beta-lactamases (MBLs) and the harboring of carbapenemase-encoding genes, were detected in 40 selected carbapenem-resistant Gram-negative bacteria (CR-GNB). RESULTS: Of 40 selected CR-GNB isolates, 28 (70%), and 20 (50%) isolates were phenotypically positive for carbapenemase, and MBL production, respectively. Furthermore, 22 (55%) showed amplification of one or more of the carbapenemase-encoding genes, including bla (NDM-1), bla (VIM-2), and bla (OXA-48). This study described the first emergence of NDM-1 producing Klebsiella oxytoca in Egyptian ICUs. CONCLUSION: High incidence of CR-GNB detected in the ICUs in our study area may be attributed to the overuse of antibiotics, including carbapenems, and improper application of infection control measures. These findings confirm the need for the application of a strict antibiotic stewardship program. | 2022 | 36721446 |
| 937 | 8 | 0.9998 | Data on the prevalence and distribution of carbapenemase genes in Enterobacterales species isolated from clinical specimens in the center of Irans. Carbapenem resistance in Enterobacterales is a major and persistent public health problem worldwide. In current research, we present data of 96 Enterobacterales species collected from a clinical hospital in Isfahan, Iran. The bacterial identification was performed by standard biochemical tests and API 20E methods. Agar disk diffusion assay was performed to determine the phenotypic antibiotic resistance of strains. Polymerase chain reaction (PCR) was carried out to detect carbapenemase genes. In this manuscript, multiple antimicrobial resistance phenotype such as multiple carbapenem resistance determinants were detected. The data would provide important information on distribution of carbapenemase genes of those pathogenic bacteria in Iran. | 2021 | 34568528 |
| 930 | 9 | 0.9998 | Isolation of Carbapenem and Colistin Resistant Gram-Negative Bacteria Colonizing Immunocompromised SARS-CoV-2 Patients Admitted to Some Libyan Hospitals. The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating effect, globally. We describe, for the first time, the occurrence of carbapenem-resistant bacteria colonizing SARS-CoV-2 patients who developed hospital-associated infections with carbapenemase-producing, Gram-negative bacteria at some isolation centers of SARS-CoV-2 in the eastern part of Libya. In total, at first, 109 samples were collected from 43 patients, with the samples being recovered from oral (n = 35), nasal (n = 45), and rectal (n = 29) cavities. Strain identification was performed via matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Antibiotic susceptibility testing was carried out on Mueller-Hinton agar, using the standard disk diffusion method. MIC determination was confirmed via E-TEST and microdilution standard methods. A molecular study was carried out to characterize the carbapenem and colistin resistance in Gram-negative bacterial strains. All of the positive results were confirmed via sequencing. Klebsiella pneumoniae (n = 32), Citrobacter freundii (n = 21), Escherichia coli (n = 7), and Acinetobacter baumannii (n = 21) were the predominant isolated bacteria. Gram-negative isolates were multidrug-resistant and carried different carbapenem resistance-associated genes, including NDM-1 (56/119; 47.05%), OXA-48 (15/119; 12.60%), OXA-23 (19/119; 15.96%), VIM (10/119; 8.40%), and the colistin resistance mobile gene mcr-1 (4/119; 3.36%). The overuse of antimicrobials, particularly carbapenem antibiotics, during the SARS-CoV-2 pandemic has led to the emergence of multidrug-resistant bacteria, mainly K. pneumoniae, A. baumannii, and colistin-resistant E. coli strains. Increased surveillance as well as the rational use of carbapenem antibiotics and, recently, colistin are required to reduce the propagation of multidrug-resistant strains and to optimally maintain the efficacy of these antibiotics. IMPORTANCE In this work, we describe, for the first time, the occurrence of carbapenem-resistant bacteria colonizing COVID-19 patients who developed hospital-associated infections with carbapenemase-producing, Gram-negative bacteria at some isolation centers of COVID-19 in the eastern part of Libya. Our results confirmed that the overuse of antimicrobials, such as carbapenem antibiotics, during the COVID-19 pandemic has led to the emergence of multidrug-resistant bacteria, mainly K. pneumoniae and A. baumannii, as well as colistin resistance. | 2023 | 37042782 |
| 2219 | 10 | 0.9998 | Development and validation of a multiplex TaqMan real-time PCR for rapid detection of genes encoding four types of class D carbapenemase in Acinetobacter baumannii. A multiplex TaqMan real-time PCR to detect carbapenem-hydrolysing class D β-lactamases (bla(OXA-23)-like, bla(OXA-24/40)-like, bla(OXA-51)-like and bla(OXA-58)-like genes) was developed and evaluated for early detection of imipenem (IMP) resistance in clinically significant Acinetobacter baumannii isolates. Well-characterized strains of A. baumannii were used as positive controls and non-Acinetobacter strains were used to assess specificity. Analytical sensitivity was quantified by comparison with the number of bacterial c.f.u. Forty of 46 (87 %) clinically significant and IMP-resistant A. baumannii isolates were positive for the bla(OXA-23)-like gene, and one isolate (2 %) was positive for the bla(OXA-58)-like gene. The bla(OXA-24/40)-like gene was not detected in any of the 46 IMP-resistant strains and the bla(OXA-51)-like gene was identified in both IMP-resistant and non-resistant A. baumannii. All 11 non-Acinetobacter bacteria produced a negative result for each of the four bla(OXA) genes. This assay was able to detect as few as 10 c.f.u. per assay. This real-time PCR method demonstrated rapid detection of OXA-like carbapenem resistance in A. baumannii in comparison with phenotypic susceptibility testing methodology. This method could be adapted to a multiplexed single reaction for rapid detection of genes associated with carbapenem resistance in A. baumannii and potentially other clinically significant multidrug-resistant Gram-negative bacteria. | 2012 | 22878252 |
| 2121 | 11 | 0.9998 | Investigation of VIM, IMP, NDM-1, KPC AND OXA-48 enzymes in Enterobacteriaceae strains. Gram-negative bacteria especially Enterobacteriaceae species have become an increasing etiologic agent of nosocomial infections. The development of resistance to carbapenems have become an increasing problem in the treatment of nosocomial infections. Especially carbapenamases are common for Enterobacteriaceae strains. This study was performed to detect the types of carbapenemases in Enterobacteriaceae strains isolated from various clinical samples. Enterobacteriaceae species were isolated from urine, blood, tracheal aspirates, wound, and other respiratory samples. Susceptibility of isolates to imipenem, meropenem and ertapenem was tested. Carbapenemase genes were studied using HyplexSuperBug ID kit. VIM (1-13), IMP (1-22), NDM-1, KPC(1-10) and OXA-48 genes were investigated. Ninety-five isolates of Enterobacteriaceae spp. were included in the study. Sixty isolates were resistant to imipenem, meropenem and ertapenem and 20 isolates were found resistant to imipenem or ertapenem while 15 were susceptible to all carbapenems. Among the isolates with carbapenem resistance, 57 were positive for one carbapenemase gene and susceptible isolates did not have carbapenemase gene. OXA-48 was found in 49 of the isolates (86%), NDM-1 in 6 (10.5%) isolates, VIM in 2 isolates. IMP and KPC gene loci were not identified. Carbapenemase genes play a crucial role in the development and spread of resistant strains. | 2015 | 26051720 |
| 933 | 12 | 0.9998 | Molecular characterization and diversity of carbapenemases in Gram-negative bacteria in Libyan hospitals. INTRODUCTION: Antimicrobial resistance has become a major threat to public health, especially in developing countries, due to the uncontrolled consumption of antibiotics. This study aims to characterize antibiotic resistance genes in different bacteria recovered in different healthcare facilities in Libya. METHODOLOGY: 379 samples were recovered from various sources from different sites. 210 samples were able to grow on culture media. 133 Gram-negative carbapenem-resistant strains were recovered from clinical specimens (n = 64), and hospital environments (n = 69). Antibiotic susceptibility tests were performed to select carbapenem-resistant strains. Colistin resistance was tested by the UMIC method to determine the minimum inhibitory concentration. RT-PCR was conducted to detect the incidence of carbapenemases-encoding genes. RESULTS: Gram-negative bacteria showed a low susceptibility to carbapenems. Molecular investigations indicated that NDM-1 was the most prevalent in Enterobacteriaceae isolated from patients and hospital environment (n = 26, n = 41), followed by blaOXA-48 (n = 16, n = 15) and blaVIM (n = 3) from patients and blaKPC (n = 1) from hospital environment. Concerning A. baumannii, blaOXA-23 was detected in strains isolated from patients (n = 8) and hospital environment (n = 6), followed by blaNDM (n = 9) from patients and one from hospital environment. Carbapenem resistance in P. aeruginosa was encoded by modification in OprD encoding gene, such as IS (ISpa26), polymorphism, and a premature stop codon. CONCLUSIONS: Several carbapenem resistant Gram-negative bacteria were identified by the expression of different carbapenemases and the alteration of OprD. | 2025 | 40720466 |
| 998 | 13 | 0.9998 | Extended spectrum beta-lactamases among Gram-negative bacteria of nosocomial origin from an intensive care unit of a tertiary health facility in Tanzania. BACKGROUND: Resistance to third generation cephalosporins due to acquisition and expression of extended spectrum beta-lactamase (ESBL) enzymes among Gram-negative bacteria is on the increase. Presence of ESBL producing organisms has been reported to significantly affect the course and outcome of an infection. Therefore infections due to ESBL isolates continue to pose a challenge to infection management worldwide. The aim of this study was to determine the existence and to describe phenotypic and genotypic characteristics of ESBLs in an Intensive Care Unit (ICU) setting in Tanzania. METHODS: Between October 2002 and April 2003, clinical information and samples were collected from patients suspected to have nosocomial infections in an Intensive Care Unit of a tertiary hospital in Tanzania. The isolates were identified, tested for antimicrobial susceptibility and analysed for presence of ESBL genes. RESULTS: Thirty-nine Gram-negative bacteria were isolated from clinical samples of 39 patients. These isolates included 13 Escherichia coli, 12 Enterobacter spp, 5 Pseudomonas spp, 4 Proteus spp, 2 Klebsiella. pneumoniae, 2 Citrobacter freundii and 1 Chryseomonas luteola. Eleven (28.2%) of these isolates were ESBL producing. The ESBL genes characterised were SHV-12, SHV-28 and CTX-M-15. The ESBL producing isolates were more resistant to gentamicin and ciprofloxacin than non-ESBL producing isolates. CONCLUSION: This study shows the presence of ESBL genes among Gram-negative bacteria in the ICU setting in Tanzania. There is a need to institute strict hospital infection control policy and a regular surveillance of resistance to antimicrobial agents. | 2005 | 16225701 |
| 934 | 14 | 0.9998 | High Carbapenem Resistance Caused by VIM and NDM Enzymes and OprD Alteration in Nonfermenter Bacteria Isolated from a Libyan Hospital. Acinetobacter baumannii and Pseudomonas aeruginosa are among the most prevalent pathogens causing a wide range of serious infections in hospitalized patients and contaminating intensive care units and inanimate surfaces. The purpose of this study was to investigate the mechanism of carbapenem resistance in clinical and hospital environmental isolates of A. baumannii and P. aeruginosa recovered from a Libyan hospital. From a total of 82 Gram-negative bacteria, 8 isolates of A. baumannii and 3 isolates of P. aeruginosa exhibited resistance to imipenem with minimum inhibitory concentrations ranging from 16 to >32 μg/mL. Five isolates of A. baumannii harbored bla(OXA-23) gene, from which three isolates were collected from patients and two from hospital environment. Only one isolate harbored bla(NDM-1) gene, which was responsible for carbapenem resistance in A. baumannii. The OprD gene seems to be disturbed by an insertion sequence (IS) in two isolates and affected by polymorphism in one isolate. Pulsed-field gel electrophoresis results showed high genetic diversity among carbapenemase producing A. baumannii. This study highlights the dissemination of bla(OXA-23) and bla(NDM-1) genes in a Libyan setting. Therefore, infection prevention and control practices, antimicrobial stewardship initiatives, and antimicrobial resistance surveillance systems should be implemented to prevent the wide spread of antimicrobial resistance. | 2021 | 34029121 |
| 932 | 15 | 0.9998 | Emergence of armA and rmtB genes among VIM, NDM, and IMP metallo-β-lactamase-producing multidrug-resistant Gram-negative pathogens. In the recent years, it has been noted that microorganisms with acquired resistance to almost all available potent antibiotics are increasing worldwide. Hence, the use of antibiotics in every clinical setup has to be organized to avoid irrational use of antibiotics. This study was aimed to establish the pattern of antibiotic sensitivity and relevance of antimicrobial resistance in aerobic Gram-negative bacilli. A total of 103 aerobic Gram-negative bacteria namely Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Citrobacter koserii, Proteus spp., and Pseudomonas aeruginosa were collected from tertiary care centers around Chennai. Kirby-Bauer Disk Diffusion test and study for genes of cephalosporin, carbapenem, and aminoglycoside resistance were done. A descriptive analysis of the data on altogether 103 clinical urine isolates was performed. All strains showed susceptibility to colistin. The frequency of genes encoding 16S rRNA methylases armA and rmtB were 7.8% and 6.8%, respectively. Among metallo-β-lactamases, bla(VIM), bla(IMP), and bla(NDM-1) were detected in 6.8%, 3.8%, and 3.8%, respectively. One E. coli strain harbored bla(SIM-1) gene. Cumulative analysis of data suggested that 30% of the strains carried more than one resistance gene. The current research evidenced the increasing frequency of resistance mechanisms in India. Combined approach of antibiotic restriction, effective surveillance, and good infection control practices are essential to overcome antibiotic resistance. | 2018 | 28870092 |
| 1503 | 16 | 0.9998 | OXA-48 Carbapenemase-Encoding Transferable Plasmids of Klebsiella pneumoniae Recovered from Egyptian Patients Suffering from Complicated Urinary Tract Infections. Gram-negative bacteria are common causes of urinary tract infections (UTIs). Such pathogens can acquire genes encoding multiple mechanisms of antimicrobial resistance, including carbapenem resistance. The aim of this study was to detect the carbapenemase-producing ability of some Gram-negative bacterial isolates from urine specimens of patients suffering from complicated UTIs at two vital tertiary care hospitals in Cairo, Egypt; to determine the prevalence of carbapenemase genes among plasmid-bearing isolates; and explore the possibility of horizontal gene transfer to other bacterial species. The collected isolates were subjected to antimicrobial susceptibility testing, phenotypic analysis of carbapenemase production, and molecular detection of plasmid-borne carbapenemase genes, then the extracted plasmids were transformed into competent E. coli DH5α. A total of 256 Gram-negative bacterial clinical isolates were collected, 65 (25.4%) isolates showed carbapenem resistance of which 36 (55.4%) were carbapenemase-producers, and of these 31 (47.7%) harbored plasmids. The extracted plasmids were used as templates for PCR amplification of bla(KPC), bla(NDM), bla(VIM), bla(OXA-48,) and bla(IMP) carbapenemase genes. The bla(OXA-48) gene was detected in 24 (77.4%) of the tested isolates while bla(VIM) gene was detected in 8 (25.8%), both bla(KPC) and bla(NDM) genes were co-present in 1 (3.2%) isolate. Plasmids carrying the bla(OXA-48) gene from 4 K. pneumoniae clinical isolates were successfully transformed into competent E. coli DH5α. The transformants were carbapenemase-producers and acquired resistance to some of the tested antimicrobial agents as compared to untransformed E. coli DH5α. The study concluded that the rate of carbapenem resistance among Gram-negative bacterial uropathogens in Cairo, Egypt is relatively high and can be transferred horizontally to other bacterial host(s). | 2021 | 34571766 |
| 909 | 17 | 0.9998 | First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Herein, we describe a case report of carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae isolates that were identified from the same patient at a Tertiary University Hospital Centre in Portugal. Antimicrobial susceptibility and the molecular characterization of resistance and virulence determinants were performed. PCR screening identified the presence of the resistance genes bla(KPC-3), bla(TEM-1) and bla(SHV-1) in both isolates. The KPC-3 K. pneumoniae isolate belonged to the ST-14 high risk clone and accumulated an uncommon resistance and virulence profile additional to a horizontal dissemination capacity. In conclusion, the molecular screening led to the first identification of the A. baumannii KPC-3 producer in Portugal with a full antimicrobial resistance profile including tigecycline and colistin. | 2018 | 30404152 |
| 917 | 18 | 0.9998 | Virulence characterization and clonal analysis of uropathogenic Escherichia coli metallo-beta-lactamase-producing isolates. BACKGROUND: Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infection (UTI); however, treatment of UTI has been challenging due to increased antimicrobial resistance (AMR). One of the most important types of AMR is carbapenem resistance (CR). CR bacteria are known as an important threat to global public health today. Class B metallo-beta-lactamases (MBLs) are one of the major factors for resistance against carbapenems. We aimed to investigate the characteristics of UPEC isolates producing MBL. METHODS: A cross-sectional study was conducted from October 2018 to December 2019 in Ahvaz; Iran. UPEC isolates were identified by biochemical and molecular methods. Metallo-beta-lactamase-producing isolates were detected using modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) tests. MBL genes, phylogenetic group, and virulence genes profile of carbapenem resistant isolates were determined. Conjugation assay and plasmid profiling were conducted to evaluate the ability of transferring of CR to other E. coli isolates. Clonal similarity of isolates were assessed using Enterobacterial intergenic repetitive element sequence (ERIC)-PCR. RESULTS: Among 406 UPEC isolates, 12 (2.95%) carbapenem-resistant were detected of which 11 were phenotypically MBL-producing strains. Four isolates were resistant to all investigated antimicrobial agents and were considered possible pandrug-resistant (PDR). bla(NDM), bla(OXA-48), bla(IMP-1), and bla(IMP-2) genes were found in 9, 5, 1, and 1 isolates, respectively. Among 30 virulence genes investigated, the traT, fyuA followed by fimH, and iutA with the frequency of 8 (66.7%), 8 (66.7%), 7 (58.3%), and 7 (58.3%) were the most identified genes, respectively. Siderophore production was the main virulence trait among carbapenem-resistant UPEC isolates. Except for two, all other isolates showed weak to moderate virulence index. In all recovered isolates, CR was readily transmitted via plasmids to other isolates during conjugation experiments. CONCLUSION: MBL and carbapenemase genes, especially bla(NDM) and bla(OXA-48) are spreading rapidly among bacteria, which can be a threat to global public health. Therefore monitoring the emergence and dissemination of new AMR is necessary to continuously refine guidelines for empiric antimicrobial therapy. Understanding the mechanisms of resistance and virulence in this group of bacteria can play an effective role in providing new therapeutic methods. | 2021 | 34344363 |
| 2126 | 19 | 0.9998 | Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania. The burden of antimicrobial resistance (AMR) is rapidly growing across antibiotic classes, with increased detection of isolates resistant to carbapenems. Data on the prevalence of carbapenem resistance in developing countries is limited; therefore, in this study, we determined the prevalence of carbapenemase genes among multidrug resistant gram negative bacteria (MDR-GNB) isolated from clinical specimens in a tertiary hospital in Mwanza, Tanzania. A total of 227 MDR-GNB isolates were analyzed for carbapenem resistance genes. For each isolate, five different PCR assays were performed, allowing for the detection of the major carbapenemase genes, including those encoding the VIM-, IMP-, and NDM-type metallo-beta-lactamases, the class A KPC-type carbapenemases, and the class D OXA-48 enzyme. Of 227 isolates, 80 (35%) were positive for one or more carbapenemase gene. IMP-types were the most predominant gene followed by VIM, in 49 (21.59%) and 28 (12%) isolates, respectively. Carbapenemase genes were most detected in K. pneumoniae 24 (11%), followed by P. aeruginosa 23 (10%), and E. coli with 19 isolates (8%). We have demonstrated for the first time a high prevalence of MDR-GNB clinical isolates having carbapenem resistance genes in Tanzania. We recommend routine testing for carbapenem resistance among the MDR-GNB particularly in systemic infections. | 2014 | 24707481 |