Co-existence of bla(IMP), bla(NDM-1), and bla(SHV), genes of Pseudomonas aeruginosa isolated from Quetta: Antimicrobial resistance and clinical significance. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
92001.0000Co-existence of bla(IMP), bla(NDM-1), and bla(SHV), genes of Pseudomonas aeruginosa isolated from Quetta: Antimicrobial resistance and clinical significance. OBJECTIVE: Molecular detection and co-presence of carbapenem-resistant genes in the isolates of Pseudomonas aeruginosa are less commonly reported from Quetta. In the present study, we determined to highlight the antibiotic sensitivity profile and genetic mechanism of carbapenem resistance. METHODS: The cross-sectional study was conducted from May to September 2018 at the Hi-tech laboratory, Centre for Advance Studies in Vaccinology and Biotechnology, University of Baluchistan, Quetta. Biochemical and molecular methods were ascertained for the recognition of the isolates and minimum inhibitory concentration was performed using E-test and broth microdilution methods. The molecular basis of carbapenemase activity was determined by identifying carbapenemase genes in the isolates. RESULTS: Of the (n=23) P. aeruginosa isolated from pus aspirates obtained from surgical/burn units, we have detected bla(IMP) (n=7/8) 87.5%, bla(NDM-1) (n=5/8) 62.5%, and bla(SHV) (n=4/8) 50%. The co-existence of multiple antibiotic-resistant genes, bla(IMP), bla(NDM-1) and bla(SHV) was found in (n=2/8) 25% isolates. These isolates displayed resistance against a range of antimicrobials from β-lactams, tetracyclines, cephalosporins, quinolones, monobactams, aminoglycosides, sulphonamides, phosphoric acid, macrolides, and polypeptide groups, suggesting extensive-drug resistance. CONCLUSION: The emergence of MBL and ESBL producers is an alarming threat in the region. It is of great importance to determine the resistance mechanism of bacterial bugs. The lack of new antimicrobials particularly against gram-negative bacteria is quite alarming worldwide.202337680816
92310.9998Prevalence of Oxacillinase Genes in Clinical Multidrug-Resistant Gram-Negative Bacteria. BACKGROUND: The emergence of OXA-type beta-lactamases has become a significant threat to public healthcare systems and may lead to prolonged hospital stays and increased mortality rates among affected patients. This study aimed to determine the prevalence of oxacillinase resistance (OXA) genes in multidrug-resistant (MDR) Gram-negative bacteria. METHODS: One hundred and six clinical isolates were collected from a stock of Gram-negative isolates and were identified and tested for antibiotic susceptibility and presence of OXA genes using polymerase chain reaction (PCR). RESULTS: The most common detected isolate was Klebsiella pneumoniae (36.8%), followed by Escherichia coli (33%), Pseudomonas aeruginosa (16%), and Acinetobacter baumannii (14.2%). Out of these isolates, 97.4%, 87.2%, 84.6%, and 79.5% were resistant to ampicillin/sulbactam, cefotaxime, ceftazidime, and aztreonam, respectively. PCR results confirmed the presence of one or more OXA genes in 34% of the samples studied. The blaOXA-1 and blaOXA-10 genes were the most highly detected genes, followed by blaOXA-4 and blaOXA-51. The total number of Pseudomonas aeruginosa isolates was confirmed to carry at least one OXA gene (70.6%), whereas Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were confirmed to carry at least one OXA gene (53.3, 28.2, and 22.9%, respectively). There was a significant association (p < 0.05) between the resistance genes and the type of isolate. CONCLUSIONS: Pseudomonas aeruginosa and Acinetobacter baumannii are the most common MDR Gram-negative strains carrying OXA-type beta-lactamase genes. Monitoring of MDR pathogens in Gram-negative bacteria must be continuously undertaken to implement effective measures for infection control and prevention.202540066541
99720.9998Prevalence and antibacterial resistance patterns of extended-spectrum beta-lactamase producing Gram-negative bacteria isolated from ocular infections. PURPOSE: Extended-spectrum beta-lactamases (ESBLs) mediated resistance is more prevalent worldwide, especially among Gram-negative bacterial isolates, conferring resistance to the expanded spectrum cephalosporins. As limited data were available on the prevalence of ESBLs in this area, the current study was undertaken to determine the prevalence, antibacterial resistance patterns, and molecular detection and characterization of ESBL encoding resistance genes among ocular Gram-negative bacterial isolates from ocular infections. MATERIALS AND METHODS: A prospective study was done on 252 ocular Gram-negative bacterial isolates recovered from ocular infections during a study period from February 2011 to January 2014. All isolates were subjected to detection of ESBLs by cephalosporin/clavulanate combination disc test and their antibacterial resistance pattern was studied. Molecular detection and characterization of ESBL encoding blaTEM -, blaSHV , blaOXA -, and blaCTX-M (phylogenetic groups 1, 2, 9, and 8/25) resistance genes by multiplex polymerase chain reaction and DNA sequence analysis. RESULTS: Of all Gram-negative bacteria, Pseudomonas aeruginosa (44%) was the most common strain, followed by Enterobacter agglomerans and Klebsiella pneumoniae each (10%). Among the 252, 42 (17%) were ESBL producers. The major source of ESBL producers were corneal scraping specimens, highest ESBL production was observed in P. aeruginosa 16 (38%) and Escherichia coli 7 (16.6%). Among ESBL-producing genes, the prevalence of blaTEM -gene was the highest (83%) followed by blaOXA -gene (35%), blaSHV -gene (18.5%), and blaCTX-M-1 -gene (18.5%) alone or together. CONCLUSION: The higher rate of prevalence of ESBLs-encoding genes among ocular Gram-negative bacteria is of great concern, as it causes limitation to therapeutic options. This regional knowledge will help in guiding appropriate antibiotic use which is highly warranted.201627221683
112730.9998Extended spectrum beta-lactamase and aminoglycoside modifying enzyme genes in multi drug resistant Gram-negative bacteria: A snapshot from a tertiary care centre. BACKGROUND: This study aims to enhance the existing knowledge of the prevalence of genes responsible for beta-lactam resistance and aminoglycoside resistance in gram negative organisms by molecular detection of extended spectrum beta-lactamase and aminoglycoside modifying enzymes in multidrug-resistant gram-negative bacteria. METHODS: Out of 864 gram-negative isolates, 710 were phenotypically identified as multidrug-resistant by antibiotic susceptibility testing. From the above isolates, 102 representative isolates as per sample size calculated were selected for further molecular studies. The presence of blaTEM, blaCTX-M blaSHV, and five AmpC genes was detected by real-time polymerase chain reaction (PCR). Conventional PCR was performed to detect seven aminoglycoside modifying enzyme genes namely aac(6')-Ib, aac(6')-Ic, aac(3)-Ia, aac(3)-Ib, aac(3)-IIa, ant(2'')-Ia, and ant(4'')-IIa. RESULTS: Most common multidrug-resistant isolate was Klebsiella pneumoniae (35%) followed by Escherichia coli (30%). Among the 102 selected isolates all harboured blaTEM gene, 71 (69.6%) harboured blaCTX-M gene and 48 (47%) blaSHV gene. Among the selected isolates 60% showed the presence of AmpC genes. Most common aminoglycosie modifying enzyme gene was AAC 6' Ib (51%) followed by ANT 2" Ia (36%). CONCLUSION: This study suggests a wider use of molecular methods using specific PCR amplification of resistance genes. It would be beneficial to perform the molecular identification of antimicrobial resistance genes to effectively monitor and manage antibiotic resistance, administer appropriate antimicrobial medication, practice antimicrobial stewardship and improve hospital infection control procedures.202439734850
91740.9998Virulence characterization and clonal analysis of uropathogenic Escherichia coli metallo-beta-lactamase-producing isolates. BACKGROUND: Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infection (UTI); however, treatment of UTI has been challenging due to increased antimicrobial resistance (AMR). One of the most important types of AMR is carbapenem resistance (CR). CR bacteria are known as an important threat to global public health today. Class B metallo-beta-lactamases (MBLs) are one of the major factors for resistance against carbapenems. We aimed to investigate the characteristics of UPEC isolates producing MBL. METHODS: A cross-sectional study was conducted from October 2018 to December 2019 in Ahvaz; Iran. UPEC isolates were identified by biochemical and molecular methods. Metallo-beta-lactamase-producing isolates were detected using modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) tests. MBL genes, phylogenetic group, and virulence genes profile of carbapenem resistant isolates were determined. Conjugation assay and plasmid profiling were conducted to evaluate the ability of transferring of CR to other E. coli isolates. Clonal similarity of isolates were assessed using Enterobacterial intergenic repetitive element sequence (ERIC)-PCR. RESULTS: Among 406 UPEC isolates, 12 (2.95%) carbapenem-resistant were detected of which 11 were phenotypically MBL-producing strains. Four isolates were resistant to all investigated antimicrobial agents and were considered possible pandrug-resistant (PDR). bla(NDM), bla(OXA-48), bla(IMP-1), and bla(IMP-2) genes were found in 9, 5, 1, and 1 isolates, respectively. Among 30 virulence genes investigated, the traT, fyuA followed by fimH, and iutA with the frequency of 8 (66.7%), 8 (66.7%), 7 (58.3%), and 7 (58.3%) were the most identified genes, respectively. Siderophore production was the main virulence trait among carbapenem-resistant UPEC isolates. Except for two, all other isolates showed weak to moderate virulence index. In all recovered isolates, CR was readily transmitted via plasmids to other isolates during conjugation experiments. CONCLUSION: MBL and carbapenemase genes, especially bla(NDM) and bla(OXA-48) are spreading rapidly among bacteria, which can be a threat to global public health. Therefore monitoring the emergence and dissemination of new AMR is necessary to continuously refine guidelines for empiric antimicrobial therapy. Understanding the mechanisms of resistance and virulence in this group of bacteria can play an effective role in providing new therapeutic methods.202134344363
105150.9998Multi-drug Resistance, β-Lactamases Production, and Coexistence of bla (NDM-1) and mcr-1 in Escherichia coli Clinical Isolates From a Referral Hospital in Kathmandu, Nepal. The ability of pathogenic Escherichia coli to produce carbapenemase enzymes is a characteristic that allows them to resist various antibiotics, including last-resort antibiotics like colistin and carbapenem. Our objectives were to identify rapidly developing antibiotic resistance (AR), assess β-lactamases production, and detect mcr-1 and bla (NDM-1) genes in the isolates. A prospective cross-sectional study was carried out in a referral hospital located in Kathmandu from November 2019 to December 2020 using standard laboratory and molecular protocols. Among 77 total E. coli isolates, 64 (83.1%) of them were categorized as MDR. Phenotypically 13 (20.3%) colistin-resistant, 30 (46.9%) ESBL and 8 (12.5%) AmpC producers, and 5 (7.8%) ESBL/AmpC co-producers were distributed among MDR-E. coli. Minimum inhibitory concentrations (MIC) against the majority of MDR isolates were exhibited at 1 g/L. Of these 77 E. coli isolates, 24 (31.2%) were carbapenem-resistant. Among these carbapenem-resistant bacteria, 11 (45.9%) isolates were reported to be colistin-resistant, while 15 (62.5%) and 2 (8.3%) were MBL and KPC producers, respectively. Out of 15 MBL producers, 6 (40%) harbored bla (NDM-1), and 8 (61.5%) out of 13 colistin-resistant pathogens possessed mcr-1. The resistance by colistin- and carbapenem were statistically associated (P < .001). However, only 2 (18.2%) of the co-resistant bacteria were found to have both genes. Our study revealed the highly prevalent MDR and the carbapenem-resistant E. coli and emphasized that the pathogens possess a wide range of capabilities to synthesize β-lactamases. These findings could assist to expand the understanding of AR in terms of enzyme production.202336741474
212660.9998Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania. The burden of antimicrobial resistance (AMR) is rapidly growing across antibiotic classes, with increased detection of isolates resistant to carbapenems. Data on the prevalence of carbapenem resistance in developing countries is limited; therefore, in this study, we determined the prevalence of carbapenemase genes among multidrug resistant gram negative bacteria (MDR-GNB) isolated from clinical specimens in a tertiary hospital in Mwanza, Tanzania. A total of 227 MDR-GNB isolates were analyzed for carbapenem resistance genes. For each isolate, five different PCR assays were performed, allowing for the detection of the major carbapenemase genes, including those encoding the VIM-, IMP-, and NDM-type metallo-beta-lactamases, the class A KPC-type carbapenemases, and the class D OXA-48 enzyme. Of 227 isolates, 80 (35%) were positive for one or more carbapenemase gene. IMP-types were the most predominant gene followed by VIM, in 49 (21.59%) and 28 (12%) isolates, respectively. Carbapenemase genes were most detected in K. pneumoniae 24 (11%), followed by P. aeruginosa 23 (10%), and E. coli with 19 isolates (8%). We have demonstrated for the first time a high prevalence of MDR-GNB clinical isolates having carbapenem resistance genes in Tanzania. We recommend routine testing for carbapenem resistance among the MDR-GNB particularly in systemic infections.201424707481
212170.9998Investigation of VIM, IMP, NDM-1, KPC AND OXA-48 enzymes in Enterobacteriaceae strains. Gram-negative bacteria especially Enterobacteriaceae species have become an increasing etiologic agent of nosocomial infections. The development of resistance to carbapenems have become an increasing problem in the treatment of nosocomial infections. Especially carbapenamases are common for Enterobacteriaceae strains. This study was performed to detect the types of carbapenemases in Enterobacteriaceae strains isolated from various clinical samples. Enterobacteriaceae species were isolated from urine, blood, tracheal aspirates, wound, and other respiratory samples. Susceptibility of isolates to imipenem, meropenem and ertapenem was tested. Carbapenemase genes were studied using HyplexSuperBug ID kit. VIM (1-13), IMP (1-22), NDM-1, KPC(1-10) and OXA-48 genes were investigated. Ninety-five isolates of Enterobacteriaceae spp. were included in the study. Sixty isolates were resistant to imipenem, meropenem and ertapenem and 20 isolates were found resistant to imipenem or ertapenem while 15 were susceptible to all carbapenems. Among the isolates with carbapenem resistance, 57 were positive for one carbapenemase gene and susceptible isolates did not have carbapenemase gene. OXA-48 was found in 49 of the isolates (86%), NDM-1 in 6 (10.5%) isolates, VIM in 2 isolates. IMP and KPC gene loci were not identified. Carbapenemase genes play a crucial role in the development and spread of resistant strains.201526051720
221980.9998Development and validation of a multiplex TaqMan real-time PCR for rapid detection of genes encoding four types of class D carbapenemase in Acinetobacter baumannii. A multiplex TaqMan real-time PCR to detect carbapenem-hydrolysing class D β-lactamases (bla(OXA-23)-like, bla(OXA-24/40)-like, bla(OXA-51)-like and bla(OXA-58)-like genes) was developed and evaluated for early detection of imipenem (IMP) resistance in clinically significant Acinetobacter baumannii isolates. Well-characterized strains of A. baumannii were used as positive controls and non-Acinetobacter strains were used to assess specificity. Analytical sensitivity was quantified by comparison with the number of bacterial c.f.u. Forty of 46 (87 %) clinically significant and IMP-resistant A. baumannii isolates were positive for the bla(OXA-23)-like gene, and one isolate (2 %) was positive for the bla(OXA-58)-like gene. The bla(OXA-24/40)-like gene was not detected in any of the 46 IMP-resistant strains and the bla(OXA-51)-like gene was identified in both IMP-resistant and non-resistant A. baumannii. All 11 non-Acinetobacter bacteria produced a negative result for each of the four bla(OXA) genes. This assay was able to detect as few as 10 c.f.u. per assay. This real-time PCR method demonstrated rapid detection of OXA-like carbapenem resistance in A. baumannii in comparison with phenotypic susceptibility testing methodology. This method could be adapted to a multiplexed single reaction for rapid detection of genes associated with carbapenem resistance in A. baumannii and potentially other clinically significant multidrug-resistant Gram-negative bacteria.201222878252
93390.9998Molecular characterization and diversity of carbapenemases in Gram-negative bacteria in Libyan hospitals. INTRODUCTION: Antimicrobial resistance has become a major threat to public health, especially in developing countries, due to the uncontrolled consumption of antibiotics. This study aims to characterize antibiotic resistance genes in different bacteria recovered in different healthcare facilities in Libya. METHODOLOGY: 379 samples were recovered from various sources from different sites. 210 samples were able to grow on culture media. 133 Gram-negative carbapenem-resistant strains were recovered from clinical specimens (n = 64), and hospital environments (n = 69). Antibiotic susceptibility tests were performed to select carbapenem-resistant strains. Colistin resistance was tested by the UMIC method to determine the minimum inhibitory concentration. RT-PCR was conducted to detect the incidence of carbapenemases-encoding genes. RESULTS: Gram-negative bacteria showed a low susceptibility to carbapenems. Molecular investigations indicated that NDM-1 was the most prevalent in Enterobacteriaceae isolated from patients and hospital environment (n = 26, n = 41), followed by blaOXA-48 (n = 16, n = 15) and blaVIM (n = 3) from patients and blaKPC (n = 1) from hospital environment. Concerning A. baumannii, blaOXA-23 was detected in strains isolated from patients (n = 8) and hospital environment (n = 6), followed by blaNDM (n = 9) from patients and one from hospital environment. Carbapenem resistance in P. aeruginosa was encoded by modification in OprD encoding gene, such as IS (ISpa26), polymorphism, and a premature stop codon. CONCLUSIONS: Several carbapenem resistant Gram-negative bacteria were identified by the expression of different carbapenemases and the alteration of OprD.202540720466
2124100.9998Evaluation of Phenotypic and Genotypic Characteristics of Carbapnemases-producing Enterobacteriaceae and Its Prevalence in a Referral Hospital in Tehran City. BACKGROUND & OBJECTIVE: Carbapenem-resistant Enterobacteriaceae is a growing concern worldwide including Iran. The emergence of this pathogen is worrying as carbapenem is one of the 'last-line' antibiotics for treatment of infections caused by multi drug resistant gram- negative bacteria. The main objective of this study was to determine the prevalence of carbapenem-resistant Enterobacteriaceae in a referral hospital in Tehran, Iran. METHODS: In this study, all positive isolates of Enterobacteriaceae recorded in blood, urine, and other body fluids were studied during April 2017 to April 2018 in a referral hospital in Tehran. All cases of resistance to carbapenems were first tested by modified Hodge test. All cases with positive or negative test, after gene extraction, were examined genotypically based on the primers designed for the three Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-β-lactamase (NDM), and OXA-48 genes by conventional PCR method. RESULTS: 108 isolates (13.6%) were resistant to all cephalosporins as well as to imipenem and meropenem. In a genotypic study, including 45 isolates, 13 isolates were positive for OXA-48 gene, 11 isolates for OXA-48 and NDM genes, 11 isolates for OXA-48, NDM and KPC genes, 4 isolates for OXA-48 genes and KPC, 3 isolates for NDM, one isolate for KPC. On the other hand, two isolates were negative for all three genes examined. CONCLUSION: OXA-48 gene was one of the most common genes resistant to carbapenems in Iran. According to studies, the prevalence of antibiotic resistance in Iran is rising dramatically, which reduces the choice of antibiotics to treat severe infections in the future.202032215024
924110.9998Screening of Antimicrobial Resistance Genes and Epidemiological Features in Hospital and Community-Associated Carbapenem-Resistant Pseudomonas aeruginosa Infections. INTRODUCTION: Researching carbapenem-resistant isolates enables the identification of carbapenemase-producing bacteria and prevents their spread. METHODS: P. aeruginosa isolates were recovered from Medicine Faculty of Recep Tayyip Erdoğan University and identified by conventional methods and the automated Vitek 2 Compact system. Antimicrobial susceptibility experiments were performed in accordance with CLSI criteria and the automated Vitek 2 Compact system. The PCR method was investigated for the presence of β-lactamase resistance genes. PFGE typing was performed to show clonal relation among samples. RESULTS: Seventy P. aeruginosa isolates were isolated from seventy patients. Of the patients, 67.1% had contact with the health service in the last 90 days and 75.7% of the patients had received antimicrobial therapy in the previous 90 days. Twenty-four isolates were carbapenem resistant, 2 isolates were multidrug-resistant except colistin, and none of the samples had colistin resistance. The gene encoding β-lactamase or metallo-β-lactamase was found in a total of 36 isolates. The bla (VEB) and bla (PER) genes were identified in 1 and 5 isolates alone or 17 and 13 isolates in combination with other resistance genes, respectively. The bla (NDM) was the most detected metallo-β-lactamase encoding gene (n=18), followed by bla (KPC) (n=12). bla (IMP) and bla (VIM) were detected in 5 and 1 isolates, respectively. Also, the association of bla (VEB)-bla (PER) and bla (VEB)-bla (KPC)-bla (NDM) was found to be very high. Much more resistance genes and co-occurrence were detected in hospital-acquired samples than community-acquired samples. No difference was found between the community and hospital-associated isolates according to PFGE results. Simultaneously from 6 patients, other microorganisms were also isolated and 5 of them died. CONCLUSION: The average length of stay (days) was found to be significantly higher in HAI group than CAI group. The death of 5 patients with fewer or no resistance genes showed that the co-existence of other microorganisms in addition to resistance genes was important on death.202133907430
931120.9998Epidemiological characteristics and antimicrobial susceptibility among carbapenem-resistant non-fermenting bacteria in Brazil. INTRODUCTION: Non-fermenting Gram-negative bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii are widespread in the environment and are increasingly associated with nosocomial infections. Extensive and indiscriminate use of antibiotics in hospitals has contributed to an increased number of infections caused by these microorganisms, that are resistant to a wide variety of antimicrobials, including β-lactams. This study aimed to isolate and identify carbapenem-resistant Acinetobacter spp. and P. aeruginosa from hospitalized patients, to determine their antimicrobial susceptibility patterns and to screen for blaOXA-23, blaOXA-24, blaOXA-51, blaOXA-58, and blaOXA-143 genes among the isolated bacteria. METHODOLOGY: Antimicrobial resistance patterns were performed using the disk-diffusion method. Genetic markers related to carbapenem resistance were screened by polymerase chain reaction. RESULTS: Carbapenem-resistant Acinetobacter spp. (n = 44) and P. aeruginosa (n = 28) samples were isolated from patients admitted to a tertiary hospital. Polymyxin B was the only effective drug for all isolates. Considering the oxacillinase gene screening, genetic markers were observed only in Acinetobacter isolates. The most frequent genotype observed was blaOXA-23+/blaOXA-51+ (45.5%), followed by blaOXA-51+/blaOXA-143+ (41%). The oxacillinase genes blaOXA-24 and blaOXA-58 were not detected. High mortality rates (> 70%) were observed. CONCLUSIONS: The data suggest the need for rational use of antimicrobials associated with early diagnosis of multidrug-resistant bacteria, especially considering non-fermenting Gram-negative rods, which are widespread in hospitals. The findings of blaoxa-51(-) strains suggest the occurrence and spread of non-A. baumannii species throughout our hospitals. Effective implementation of surveillance programs in hospitals is needed to reduce infectious and resistant intra- and inter-species bacteria.201627367001
922130.9998Insertion Sequences within Oxacillinases Genes as Molecular Determinants of Acinetobacter baumannii Resistance to Carbapenems-A Pilot Study. Carbapenem-resistant Acinetobacter baumannii is one of the major problems among hospitalized patients. The presence of multiple virulence factors results in bacteria persistence in the hospital environment. It facilitates bacterial transmission between patients, causing various types of infections, mostly ventilator-associated pneumonia and wound and bloodstream infections. A. baumannii has a variable number of resistance mechanisms, but the most commonly produced are carbapenem-hydrolyzing class D β-lactamases (CHDLs). In our study, the presence of bla(OXA-23), bla(OXA-40) and bla(OXA-51) genes was investigated among 88 clinical isolates of A. baumannii, including 53 (60.2%) strains resistant to both carbapenems (meropenem and imipenem) and 35 (39.8%) strains susceptible to at least meropenem. Among these bacteria, all the isolates carried the bla(OXA-51) gene. The bla(OXA-23) and bla(OXA-40) genes were detected in two (5.7%) and three (8.6%) strains, respectively. Among the OXA-23 carbapenemase-producing A. baumannii strains (n = 55), insertion sequences (ISAba1) were detected upstream of the bla(OXA-23) gene in fifty-two (94.5%) carbapenem-resistant and two (3.6%) meropenem-susceptible isolates. A. baumannii clinical strains from Poland have a similar antimicrobial resistance profile as those worldwide, with the presence of ISAba1 among bla(OXA-23)-positive isolates also being quite common. Carbapenem resistance among A. baumannii strains is associated with the presence of CHDLs, especially when insertion sequences are present.202439458366
2111140.9998Antimicrobial Resistance and Resistance Determinant Insights into Multi-Drug Resistant Gram-Negative Bacteria Isolates from Paediatric Patients in China. INTRODUCTION: The emergence of multi-drug-resistant Gram-negative bacteria (GNB) is a concern in China and globally. This study investigated antimicrobial resistance traits and resistance determinant detection in GNB isolates from paediatric patients in China. METHODS: In the present study, a total of 170 isolates of GNB including the most prevalent Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii were collected from Shenzhen Children's Hospital, China. ESBLs production was confirmed by using the combination disc diffusion method, and carbapenemase production was confirmed by using a carbapenem inactivation method followed by antimicrobial susceptibility. In addition, β-lactamase-encoding genes and co-existence of plasmid-borne colistin resistance mcr-1 gene were determined by PCR and sequencing. RESULTS: Overall, 170 etiological agents (GNB) were recovered from 158 paediatric patients. The most prevalent species was E. coli 40% (n=68), followed by K. pneumoniae 17.64% (n=30), and Enterobacter cloacae 14.11% (n=24). Of 170 GNB, 71.76% (n=122) were multi-drug-resistant, 12.35% (n=21) extreme-drug resistant, and 7.64% (n=13) single-drug-resistant, while 8.23% (n=14) were sensitive to all of the studied antibiotics. The prevalence of ESBLs and carbapenemase producers were 60% and 17%, respectively. bla (CTX-M) was the most prevalent resistance gene (59.42%), followed by bla (TEM) (41.17%), bla (SHV) (34.270%), bla (KPC) (34.11%), bla (OXA-48) (18.82%) and bla (NDM-1) (17.64%). CONCLUSION: The present study provides insights into the linkage between the resistance patterns of GNB to commonly used antibiotics and their uses in China. The findings are useful for understanding the genetics of resistance traits and difficulty in tackling of GNB in paediatric patients.201931819545
932150.9998Emergence of armA and rmtB genes among VIM, NDM, and IMP metallo-β-lactamase-producing multidrug-resistant Gram-negative pathogens. In the recent years, it has been noted that microorganisms with acquired resistance to almost all available potent antibiotics are increasing worldwide. Hence, the use of antibiotics in every clinical setup has to be organized to avoid irrational use of antibiotics. This study was aimed to establish the pattern of antibiotic sensitivity and relevance of antimicrobial resistance in aerobic Gram-negative bacilli. A total of 103 aerobic Gram-negative bacteria namely Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Citrobacter koserii, Proteus spp., and Pseudomonas aeruginosa were collected from tertiary care centers around Chennai. Kirby-Bauer Disk Diffusion test and study for genes of cephalosporin, carbapenem, and aminoglycoside resistance were done. A descriptive analysis of the data on altogether 103 clinical urine isolates was performed. All strains showed susceptibility to colistin. The frequency of genes encoding 16S rRNA methylases armA and rmtB were 7.8% and 6.8%, respectively. Among metallo-β-lactamases, bla(VIM), bla(IMP), and bla(NDM-1) were detected in 6.8%, 3.8%, and 3.8%, respectively. One E. coli strain harbored bla(SIM-1) gene. Cumulative analysis of data suggested that 30% of the strains carried more than one resistance gene. The current research evidenced the increasing frequency of resistance mechanisms in India. Combined approach of antibiotic restriction, effective surveillance, and good infection control practices are essential to overcome antibiotic resistance.201828870092
2119160.9998Detection of bla(IMP) and bla(VIM) metallo-β-lactamases genes among Pseudomonas aeruginosa strains. Acquired Metallo-β-Lactamases (MBLs) are emerging resistance determinants in Pseudomonas aeruginosa and other gram-negative bacteria.Using Combination Disk Diffusion test, it was found that among 83 imipenem non-susceptible P. aeruginosa strains, 48 (57.9%) were MBL producers. PCR and Sequencing methods proved that these isolates were positive for blaIMP-1 genes, whereas none were positive for bla(VIM) genes. The mortality rate due to MBL-producing Pseudomonas infection was 4 (8.3%) among the hospitalized patients. Therefore, identification of drug resistance patterns in P. aeruginosa and detection of MBLs producing isolates are of great importance in the prevention and control of infections.201323638331
996170.9998Rapid Detection of New Delhi Metallo-β-Lactamase Gene Using Recombinase-Aided Amplification Directly on Clinical Samples From Children. New Delhi metallo-β-lactamase, a metallo-β-lactamase carbapenemase type, mediates resistance to most β-lactam antibiotics including penicillins, cephalosporins, and carbapenems. Therefore, it is important to detect bla (NDM) genes in children's clinical samples as quickly as possible and analyze their characteristics. Here, a recombinase-aided amplification (RAA) assay, which operates in a single one-step reaction tube at 39°C in 5-15 min, was established to target bla (NDM) genes in children's clinical samples. The analytical sensitivity of the RAA assay was 20 copies, and the various bacterial types without bla (NDM) genes did not amplify. This method was used to detect bla (NDM) genes in 112 children's stool samples, 10 of which were tested positive by both RAA and standard PCR. To further investigate the characteristics of carbapenem-resistant bacteria carrying bla (NDM) in children, 15 carbapenem-resistant bacteria (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Citrobacter freundii, Klebsiella oxytoca, Acinetobacter junii, and Proteus mirabilis) were isolated from the 10 samples. Notably, more than one bacterial type was isolated from three samples. Most of these isolates were resistant to cephalosporins, cefoperazone-sulbactam, piperacillin-tazobactam, ticarcillin-clavulanic acid, aztreonam, co-trimoxazole, and carbapenems. bla (NDM) (-) (1) and bla (NDM) (-) (5) were the two main types in these samples. These data show that the RAA assay has potential to be a sensitive and rapid bla (NDM) gene screening test for clinical samples. The common existence of bla (NDM) and multi-drug resistance genes presents major challenges for pediatric treatment.202134367092
998180.9998Extended spectrum beta-lactamases among Gram-negative bacteria of nosocomial origin from an intensive care unit of a tertiary health facility in Tanzania. BACKGROUND: Resistance to third generation cephalosporins due to acquisition and expression of extended spectrum beta-lactamase (ESBL) enzymes among Gram-negative bacteria is on the increase. Presence of ESBL producing organisms has been reported to significantly affect the course and outcome of an infection. Therefore infections due to ESBL isolates continue to pose a challenge to infection management worldwide. The aim of this study was to determine the existence and to describe phenotypic and genotypic characteristics of ESBLs in an Intensive Care Unit (ICU) setting in Tanzania. METHODS: Between October 2002 and April 2003, clinical information and samples were collected from patients suspected to have nosocomial infections in an Intensive Care Unit of a tertiary hospital in Tanzania. The isolates were identified, tested for antimicrobial susceptibility and analysed for presence of ESBL genes. RESULTS: Thirty-nine Gram-negative bacteria were isolated from clinical samples of 39 patients. These isolates included 13 Escherichia coli, 12 Enterobacter spp, 5 Pseudomonas spp, 4 Proteus spp, 2 Klebsiella. pneumoniae, 2 Citrobacter freundii and 1 Chryseomonas luteola. Eleven (28.2%) of these isolates were ESBL producing. The ESBL genes characterised were SHV-12, SHV-28 and CTX-M-15. The ESBL producing isolates were more resistant to gentamicin and ciprofloxacin than non-ESBL producing isolates. CONCLUSION: This study shows the presence of ESBL genes among Gram-negative bacteria in the ICU setting in Tanzania. There is a need to institute strict hospital infection control policy and a regular surveillance of resistance to antimicrobial agents.200516225701
865190.9998High Prevalence of bla(NDM-1), bla(VIM), qacE, and qacEΔ1 Genes and Their Association with Decreased Susceptibility to Antibiotics and Common Hospital Biocides in Clinical Isolates of Acinetobacter baumannii. The objective of this study was to evaluate the susceptibility of metallo-β-lactamase (MBL)-producing Acinetobacter baumannii (A. baumannii) clinical isolates to biocides. We also determined the prevalence and correlation of efflux pump genes, class 1 integron and MBL encoding genes. In addition, bla(VIM), bla(NDM-1), qacE and qacEΔ1 nucleotide sequence analysis was performed and compared to sequences retrieved from GenBank at the National Center for Biotechnology Information database. A. baumannii had a resistance rate to carbapenem of 71.4% and 39.3% and was found to be a MBL producer. The minimum inhibitory concentrations (MICs) of chlorhexidine and cetrimide were higher than the recommended concentrations for disinfection in 54.5% and 77.3% of MBL-positive isolates respectively and their MICs were significantly higher among qac gene-positive isolates. Coexistence of qac genes was detected in 68.1% and 50% of the isolates with bla(VIM) and bla(NDM-1) respectively. There was a significant correlation between the presence of qac genes and MBL-encoding bla(VIM) and bla(NDM-1) genes. Each of the bla(NDM-1), bla(VIM), qacE and qacEΔ1 DNA sequences showed homology with each other and with similar sequences reported from other countries. The high incidence of Verona integron-encoded metallo-β-lactamases (VIM) and New-Delhi-metallo-β-lactamase (NDM) and qac genes in A.baumannii highlights emerging therapeutic challenges for being readily transferable between clinically relevant bacteria. In addition reduced susceptibility to chlorhexidine and cetrimide and the potential for cross resistance to some antibiotics necessitates the urgent need for healthcare facilities to periodically evaluate biocides efficacy, to address the issue of antiseptic resistance and to initiate a "biocidal stewardship".201728417918