Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
921401.0000Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi. The vast majority of bacteria, including human pathogens and microbiome species, lack genetic tools needed to systematically associate genes with phenotypes. This is the major impediment to understanding the fundamental contributions of genes and gene networks to bacterial physiology and human health. Clustered regularly interspaced short palindromic repeats interference (CRISPRi), a versatile method of blocking gene expression using a catalytically inactive Cas9 protein (dCas9) and programmable single guide RNAs, has emerged as a powerful genetic tool to dissect the functions of essential and non-essential genes in species ranging from bacteria to humans(1-6). However, the difficulty of establishing effective CRISPRi systems across bacteria is a major barrier to its widespread use to dissect bacterial gene function. Here, we establish 'Mobile-CRISPRi', a suite of CRISPRi systems that combines modularity, stable genomic integration and ease of transfer to diverse bacteria by conjugation. Focusing predominantly on human pathogens associated with antibiotic resistance, we demonstrate the efficacy of Mobile-CRISPRi in gammaproteobacteria and Bacillales Firmicutes at the individual gene scale, by examining drug-gene synergies, and at the library scale, by systematically phenotyping conditionally essential genes involved in amino acid biosynthesis. Mobile-CRISPRi enables genetic dissection of non-model bacteria, facilitating analyses of microbiome function, antibiotic resistances and sensitivities, and comprehensive screens for host-microorganism interactions.201930617347
921510.9998Bacterial type IV secretion systems and spread of antimicrobial resistance: a study of potential inhibitors to T4SS-based resistance spread. Antimicrobial resistance (AMR) is a major global health threat, mainly driven by the rapid spread of resistance genes through horizontal gene transfer (HGT). The Type IV Secretion System (T4SS) acts as a crucial molecular machinery that facilitates this process, allowing bacteria to transfer DNA, effector proteins, and virulence factors. This review systematically explores the structural and functional diversity of T4SS, its role in spreading AMR, and current methods for its inhibition. T4SS consists of a multi-protein complex that spans bacterial membranes, mediating conjugative plasmid transfer, host-pathogen interactions, and bacterial competition. Key components include ATPases, pilus structures, and membrane-associated proteins that show both conserved features and species-specific adaptations. These traits enable functional specialization across Gram-positive and Gram-negative bacteria, significantly contributing to the spread of vital resistance genes like extended-spectrum β-lactamases and carbapenemases via mobile genetic elements. Several approaches have been developed to inhibit T4SS and combat AMR. Small molecules targeting ATPase activity or protein interactions are promising, as are natural phytochemicals that interfere with conjugation. Bacteriophage therapy provides another strategy by specifically targeting plasmid-carrying bacteria. Host immune responses, such as innate immune recognition and secretory immunoglobulins, also show potential to influence T4SS activity. Although progress has been made, challenges remain, especially in developing selective inhibition methods that do not harm beneficial microbiota or host cells. Future research should focus on high-resolution structural studies to support rational drug design and preclinical testing of combination therapies that include T4SS inhibitors with existing antibiotics. Gaining a deeper understanding of T4SS regulation and host-pathogen interactions will be vital for creating targeted AMR strategies that also maintain ecological balance.202540956426
923520.9998Investigating the Genomic Background of CRISPR-Cas Genomes for CRISPR-Based Antimicrobials. CRISPR-Cas systems are an adaptive immunity that protects prokaryotes against foreign genetic elements. Genetic templates acquired during past infection events enable DNA-interacting enzymes to recognize foreign DNA for destruction. Due to the programmability and specificity of these genetic templates, CRISPR-Cas systems are potential alternative antibiotics that can be engineered to self-target antimicrobial resistance genes on the chromosome or plasmid. However, several fundamental questions remain to repurpose these tools against drug-resistant bacteria. For endogenous CRISPR-Cas self-targeting, antimicrobial resistance genes and functional CRISPR-Cas systems have to co-occur in the target cell. Furthermore, these tools have to outplay DNA repair pathways that respond to the nuclease activities of Cas proteins, even for exogenous CRISPR-Cas delivery. Here, we conduct a comprehensive survey of CRISPR-Cas genomes. First, we address the co-occurrence of CRISPR-Cas systems and antimicrobial resistance genes in the CRISPR-Cas genomes. We show that the average number of these genes varies greatly by the CRISPR-Cas type, and some CRISPR-Cas types (IE and IIIA) have over 20 genes per genome. Next, we investigate the DNA repair pathways of these CRISPR-Cas genomes, revealing that the diversity and frequency of these pathways differ by the CRISPR-Cas type. The interplay between CRISPR-Cas systems and DNA repair pathways is essential for the acquisition of new spacers in CRISPR arrays. We conduct simulation studies to demonstrate that the efficiency of these DNA repair pathways may be inferred from the time-series patterns in the RNA structure of CRISPR repeats. This bioinformatic survey of CRISPR-Cas genomes elucidates the necessity to consider multifaceted interactions between different genes and systems, to design effective CRISPR-based antimicrobials that can specifically target drug-resistant bacteria in natural microbial communities.202235692726
960630.9998Rapid identification of key antibiotic resistance genes in E. coli using high-resolution genome-scale CRISPRi screening. Bacteria possess a vast repertoire of genes to adapt to environmental challenges. Understanding the gene fitness landscape under antibiotic stress is crucial for elucidating bacterial resistance mechanisms and antibiotic action. To explore this, we conducted a genome-scale CRISPRi screen using a high-density sgRNA library in Escherichia coli exposed to various antibiotics. This screen identified essential genes under antibiotic-induced stress and offered insights into the molecular mechanisms underlying bacterial responses. We uncovered previously unrecognized genes involved in antibiotic resistance, including essential membrane proteins. The screen also underscored the importance of transcriptional modulation of essential genes in antibiotic tolerance. Our findings emphasize the utility of genome-wide CRISPRi screening in mapping the genetic landscape of antibiotic resistance. This study provides a valuable resource for identifying potential targets for antibiotics or antimicrobial strategies. Moreover, it offers a framework for exploring transcriptional regulatory networks and resistance mechanisms in E. coli and other bacterial pathogens.202540352728
972340.9998Deciphering the genetic network and programmed regulation of antimicrobial resistance in bacterial pathogens. Antimicrobial resistance (AMR) in bacteria is an important global health problem affecting humans, animals, and the environment. AMR is considered as one of the major components in the "global one health". Misuse/overuse of antibiotics in any one of the segments can impact the integrity of the others. In the presence of antibiotic selective pressure, bacteria tend to develop several defense mechanisms, which include structural changes of the bacterial outer membrane, enzymatic processes, gene upregulation, mutations, adaptive resistance, and biofilm formation. Several components of mobile genetic elements (MGEs) play an important role in the dissemination of AMR. Each one of these components has a specific function that lasts long, irrespective of any antibiotic pressure. Integrative and conjugative elements (ICEs), insertion sequence elements (ISs), and transposons carry the antimicrobial resistance genes (ARGs) on different genetic backbones. Successful transfer of ARGs depends on the class of plasmids, regulons, ISs proximity, and type of recombination systems. Additionally, phage-bacterial networks play a major role in the transmission of ARGs, especially in bacteria from the environment and foods of animal origin. Several other functional attributes of bacteria also get successfully modified to acquire ARGs. These include efflux pumps, toxin-antitoxin systems, regulatory small RNAs, guanosine pentaphosphate signaling, quorum sensing, two-component system, and clustered regularly interspaced short palindromic repeats (CRISPR) systems. The metabolic and virulence state of bacteria is also associated with a range of genetic and phenotypic resistance mechanisms. In spite of the availability of a considerable information on AMR, the network associations between selection pressures and several of the components mentioned above are poorly understood. Understanding how a pathogen resists and regulates the ARGs in response to antimicrobials can help in controlling the development of resistance. Here, we provide an overview of the importance of genetic network and regulation of AMR in bacterial pathogens.202236506027
967150.9998Genome-scale genetic manipulation methods for exploring bacterial molecular biology. Bacteria are diverse and abundant, playing key roles in human health and disease, the environment, and biotechnology. Despite progress in genome sequencing and bioengineering, much remains unknown about the functional organization of prokaryotes. For instance, roughly a third of the protein-coding genes of the best-studied model bacterium, Escherichia coli, currently lack experimental annotations. Systems-level experimental approaches for investigating the functional associations of bacterial genes and genetic structures are essential for defining the fundamental molecular biology of microbes, preventing the spread of antibacterial resistance in the clinic, and driving the development of future biotechnological applications. This review highlights recently introduced large-scale genetic manipulation and screening procedures for the systematic exploration of bacterial gene functions, molecular relationships, and the global organization of bacteria at the gene, pathway, and genome levels.201222517266
962260.9998Stable Neutralization of a Virulence Factor in Bacteria Using Temperate Phage in the Mammalian Gut. Elimination or alteration of select members of the gut microbiota is key to therapeutic efficacy. However, the complexity of these microbial inhabitants makes it challenging to precisely target bacteria. Here, we deliver exogenous genes to specific bacteria by genomic integration of temperate phage for long-lasting modification. As a real-world therapeutic test, we engineered λ phage to transcriptionally repress Shiga toxin by using genetic hybrids between λ and other lambdoid phages to overcome resistance encoded by the virulence-expressing prophage. We show that a single dose of engineered phage propagates throughout the bacterial community and reduces Shiga toxin production in an enteric mouse model of infection without markedly affecting bacterial concentrations. Our work reveals a new framework for transferring functions to bacteria within their native environment.IMPORTANCE With the increasing frequency of antibiotic resistance, it is critical to explore new therapeutic strategies for treating bacterial infections. Here, we use a temperate phage, i.e., one that integrates itself into the bacterial genome, to neutralize the expression of a virulence factor by modifying bacterial function at the genetic level. We show that Shiga toxin production can be significantly reduced in vitro and in the mammalian gut. Alternative to traditional applications of phage therapy that rely on killing bacteria, our genetics-based antivirulence approach introduces a new framework for treating bacterial infections.202031992629
961770.9998Multiplex CRISPRi System Enables the Study of Stage-Specific Biofilm Genetic Requirements in Enterococcus faecalis. Enterococcus faecalis is an opportunistic pathogen, which can cause multidrug-resistant life-threatening infections. Gaining a complete understanding of enterococcal pathogenesis is a crucial step in identifying a strategy to effectively treat enterococcal infections. However, bacterial pathogenesis is a complex process often involving a combination of genes and multilevel regulation. Compared to established knockout methodologies, CRISPR interference (CRISPRi) approaches enable the rapid and efficient silencing of genes to interrogate gene products and pathways involved in pathogenesis. As opposed to traditional gene inactivation approaches, CRISPRi can also be quickly repurposed for multiplexing or used to study essential genes. Here, we have developed a novel dual-vector nisin-inducible CRISPRi system in E. faecalis that can efficiently silence via both nontemplate and template strand targeting. Since the nisin-controlled gene expression system is functional in various Gram-positive bacteria, the developed CRISPRi tool can be extended to other genera. This system can be applied to study essential genes, genes involved in antimicrobial resistance, and genes involved in biofilm formation and persistence. The system is robust and can be scaled up for high-throughput screens or combinatorial targeting. This tool substantially enhances our ability to study enterococcal biology and pathogenesis, host-bacterium interactions, and interspecies communication.IMPORTANCEEnterococcus faecalis causes multidrug-resistant life-threatening infections and is often coisolated with other pathogenic bacteria from polymicrobial biofilm-associated infections. Genetic tools to dissect complex interactions in mixed microbial communities are largely limited to transposon mutagenesis and traditional time- and labor-intensive allelic-exchange methods. Built upon streptococcal dCas9, we developed an easily modifiable, inducible CRISPRi system for E. faecalis that can efficiently silence single and multiple genes. This system can silence genes involved in biofilm formation and antibiotic resistance and can be used to interrogate gene essentiality. Uniquely, this tool is optimized to study genes important for biofilm initiation, maturation, and maintenance and can be used to perturb preformed biofilms. This system will be valuable to rapidly and efficiently investigate a wide range of aspects of complex enterococcal biology.202033082254
960780.9998Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution. Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress response processes known as adaptive resistance. Adaptive resistance fosters transient tolerance increases and the emergence of mutations conferring heritable drug resistance. In order to extend the applicable lifetime of new antibiotics, we must seek to hinder the occurrence of bacterial adaptive resistance; however, the regulation of adaptation is difficult to identify due to immense heterogeneity emerging during evolution. This study specifically seeks to generate heterogeneity by adapting bacteria to different stresses and then examines gene expression trends across the disparate populations in order to pinpoint key genes and pathways associated with adaptive resistance. The targets identified here may eventually inform strategies for impeding adaptive resistance and prolonging the effectiveness of antibiotic treatment.201728217741
920590.9998Resistance induction based on the understanding of molecular interactions between plant viruses and host plants. BACKGROUND: Viral diseases cause significant damage to crop yield and quality. While fungi- and bacteria-induced diseases can be controlled by pesticides, no effective approaches are available to control viruses with chemicals as they use the cellular functions of their host for their infection cycle. The conventional method of viral disease control is to use the inherent resistance of plants through breeding. However, the genetic sources of viral resistance are often limited. Recently, genome editing technology enabled the publication of multiple attempts to artificially induce new resistance types by manipulating host factors necessary for viral infection. MAIN BODY: In this review, we first outline the two major (R gene-mediated and RNA silencing) viral resistance mechanisms in plants. We also explain the phenomenon of mutations of host factors to function as recessive resistance genes, taking the eIF4E genes as examples. We then focus on a new type of virus resistance that has been repeatedly reported recently due to the widespread use of genome editing technology in plants, facilitating the specific knockdown of host factors. Here, we show that (1) an in-frame mutation of host factors necessary to confer viral resistance, sometimes resulting in resistance to different viruses and that (2) certain host factors exhibit antiviral resistance and viral-supporting (proviral) properties. CONCLUSION: A detailed understanding of the host factor functions would enable the development of strategies for the induction of a new type of viral resistance, taking into account the provision of a broad resistance spectrum and the suppression of the appearance of resistance-breaking strains.202134454519
9616100.9997Precision targeting of food biofilm-forming genes by microbial scissors: CRISPR-Cas as an effective modulator. The abrupt emergence of antimicrobial resistant (AMR) bacterial strains has been recognized as one of the biggest public health threats affecting the human race and food processing industries. One of the causes for the emergence of AMR is the ability of the microorganisms to form biofilm as a defense strategy that restricts the penetration of antimicrobial agents into bacterial cells. About 80% of human diseases are caused by biofilm-associated sessile microbes. Bacterial biofilm formation involves a cascade of genes that are regulated via the mechanism of quorum sensing (QS) and signaling pathways that control the production of the extracellular polymeric matrix (EPS), responsible for the three-dimensional architecture of the biofilm. Another defense strategy utilized commonly by various bacteria includes clustered regularly interspaced short palindromic repeats interference (CRISPRi) system that prevents the bacterial cell from viral invasion. Since multigenic signaling pathways and controlling systems are involved in each and every step of biofilm formation, the CRISPRi system can be adopted as an effective strategy to target the genomic system involved in biofilm formation. Overall, this technology enables site-specific integration of genes into the host enabling the development of paratransgenic control strategies to interfere with pathogenic bacterial strains. CRISPR-RNA-guided Cas9 endonuclease, being a promising genome editing tool, can be effectively programmed to re-sensitize the bacteria by targeting AMR-encoding plasmid genes involved in biofilm formation and virulence to revert bacterial resistance to antibiotics. CRISPRi-facilitated silencing of genes encoding regulatory proteins associated with biofilm production is considered by researchers as a dependable approach for editing gene networks in various biofilm-forming bacteria either by inactivating biofilm-forming genes or by integrating genes corresponding to antibiotic resistance or fluorescent markers into the host genome for better analysis of its functions both in vitro and in vivo or by editing genes to stop the secretion of toxins as harmful metabolites in food industries, thereby upgrading the human health status.202236016778
9216110.9997Mitigating Antibiotic Resistance: The Utilization of CRISPR Technology in Detection. Antibiotics, celebrated as some of the most significant pharmaceutical breakthroughs in medical history, are capable of eliminating or inhibiting bacterial growth, offering a primary defense against a wide array of bacterial infections. However, the rise in antimicrobial resistance (AMR), driven by the widespread use of antibiotics, has evolved into a widespread and ominous threat to global public health. Thus, the creation of efficient methods for detecting resistance genes and antibiotics is imperative for ensuring food safety and safeguarding human health. The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) systems, initially recognized as an adaptive immune defense mechanism in bacteria and archaea, have unveiled their profound potential in sensor detection, transcending their notable gene-editing applications. CRISPR/Cas technology employs Cas enzymes and guides RNA to selectively target and cleave specific DNA or RNA sequences. This review offers an extensive examination of CRISPR/Cas systems, highlighting their unique attributes and applications in antibiotic detection. It outlines the current utilization and progress of the CRISPR/Cas toolkit for identifying both nucleic acid (resistance genes) and non-nucleic acid (antibiotic micromolecules) targets within the field of antibiotic detection. In addition, it examines the current challenges, such as sensitivity and specificity, and future opportunities, including the development of point-of-care diagnostics, providing strategic insights to facilitate the curbing and oversight of antibiotic-resistance proliferation.202439727898
9217120.9997Role of CRISPR-Cas systems and anti-CRISPR proteins in bacterial antibiotic resistance. The emergence and development of antibiotic resistance in bacteria is a serious threat to global public health. Antibiotic resistance genes (ARGs) are often located on mobile genetic elements (MGEs). They can be transferred among bacteria by horizontal gene transfer (HGT), leading to the spread of drug-resistant strains and antibiotic treatment failure. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated genes) is one of the many strategies bacteria have developed under long-term selection pressure to restrict the HGT. CRISPR-Cas systems exist in about half of bacterial genomes and play a significant role in limiting the spread of antibiotic resistance. On the other hand, bacteriophages and other MGEs encode a wide range of anti-CRISPR proteins (Acrs) to counteract the immunity of the CRISPR-Cas system. The Acrs could decrease the CRISPR-Cas system's activity against phages and facilitate the acquisition of ARGs and virulence traits for bacteria. This review aimed to assess the relationship between the CRISPR-Cas systems and Acrs with bacterial antibiotic resistance. We also highlighted the CRISPR technology and Acrs to control and prevent antibacterial resistance. The CRISPR-Cas system can target nucleic acid sequences with high accuracy and reliability; therefore, it has become a novel gene editing and gene therapy tool to prevent the spread of antibiotic resistance. CRISPR-based approaches may pave the way for developing smart antibiotics, which could eliminate multidrug-resistant (MDR) bacteria and distinguish between pathogenic and beneficial microorganisms. Additionally, the engineered anti-CRISPR gene-containing phages in combination with antibiotics could be used as a cutting-edge treatment approach to reduce antibiotic resistance.202439149034
9623130.9997Prokaryotic toxin-antitoxin systems--the role in bacterial physiology and application in molecular biology. Bacteria have developed multiple complex mechanisms ensuring an adequate response to environmental changes. In this context, bacterial cell division and growth are subject to strict control to ensure metabolic balance and cell survival. A plethora of studies cast light on toxin-antitoxin (TA) systems as metabolism regulators acting in response to environmental stress conditions. Many of those studies suggest direct relations between the TA systems and the pathogenic potential or antibiotic resistance of relevant bacteria. Other studies point out that TA systems play a significant role in ensuring stability of mobile genetic material. The evolutionary origin and relations between various TA systems are still a subject of a debate. The impact of toxin-antitoxin systems on bacteria physiology prompted their application in molecular biology as tools allowing cloning of some hard-to-maintain genes, plasmid maintenance and production of recombinant proteins.201121394325
9621140.9997Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. About half of all bacteria carry genes for CRISPR-Cas adaptive immune systems(1), which provide immunological memory by inserting short DNA sequences from phage and other parasitic DNA elements into CRISPR loci on the host genome(2). Whereas CRISPR loci evolve rapidly in natural environments(3,4), bacterial species typically evolve phage resistance by the mutation or loss of phage receptors under laboratory conditions(5,6). Here we report how this discrepancy may in part be explained by differences in the biotic complexity of in vitro and natural environments(7,8). Specifically, by using the opportunistic pathogen Pseudomonas aeruginosa and its phage DMS3vir, we show that coexistence with other human pathogens amplifies the fitness trade-offs associated with the mutation of phage receptors, and therefore tips the balance in favour of the evolution of CRISPR-based resistance. We also demonstrate that this has important knock-on effects for the virulence of P. aeruginosa, which became attenuated only if the bacteria evolved surface-based resistance. Our data reveal that the biotic complexity of microbial communities in natural environments is an important driver of the evolution of CRISPR-Cas adaptive immunity, with key implications for bacterial fitness and virulence.201931645729
9599150.9997Antibiotic export: transporters involved in the final step of natural product production. In the fight against antimicrobial resistance (AMR), antibiotic biosynthetic gene clusters are constantly being discovered. These clusters often include genes for membrane transporters that are involved in the export of the produced natural product during biosynthesis and/or subsequent resistance through active efflux. Despite transporter genes being integral parts of these clusters, study of the function of antibiotic export in natural producers such as Streptomyces spp. remains underexplored, in many cases lagging far behind our understanding of the biosynthetic enzymes. More efficient release of antibiotics by producing cells has potential benefits to industrial biotechnology and understanding the relationships between exporters in natural producers and resistance-associated efflux pumps in pathogens can inform our efforts to understand how AMR spreads. Herein we compile and critically assess the literature on the identification and characterization of antibiotic exporters and their contribution to production in natural antibiotic producers. We evaluate examples of how this knowledge could be used in biotechnology to increase yields of the final product or modulate its chemical nature. Finally, we consider the evidence that natural exporters form a reservoir of protein functions that could be hijacked by pathogens as efflux pumps and emphasize the need for much greater understanding of these exporters to fully exploit their potential for applications around human health.201930964430
8397160.9997Application of combined CRISPR screening for genetic and chemical-genetic interaction profiling in Mycobacterium tuberculosis. CRISPR screening, including CRISPR interference (CRISPRi) and CRISPR-knockout (CRISPR-KO) screening, has become a powerful technology in the genetic screening of eukaryotes. In contrast with eukaryotes, CRISPR-KO screening has not yet been applied to functional genomics studies in bacteria. Here, we constructed genome-scale CRISPR-KO and also CRISPRi libraries in Mycobacterium tuberculosis (Mtb). We first examined these libraries to identify genes essential for Mtb viability. Subsequent screening identified dozens of genes associated with resistance/susceptibility to the antitubercular drug bedaquiline (BDQ). Genetic and chemical validation of the screening results suggested that it provided a valuable resource to investigate mechanisms of action underlying the effects of BDQ and to identify chemical-genetic synergies that can be used to optimize tuberculosis therapy. In summary, our results demonstrate the potential for efficient genome-wide CRISPR-KO screening in bacteria and establish a combined CRISPR screening approach for high-throughput investigation of genetic and chemical-genetic interactions in Mtb.202236417506
9218170.9997CRISPR-Cas System: A New Dawn to Combat Antibiotic Resistance. Antimicrobial resistance (AMR) can potentially harm global public health. Horizontal gene transfer (HGT), which speeds up the emergence of AMR and increases the burden of drug resistance in mobile genetic elements (MGEs), is the primary method by which AMR genes are transferred across bacterial pathogens. New approaches are urgently needed to halt the spread of bacterial diseases and antibiotic resistance. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), an RNA-guided adaptive immune system, protects prokaryotes from foreign DNA like plasmids and phages. This approach may be essential in limiting horizontal gene transfer and halting the spread of antibiotic resistance. The CRISPR-Cas system has been crucial in identifying and understanding resistance mechanisms and developing novel therapeutic approaches. This review article investigates the CRISPR-Cas system's potential as a tool to combat bacterial AMR. Antibiotic-resistant bacteria can be targeted and eliminated by the CRISPR-Cas system. It has been proven to be an efficient method for removing carbapenem-resistant plasmids and regaining antibiotic susceptibility. The CRISPR-Cas system has enormous potential as a weapon against bacterial AMR. It precisely targets and eliminates antibiotic-resistant bacteria, facilitates resistance mechanism identification, and offers new possibilities in diagnostics and therapeutics.202438605260
9618180.9997Why bacteriophage encode exotoxins and other virulence factors. This study considers gene location within bacteria as a function of genetic element mobility. Our emphasis is on prophage encoding of bacterial virulence factors (VFs). At least four mechanisms potentially contribute to phage encoding of bacterial VFs: (i) Enhanced gene mobility could result in greater VF gene representation within bacterial populations. We question, though, why certain genes but not others might benefit from this mobility. (ii) Epistatic interactions-between VF genes and phage genes that enhance VF utility to bacteria-could maintain phage genes via selection acting on individual, VF-expressing bacteria. However, is this mechanism sufficient to maintain the rest of phage genomes or, without gene co-regulation, even genetic linkage between phage and VF genes? (iii) Phage could amplify VFs during disease progression by carrying them to otherwise commensal bacteria colocated within the same environment. However, lytic phage kill bacteria, thus requiring assumptions of inclusive fitness within bacterial populations to explain retention of phage-mediated VF amplification for the sake of bacterial utility. Finally, (iv) phage-encoded VFs could enhance phage Darwinian fitness, particularly by acting as ecosystem-modifying agents. That is, VF-supplied nutrients could enhance phage growth by increasing the density or by improving the physiology of phage-susceptible bacteria. Alternatively, VF-mediated break down of diffusion-inhibiting spatial structure found within the multicellular bodies of host organisms could augment phage dissemination to new bacteria or to environments. Such phage-fitness enhancing mechanisms could apply particularly given VF expression within microbiologically heterogeneous environments, ie, ones where phage have some reasonable potential to acquire phage-susceptible bacteria.200719325857
9475190.9997Rapidly evolving genes in pathogens: methods for detecting positive selection and examples among fungi, bacteria, viruses and protists. The ongoing coevolutionary struggle between hosts and pathogens, with hosts evolving to escape pathogen infection and pathogens evolving to escape host defences, can generate an 'arms race', i.e., the occurrence of recurrent selective sweeps that each favours a novel resistance or virulence allele that goes to fixation. Host-pathogen coevolution can alternatively lead to a 'trench warfare', i.e., balancing selection, maintaining certain alleles at loci involved in host-pathogen recognition over long time scales. Recently, technological and methodological progress has enabled detection of footprints of selection directly on genes, which can provide useful insights into the processes of coevolution. This knowledge can also have practical applications, for instance development of vaccines or drugs. Here we review the methods for detecting genes under positive selection using divergence data (i.e., the ratio of nonsynonymous to synonymous substitution rates, d(N)/d(S)). We also review methods for detecting selection using polymorphisms, such as methods based on F(ST) measures, frequency spectrum, linkage disequilibrium and haplotype structure. In the second part, we review examples where targets of selection have been identified in pathogens using these tests. Genes under positive selection in pathogens have mostly been sought among viruses, bacteria and protists, because of their paramount importance for human health. Another focus is on fungal pathogens owing to their agronomic importance. We finally discuss promising directions in pathogen studies, such as detecting selection in non-coding regions.200919442589