Susceptibility Genes in Bacterial Diseases of Plants. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
920401.0000Susceptibility Genes in Bacterial Diseases of Plants. Plant susceptibility (S) genes exploited by pathogenic bacteria play critical roles in disease development, collectively contributing to symptoms, pathogen proliferation, and spread. S genes may support pathogen establishment within the host, suppress host immunity, regulate host physiology or development, or function in other ways. S genes can be passive, e.g., involved in pathogen attraction or required for pathogen effector localization or activity, or active, contributing directly to symptoms or pathogen proliferation. Knowledge of S genes is important for understanding disease and other aspects of plant biology. It is also useful for disease management, as nonfunctional alleles can slow or prevent disease and, because they are often quantitative, can exert less selection on pathogens than dominant resistance genes, allowing greater durability. In this review, we discuss bacterial exploitation of S genes, S-gene functional diversity, approaches for identifying S genes, translation of S-gene knowledge for disease control, and future perspectives on this exciting area of plant pathology.202540446167
920510.9999Resistance induction based on the understanding of molecular interactions between plant viruses and host plants. BACKGROUND: Viral diseases cause significant damage to crop yield and quality. While fungi- and bacteria-induced diseases can be controlled by pesticides, no effective approaches are available to control viruses with chemicals as they use the cellular functions of their host for their infection cycle. The conventional method of viral disease control is to use the inherent resistance of plants through breeding. However, the genetic sources of viral resistance are often limited. Recently, genome editing technology enabled the publication of multiple attempts to artificially induce new resistance types by manipulating host factors necessary for viral infection. MAIN BODY: In this review, we first outline the two major (R gene-mediated and RNA silencing) viral resistance mechanisms in plants. We also explain the phenomenon of mutations of host factors to function as recessive resistance genes, taking the eIF4E genes as examples. We then focus on a new type of virus resistance that has been repeatedly reported recently due to the widespread use of genome editing technology in plants, facilitating the specific knockdown of host factors. Here, we show that (1) an in-frame mutation of host factors necessary to confer viral resistance, sometimes resulting in resistance to different viruses and that (2) certain host factors exhibit antiviral resistance and viral-supporting (proviral) properties. CONCLUSION: A detailed understanding of the host factor functions would enable the development of strategies for the induction of a new type of viral resistance, taking into account the provision of a broad resistance spectrum and the suppression of the appearance of resistance-breaking strains.202134454519
920720.9998Genetically engineered resistance to bacterial and fungal pathogens. In the past 10 years, different strategies have been used to produce transgenic plants that are less susceptible to diseases caused by phytopathogenic fungi and bacteria. Genes from different organisms, including bacteria, fungi and plants, have been successfully used to develop these strategies. Some strategies have been shown to be effective against different pathogens, whereas others are specific to a single pathogen or even to a single pathovar or race of a given pathogen. In this review, we present the strategies that have been employed to produce transgenic plants less susceptible to bacterial and fungal diseases and which constitute an important area of plant biotechnology.199524414746
962130.9998Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. About half of all bacteria carry genes for CRISPR-Cas adaptive immune systems(1), which provide immunological memory by inserting short DNA sequences from phage and other parasitic DNA elements into CRISPR loci on the host genome(2). Whereas CRISPR loci evolve rapidly in natural environments(3,4), bacterial species typically evolve phage resistance by the mutation or loss of phage receptors under laboratory conditions(5,6). Here we report how this discrepancy may in part be explained by differences in the biotic complexity of in vitro and natural environments(7,8). Specifically, by using the opportunistic pathogen Pseudomonas aeruginosa and its phage DMS3vir, we show that coexistence with other human pathogens amplifies the fitness trade-offs associated with the mutation of phage receptors, and therefore tips the balance in favour of the evolution of CRISPR-based resistance. We also demonstrate that this has important knock-on effects for the virulence of P. aeruginosa, which became attenuated only if the bacteria evolved surface-based resistance. Our data reveal that the biotic complexity of microbial communities in natural environments is an important driver of the evolution of CRISPR-Cas adaptive immunity, with key implications for bacterial fitness and virulence.201931645729
824640.9998From Functional Characterization to the Application of SWEET Sugar Transporters in Plant Resistance Breeding. The occurrence of plant diseases severely affects the quality and quantity of plant production. Plants adapt to the constant invasion of pathogens and gradually form a series of defense mechanisms, such as pathogen-associated molecular pattern-triggered immunity and microbial effector-triggered immunity. Moreover, many pathogens have evolved to inhibit the immune defense system and acquire plant nutrients as a result of their coevolution with plants. The sugars will eventually be exported transporters (SWEETs) are a novel family of sugar transporters that function as uniporters. They provide a channel for pathogens, including bacteria, fungi, and viruses, to hijack sugar from the host. In this review, we summarize the functions of SWEETs in nectar secretion, grain loading, senescence, and long-distance transport. We also focus on the interaction between the SWEET genes and pathogens. In addition, we provide insight into the potential application of SWEET genes to enhance disease resistance through the use of genome editing tools. The summary and perspective of this review will deepen our understanding of the role of SWEETs during the process of pathogen infection and provide insights into resistance breeding.202235446562
947750.9998The microbiome-shaping roles of bacteriocins. The microbiomes on human body surfaces affect health in multiple ways. They include not only commensal or mutualistic bacteria but also potentially pathogenic bacteria, which can enter sterile tissues to cause invasive infection. Many commensal bacteria produce small antibacterial molecules termed bacteriocins that have the capacity to eliminate specific colonizing pathogens; as such, bacteriocins have attracted increased attention as potential microbiome-editing tools. Metagenome-based and activity-based screening approaches have strongly expanded our knowledge of the abundance and diversity of bacteriocin biosynthetic gene clusters and the properties of a continuously growing list of bacteriocin classes. The dynamic acquisition, diversification or loss of bacteriocin genes can shape the fitness of a bacterial strain that is in competition with bacteriocin-susceptible bacteria. However, a bacteriocin can only provide a competitive advantage if its fitness benefit exceeds the metabolic cost of production, if it spares crucial mutualistic partner strains and if major competitors cannot develop resistance. In contrast to most currently available antibiotics, many bacteriocins have only narrow activity ranges and could be attractive agents for precision therapy and prevention of infections. A common scientific strategy involving multiple disciplines is needed to uncover the immense potential of microbiome-shaping bacteriocins.202134075213
824360.9998Rooteomics: the challenge of discovering plant defense-related proteins in roots. In recent years, a strong emphasis has been given in deciphering the function of genes unraveled by the completion of several genome sequencing projects. In plants, functional genomics has been massively used in order to search for gene products of agronomic relevance. As far as root-pathogen interactions are concerned, several genes are recognized to provide tolerance/resistance against potential invaders. However, very few proteins have been identified by using current proteomic approaches. One of the major drawbacks for the successful analysis of root proteomes is the inherent characteristics of this tissue, which include low volume content and high concentration of interfering substances such as pigments and phenolic compounds. The proteome analysis of plant-pathogen interactions provides important information about the global proteins expressed in roots in response to biotic stresses. Moreover, several pathogenic proteins superimpose the plant proteome and can be identified and used as targets for the control of viruses, bacteria, fungi and nematode pathogens. The present review focuses on advances in different proteomic strategies dedicated to the challenging analysis of plant defense proteins expressed during bacteria-, fungi- and nematode-root interactions. Recent developments, limitations of the current techniques, and technological perspectives for root proteomics aiming at the identification of resistance-related proteins are discussed.200818393883
920370.9998Dissecting the Role of Promoters of Pathogen-sensitive Genes in Plant Defense. Plants inherently show resistance to pathogen attack but are susceptible to multiple bacteria, viruses, fungi, and phytoplasmas. Diseases as a result of such infection leads to the deterioration of crop yield. Several pathogen-sensitive gene activities, promoters of such genes, associated transcription factors, and promoter elements responsible for crosstalk between the defense signaling pathways are involved in plant resistance towards a pathogen. Still, only a handful of genes and their promoters related to plant resistance have been identified to date. Such pathogen-sensitive promoters are accountable for elevating the transcriptional activity of certain genes in response to infection. Also, a suitable promoter is a key to devising successful crop improvement strategies as it ensures the optimum expression of the required transgene. The study of the promoters also helps in mining more details about the transcription factors controlling their activities and helps to unveil the involvement of new genes in the pathogen response. Therefore, the only way out to formulate new solutions is by analyzing the molecular aspects of these promoters in detail. In this review, we provided an overview of the promoter motifs and cis-regulatory elements having specific roles in pathogen attack response. To elaborate on the importance and get a vivid picture of the pathogen-sensitive promoter sequences, the key motifs and promoter elements were analyzed with the help of PlantCare and interpreted with available literature. This review intends to provide useful information for reconstructing the gene networks underlying the resistance of plants against pathogens.202033214765
920680.9998Susceptibility reversed: modified plant susceptibility genes for resistance to bacteria. Plants have evolved complex defence mechanisms to avoid invasion of potential pathogens. Despite this, adapted pathogens deploy effector proteins to manipulate host susceptibility (S) genes, rendering plant defences ineffective. The identification and mutation of plant S genes exploited by bacterial pathogens are important for the generation of crops with durable and broad-spectrum resistance. Application of mutant S genes in the breeding of resistant crops is limited because of potential pleiotropy. New genome editing techniques open up new possibilities for the modification of S genes. In this review, we focus on S genes manipulated by bacteria and propose ways for their identification and precise modification. Finally, we propose that genes coding for transporter proteins represent a new group of S genes.202234400073
962290.9998Stable Neutralization of a Virulence Factor in Bacteria Using Temperate Phage in the Mammalian Gut. Elimination or alteration of select members of the gut microbiota is key to therapeutic efficacy. However, the complexity of these microbial inhabitants makes it challenging to precisely target bacteria. Here, we deliver exogenous genes to specific bacteria by genomic integration of temperate phage for long-lasting modification. As a real-world therapeutic test, we engineered λ phage to transcriptionally repress Shiga toxin by using genetic hybrids between λ and other lambdoid phages to overcome resistance encoded by the virulence-expressing prophage. We show that a single dose of engineered phage propagates throughout the bacterial community and reduces Shiga toxin production in an enteric mouse model of infection without markedly affecting bacterial concentrations. Our work reveals a new framework for transferring functions to bacteria within their native environment.IMPORTANCE With the increasing frequency of antibiotic resistance, it is critical to explore new therapeutic strategies for treating bacterial infections. Here, we use a temperate phage, i.e., one that integrates itself into the bacterial genome, to neutralize the expression of a virulence factor by modifying bacterial function at the genetic level. We show that Shiga toxin production can be significantly reduced in vitro and in the mammalian gut. Alternative to traditional applications of phage therapy that rely on killing bacteria, our genetics-based antivirulence approach introduces a new framework for treating bacterial infections.202031992629
9201100.9998Engineering pathogen resistance in crop plants: current trends and future prospects. Transgenic crops are now grown commercially in 25 countries worldwide. Although pathogens represent major constraints for the growth of many crops, only a tiny proportion of these transgenic crops carry disease resistance traits. Nevertheless, transgenic disease-resistant plants represent approximately 10% of the total number of approved field trials in North America, a proportion that has remained constant for 15 years. In this review, we explore the socioeconomic and biological reasons for the paradox that although technically useful solutions now exist for providing transgenic disease resistance, very few new crops have been introduced to the global market. For bacteria and fungi, the majority of transgenic crops in trials express antimicrobial proteins. For viruses, three-quarters of the transgenics express coat protein (CP) genes. There is a notable trend toward more biologically sophisticated solutions involving components of signal transduction pathways regulating plant defenses. For viruses, RNA interference is increasingly being used.201020687833
9137110.9998Virulence- and antibiotic resistance-associated two-component signal transduction systems of Gram-positive pathogenic bacteria as targets for antimicrobial therapy. Two-component signal transduction systems are central elements of the virulence and antibiotic resistance responses of opportunistic bacterial pathogens. These systems allow the bacterium to sense and respond to signals emanating from the host environment and to modulate the repertoire of genes expressed to allow invasion and growth in the host. The integral role of two-component systems in virulence and antibiotic sensitivity, and the existence of essential two-component systems in several pathogenic bacteria, suggests that these systems may be novel targets for antimicrobial intervention. This review discusses the potential use of two-component systems as targets for antimicrobial therapy against Gram-positive pathogens and the current status in the development of inhibitors specific for these systems.200212191621
9623120.9998Prokaryotic toxin-antitoxin systems--the role in bacterial physiology and application in molecular biology. Bacteria have developed multiple complex mechanisms ensuring an adequate response to environmental changes. In this context, bacterial cell division and growth are subject to strict control to ensure metabolic balance and cell survival. A plethora of studies cast light on toxin-antitoxin (TA) systems as metabolism regulators acting in response to environmental stress conditions. Many of those studies suggest direct relations between the TA systems and the pathogenic potential or antibiotic resistance of relevant bacteria. Other studies point out that TA systems play a significant role in ensuring stability of mobile genetic material. The evolutionary origin and relations between various TA systems are still a subject of a debate. The impact of toxin-antitoxin systems on bacteria physiology prompted their application in molecular biology as tools allowing cloning of some hard-to-maintain genes, plasmid maintenance and production of recombinant proteins.201121394325
9591130.9998Interaction of phages, bacteria, and the human immune system: Evolutionary changes in phage therapy. Phages and bacteria are known to undergo dynamic and co-evolutionary arms race interactions in order to survive. Recent advances from in vitro and in vivo studies have improved our understanding of the complex interactions between phages, bacteria, and the human immune system. This insight is essential for the development of phage therapy to battle the growing problems of antibiotic resistance. It is also pivotal to prevent the development of phage-resistance during the implementation of phage therapy in the clinic. In this review, we discuss recent progress of the interactions between phages, bacteria, and the human immune system and its clinical application for phage therapy. Proper phage therapy design will ideally produce large burst sizes, short latent periods, broad host ranges, and a low tendency to select resistance.201931145517
8244140.9998Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. Natural antimicrobial peptides have been shown as one of the important tools to combat certain pathogens and play important role as a part of innate immune system in plants and, also adaptive immunity in animals. Defensin is one of the antimicrobial peptides with a diverse nature of mechanism against different pathogens like viruses, bacteria and fungi. They have a broad function in humans, vertebrates, invertebrates, insects, and plants. Plant defensins primarily interact with membrane lipids for their biological activity. Several antimicrobial peptides (AMPs) have been overexpressed in plants for enhanced disease protection. The plants defensin peptides have been efficiently employed as an effective strategy for control of diseases in plants. They can be successfully integrated in plants genome along with some other peptide genes in order to produce transgenic crops for enhanced disease resistance. This review summarizes plant defensins, their expression in plants and enhanced disease resistance potential against phytopathogens.201931065492
8241150.9998Molecular mechanisms of N-acyl homoserine lactone signals perception by plants. N-acyl homoserine lactones (AHLs) belong to the class of bacterial quorum sensing signal molecules involved in distance signal transduction between Gram-negative bacteria colonizers of the rhizosphere, as well as bacteria and plants. AHLs synchronize the activity of genes from individual cells, allowing the bacterial population to act as a multicellular organism, and establish a symbiotic or antagonistic relationship with the host plant. Although the effect of AHLs on plants has been studied for more than ten years, the mechanisms of plant perception of AHL signals are not fully understood. The specificity of the reactions caused by AHL indicates the existence of appropriate mechanisms for their perception by plants. In the current review, we summarize available data on the molecular mechanisms of AHL-signal perception in plants, its effect on plant growth, development, and stress resistance. We describe the latest research demonstrating direct (on plants) and indirect (on rhizosphere microflora) effects of AHLs, as well as the prospects of using these compounds in biotechnology to increase plant resistance to biotic and abiotic stresses.202234937124
8286160.9998RNA Modifications in Pathogenic Bacteria: Impact on Host Adaptation and Virulence. RNA modifications are involved in numerous biological processes and are present in all RNA classes. These modifications can be constitutive or modulated in response to adaptive processes. RNA modifications play multiple functions since they can impact RNA base-pairings, recognition by proteins, decoding, as well as RNA structure and stability. However, their roles in stress, environmental adaptation and during infections caused by pathogenic bacteria have just started to be appreciated. With the development of modern technologies in mass spectrometry and deep sequencing, recent examples of modifications regulating host-pathogen interactions have been demonstrated. They show how RNA modifications can regulate immune responses, antibiotic resistance, expression of virulence genes, and bacterial persistence. Here, we illustrate some of these findings, and highlight the strategies used to characterize RNA modifications, and their potential for new therapeutic applications.202134440299
8245170.9998Plant Elite Squad: First Defense Line and Resistance Genes - Identification, Diversity and Functional Roles. Plants exhibit sensitive mechanisms to respond to environmental stresses, presenting some specific and non-specific reactions when attacked by pathogens, including organisms from different classes and complexity, as viroids, viruses, bacteria, fungi and nematodes. A crucial step to define the fate of the plant facing an invading pathogen is the activation of a compatible Resistance (R) gene, the focus of the present review. Different aspects regarding R-genes and their products are discussed, including pathogen recognition mechanisms, signaling and effects on induced and constitutive defense processes, splicing and post transcriptional mechanisms involved. There are still countless challenges to the complete understanding of the mechanisms involving R-genes in plants, in particular those related to the interactions with other genes of the pathogen and of the host itself, their regulation, acting mechanisms at transcriptional and post-transcriptional levels, as well as the influence of other types of stress over their regulation. A magnification of knowledge is expected when considering the novel information from the omics and systems biology.201727455974
8322180.9998Pathogen-induced damage in Drosophila: Uncoupling disease tolerance from resistance. Immune response against infections can be divided into mechanisms of resistance that ensure active pathogen elimination, and mechanisms of disease tolerance, which include processes that return the host to physiological homeostasis without direct control of pathogen load. Studies on host immune response to infection have targeted mechanisms of resistance, and consequently, these are now well-described in both vertebrates and invertebrates. By comparison, the mechanistic basis of disease tolerance is poorly understood. This is in part because both processes interact and can be difficult to disentangle under an infection scenario. Using the insect model Drosophila melanogaster exposed to its natural entomopathogen, Pseudomonas entomophila, we aimed to tease apart mechanisms of disease tolerance from those of resistance. To this end, we reasoned that the response to oral exposure to heat-killed entomopathogenic bacteria, whilst initially triggering both resistance and disease tolerance mechanisms, would be resolved mainly by disease tolerance alone. Using this method, we observe that oral exposure to heat-killed P. entomophila causes mortality and reduced fecundity in D. melanogaster. We confirm that this reduction in fitness-related traits depends on the duration of the exposure, is sexually dimorphic, and is dependent on the virulence of the bacterium. We also found the microbiota to play a role, with its presence exacerbating the deleterious effect on host survival. In addition, we show that the Imd pathway, but not effector genes, is involved in the process of surviving exposure to HK bacteria. This experimental framework, which may be extended to other systems, can be instrumental towards an understanding of the molecular, genetic, and physiological basis of disease tolerance and its interactions with resistance mechanisms.202540971962
8240190.9998β-glucan-induced disease resistance in plants: A review. Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are caused by various factors, including both pathogenic and non-pathogenic ones. β-glucan primarily originates from bacteria and fungi, some species of these organisms work as biological agents in causing diseases. When β-glucan enters plants, it triggers the defense system, leading to various reactions such as the production of proteins related to pathogenicity and defense enzymes. By extracting β-glucan from disturbed microorganisms and using it as an inducing agent, plant diseases can be effectively controlled by activating the plant's defense system. β-glucan plays a crucial role during the interaction between plants and pathogens. Therefore, modeling the plant-pathogen relationship and using the molecules involved in this interaction can help in controlling plant diseases, as pathogens have genes related to resistance against pathogenicity. Thus, it is reasonable to identify and use biological induction agents at a large scale by extracting these compounds.202337742892