Metal nanoparticles: understanding the mechanisms behind antibacterial activity. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
914401.0000Metal nanoparticles: understanding the mechanisms behind antibacterial activity. As the field of nanomedicine emerges, there is a lag in research surrounding the topic of nanoparticle (NP) toxicity, particularly concerned with mechanisms of action. The continuous emergence of bacterial resistance has challenged the research community to develop novel antibiotic agents. Metal NPs are among the most promising of these because show strong antibacterial activity. This review summarizes and discusses proposed mechanisms of antibacterial action of different metal NPs. These mechanisms of bacterial killing include the production of reactive oxygen species, cation release, biomolecule damages, ATP depletion, and membrane interaction. Finally, a comprehensive analysis of the effects of NPs on the regulation of genes and proteins (transcriptomic and proteomic) profiles is discussed.201728974225
914610.9998Emergence of microbial resistance against nanoparticles: Mechanisms and strategies. Antimicrobial nanoparticles have gained the status of a new generation of drugs that can kill bacterial pathogens by multiple means; however, nanoparticle resistance acquired by some bacterial pathogens has evoked a cause of concern. Several reports suggested that bacteria can develop nanoparticles, specifically metal nanoparticle resistance, by mechanisms: nanoparticle transformation-induced oxidative stress, membrane alterations, reversible adaptive resistance, irreversible modifications to cell division, and a change in bacterial motility and resistance. Surface properties, concentration and aggregation of nanoparticles, biofilm forming and metal exclusion capacity, and R plasmid and flagellin synthesis by bacteria are crucial factors in the development of nanoparticle resistance in bacteria. Studies reported the resistance reversal by modifying the surface corona of nanoparticles or inhibiting flagellin production by bacterial pathogens. Furthermore, strict regulation regarding the use and disposal of nano-waste across the globe, the firm knowledge of microbe-nanoparticle interaction, and the regulated disposal of nanoparticles in soil and water is required to prevent microbes from developing nanoparticle resistance.202336778867
914520.9998A mechanistic perspective on targeting bacterial drug resistance with nanoparticles. Bacterial infections are an important cause of mortality worldwide owing to the prevalence of drug resistant bacteria. Bacteria develop resistance against antimicrobial drugs by several mechanisms such as enzyme inactivation, reduced cell permeability, modifying target site or enzyme, enhanced efflux because of high expression of efflux pumps, biofilm formation or drug-resistance gene expression. New and alternative ways such as nanoparticle (NP) applications are being established to overcome the growing multidrug-resistance in bacteria. NPs have unique antimicrobial characteristics that make them appropriate for medical application to overcome antibiotic resistance. The proposed antibacterial mechanisms of NPs are cell membrane damage, changing cell wall penetration, reactive oxygen species (ROS) production, effect on DNA and proteins, and impact on biofilm formation. The present review mainly focuses on discussing various mechanisms of bacterial drug resistance and the applications of NPs as alternative antibacterial systems. Combination therapy of NPs and antibiotics as a novel approach in medicine towards antimicrobial resistance is also discussed.202133703979
915030.9997Microbial silver resistance mechanisms: recent developments. In this mini-review, after a brief introduction into the widespread antimicrobial use of silver ions and nanoparticles against bacteria, fungi and viruses, the toxicity of silver compounds and the molecular mechanisms of microbial silver resistance are discussed, including recent studies on bacteria and fungi. The similarities and differences between silver ions and silver nanoparticles as antimicrobial agents are also mentioned. Regarding bacterial ionic silver resistance, the roles of the sil operon, silver cation efflux proteins, and copper-silver efflux systems are explained. The importance of bacterially produced exopolysaccharides as a physiological (biofilm) defense mechanism against silver nanoparticles is also emphasized. Regarding fungal silver resistance, the roles of metallothioneins, copper-transporting P-type ATPases and cell wall are discussed. Recent evolutionary engineering (adaptive laboratory evolution) studies are also discussed which revealed that silver resistance can evolve rapidly in bacteria and fungi. The cross-resistance observed between silver resistance and resistance to other heavy metals and antibiotics in bacteria and fungi is also explained as a clinically and environmentally important issue. The use of silver against bacterial and fungal biofilm formation is also discussed. Finally, the antiviral effects of silver and the use of silver nanoparticles against SARS-CoV-2 and other viruses are mentioned. To conclude, silver compounds are becoming increasingly important as antimicrobial agents, and their widespread use necessitates detailed understanding of microbial silver response and resistance mechanisms, as well as the ecological effects of silver compounds. Figure created with BioRender.com.202235821348
862640.9997Challenges Associated With the Use of Metal and Metal Oxide Nanoparticles as Antimicrobial Agents: A Review of Resistance Mechanisms and Environmental Implications. The use of metal and metal oxide nanoparticles has been suggested as a means of combating antibiotic-resistant bacteria (ARB). This is due to the ability of nanoparticles to target numerous sites inside the bacterial cell. Microbes can, however, develop a resistance to hazardous environments. Soil microorganisms have evolved resistance to specific metals in soil by employing alternative survival strategies, like those adopted against antibiotics. Because of this survival mechanism, bacteria have been able to develop defense mechanisms to deal with metallic nanoparticles. Resistance has evolved in human pathogens to therapies that use metallic nanoparticles, such as silver nanoparticles. Metallic nanoparticles and antibiotics have currently been proven to be ineffective against several infections. Due to these concerns, scientists are investigating whether nanoparticles might cause environmental harm and potentially breed microbes that are resistant to both inorganic and organic nanoparticles. The increased use of inorganic nanoparticles has thus been shown to result in contaminations in wastewater, facilitating horizontal gene transfer among bacterial populations. The resistance mechanism of metallic nanoparticles, role in antibiotic resistance, and a potential solution to the environment's toxicity from nanoparticles are all discussed in this review.202540711446
913350.9997Overcoming antimicrobial resistance by targeting resistance mechanisms. Three mechanisms of antimicrobial resistance predominate in bacteria: antibiotic inactivation, target site modification, and altered uptake by way of restricted entry and/or enhanced efflux. Many of these involve enzymes or transport proteins whose activity can be targeted directly in an attemptto compromise resistance and, thus, potentiate antimicrobial activity. Alternatively, novel agents unaffected by these resistance mechanisms can be developed. Given the ongoing challenge posed by antimicrobial resistance in bacteria, targeting resistance in this way may be our best hope at prolonging the antibiotic era.200111291743
863560.9997Techniques for enhancing the tolerance of industrial microbes to abiotic stresses: A review. The diversity of stress responses and survival strategies evolved by microorganism enables them to survive and reproduce in a multitude of harsh environments, whereas the discovery of the underlying resistance genes or mechanisms laid the foundation for the directional enhancement of microbial tolerance to abiotic stresses encountered in industrial applications. Many biological techniques have been developed for improving the stress resistance of industrial microorganisms, which greatly benefited the bacteria on which industrial production is based. This review introduces the main techniques for enhancing the resistance of microorganisms to abiotic stresses, including evolutionary engineering, metabolic engineering, and process engineering, developed in recent years. In addition, we also discuss problems that are still present in this area and offer directions for future research.202031206805
834370.9997Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Bacteria can be adapted to adverse and detrimental conditions that induce general and specific responses to DNA damage as well as acid, heat, cold, starvation, oxidative, envelope, and osmotic stresses. The stress-triggered regulatory systems are involved in bacterial survival processes, such as adaptation, physiological changes, virulence potential, and antibiotic resistance. Antibiotic susceptibility to several antibiotics is reduced due to the activation of stress responses in cellular physiology by the stimulation of resistance mechanisms, the promotion of a resistant lifestyle (biofilm or persistence), and/or the induction of resistance mutations. Hence, the activation of bacterial stress responses poses a serious threat to the efficacy and clinical success of antibiotic therapy. Bacterial stress responses can be potential targets for therapeutic alternatives to antibiotics. An understanding of the regulation of stress response in association with antibiotic resistance provides useful information for the discovery of novel antimicrobial adjuvants and the development of effective therapeutic strategies to control antibiotic resistance in bacteria. Therefore, this review discusses bacterial stress responses linked to antibiotic resistance in Gram-negative bacteria and also provides information on novel therapies targeting bacterial stress responses that have been identified as potential candidates for the effective control of Gram-negative antibiotic-resistant bacteria.202235889104
834180.9997Mutagenesis and Resistance Development of Bacteria Challenged by Silver Nanoparticles. Because of their extremely broad spectrum and strong biocidal power, nanoparticles of metals, especially silver (AgNPs), have been widely applied as effective antimicrobial agents against bacteria, fungi, and so on. However, the mutagenic effects of AgNPs and resistance mechanisms of target cells remain controversial. In this study, we discover that AgNPs do not speed up resistance mutation generation by accelerating genome-wide mutation rate of the target bacterium Escherichia coli. AgNPs-treated bacteria also show decreased expression in quorum sensing (QS), one of the major mechanisms leading to population-level drug resistance in microbes. Nonetheless, these nanomaterials are not immune to resistance development by bacteria. Gene expression analysis, experimental evolution in response to sublethal or bactericidal AgNPs treatments, and gene editing reveal that bacteria acquire resistance mainly through two-component regulatory systems, especially those involved in metal detoxification, osmoregulation, and energy metabolism. Although these findings imply low mutagenic risks of nanomaterial-based antimicrobial agents, they also highlight the capacity for bacteria to evolve resistance.202236094196
914390.9997Bacteria in cancer therapy: A new generation of weapons. Tumors are presently a major threat to human life and health. Malignant tumors are conventionally treated through radiotherapy and chemotherapy. However, traditional therapies yield unsatisfactory results due to high toxicity to the normal cells, inability to treat deep tumor tissues, and the possibility of inducing drug resistance in the tumor cells. This has caused immunotherapy to emerge as an effective and alternate treatment strategy. To overcome the limitations of the conventional treatments as well as to avert the risk of various drug resistance and cytotoxicity, bacterial anti-tumor immunotherapy has raised the interest of researchers. This therapeutic strategy employs bacteria to specifically target and colonize the tumor tissues with preferential accumulation and proliferation. Such bacterial accumulation initiates a series of anti-tumor immune responses, effectively eliminating the tumor cells. This immunotherapy can use the bacteria alone or concomitantly with the other methods. For example, the bacteria can deliver the anti-cancer effect mediators by regulating the expression of the bacterial genes or by synthesizing the bioengineered bacterial complexes. This review will discuss the mechanism of utilizing bacteria in treating tumors, especially in terms of immune mechanisms. This could help in better integrating the bacterial method with other treatment options, thereby, providing a more effective, reliable, and unique treatment therapy for tumors.202235522104
8342100.9997Inflammatory immunity and bacteriological perspectives: A new direction for copper treatment of sepsis. Copper is an essential trace element for all aerobic organisms because of its unique biological functions. In recent years, researchers have discovered that copper can induce cell death through various regulatory mechanisms, thereby inducing inflammation. Efforts have also been made to alter the chemical structure of copper to achieve either anticancer or anti-inflammatory effects. The copper ion can exhibit bactericidal effects by interfering with the integrity of the cell membrane and promoting oxidative stress. Sepsis is a systemic inflammatory response caused by infection. Some studies have revealed that copper is involved in the pathophysiological process of sepsis and is closely related to its prognosis. During the infection of sepsis, the body may enhance the antimicrobial effect by increasing the release of copper. However, to avoid copper poisoning, all organisms have evolved copper resistance genes. Therefore, further analysis of the complex relationship between copper and bacteria may provide new ideas and research directions for the treatment of sepsis.202438692229
9141110.9997Metallic Nanoparticles-Friends or Foes in the Battle against Antibiotic-Resistant Bacteria? The rapid spread of antibiotic resistances among bacteria demands novel strategies for infection control, and metallic nanoparticles appear as promising tools because of their unique size and tunable properties that allow their antibacterial effects to be maximized. Furthermore, their diverse mechanisms of action towards multiple cell components have suggested that bacteria could not easily develop resistance against nanoparticles. However, research published over the last decade has proven that bacteria can indeed evolve stable resistance mechanisms upon continuous exposure to metallic nanoparticles. In this review, we summarize the currently known individual and collective strategies employed by bacteria to cope with metallic nanoparticles. Importantly, we also discuss the adverse side effects that bacterial exposure to nanoparticles may have on antibiotic resistance dissemination and that might constitute a challenge for the implementation of nanoparticles as antibacterial agents. Overall, studies discussed in this review point out that careful management of these very promising antimicrobials is necessary to preserve their efficacy for infection control.202133673231
9149120.9997Smart Multifunctional Polymer Systems as Alternatives or Supplements of Antibiotics To Overcome Bacterial Resistance. In recent years, infectious diseases have again become a critical threat to global public health largely due to the challenges posed by antimicrobial resistance. Conventional antibiotics have played a crucial role in combating bacterial infections; however, their efficacy is significantly impaired by widespread drug resistance. Natural antimicrobial peptides (AMPs) and their polymeric mimics demonstrate great potential for killing bacteria with low propensity of resistance as they target the microbial membrane rather than a specific molecular target, but they are also toxic to the host eukaryotic cells. To minimize antibiotics systemic spread and the required dose that promote resistance and to advocate practical realization of the promising activity of AMPs and polymers, smart systems to target bacteria are highly sought after. This review presents bacterial recognition by various specific targeting molecules and the delivery systems of active components in supramolecules. Bacteria-induced activations of antimicrobial-based nanoformulations are also included. Recent advances in the bacteria targeting and delivery of synthetic antimicrobial agents may assist in developing new classes of highly selective antimicrobial systems which can improve bactericidal efficacy and greatly minimize the spread of bacterial resistance.202235471022
9547130.9997Confronting antibiotic-resistant pathogens: Distinctive drug delivery potentials of progressive nanoparticles. Antimicrobial resistance arises over time, usually due to genetic modifications. Global observations of high resistance rates to popular antibiotics used to treat common bacterial diseases, such as diarrhea, STIs, sepsis, and urinary tract infections, indicate that our supply of effective antibiotics is running low. The mechanisms of action of several antibiotic groups are covered in this review. Antimicrobials disrupt the development and metabolism of bacteria, leading to their eventual death. However, in recent years, microorganisms become resistant to the drugs. Bacteria encode resistant genes against antibiotics and inhibit the function of antibiotics by reducing the uptake of drugs, modifying the enzyme's active site, synthesizing enzymes to degrade antibiotics, and changing the structure of ribosomal subunits. Additionally, the methods of action of resistant bacteria against different kinds of antibiotics as well as their modes of action are discussed. Besides, the resistant pathogenic bacteria which get the most priority by World Health Organisation (WHO) for synthesizing new drugs, have also been incorporated. To overcome antimicrobial resistance, nanomaterials are used to increase the efficacy of antimicrobial drugs. Metallic, inorganic, and polymer-based nanoparticles once conjugated with antibacterial drugs, exhibit synergistic effects by increasing the efficacy of the drugs by inhibiting bacterial growth. Nanomaterial's toxic properties are proportional to their concentrations. Higher concentration nanomaterials are more toxic to the cells. In this review, the toxic properties of nanomaterials on lung cells, lymph nodes, and neuronal cells are also summarized.202438097117
8290140.9996Antimicrobial Peptides: Features, Action, and Their Resistance Mechanisms in Bacteria. In recent years, because of increased resistance to conventional antimicrobials, many researchers have started to study the synthesis of new antibiotics to control the disease-causing effects of infectious pathogens. Antimicrobial peptides (AMPs) are among the newest antibiotics; these peptides are integral compounds in all kinds of organisms and play a significant role in microbial ecology, and critically contribute to the innate immunity of organisms by destroying invading microorganisms. Moreover, AMPs may encourage cells to produce chemokines, stimulate angiogenesis, accelerate wound healing, and influence programmed cell death in multicellular organisms. Bacteria differ in their inherent susceptibility and resistance mechanisms to these peptides when responding to the antimicrobial effects of AMPs. Generally, the development of AMP resistance mechanisms is driven by direct competition between bacterial species, and host and pathogen interactions. Several studies have shown diverse mechanisms of bacterial resistance to AMPs, for example, some bacteria produce proteases and trapping proteins; some modify cell surface charge, change membrane fluidity, and activate efflux pumps; and some species make use of biofilms and exopolymers, and develop sensing systems by selective gene expression. A closer understanding of bacterial resistance mechanisms may help in developing novel therapeutic approaches for the treatment of infections caused by pathogenic organisms that are successful in developing extensive resistance to AMPs. Based on these observations, this review discusses the properties of AMPs, their targeting mechanisms, and bacterial resistance mechanisms against AMPs.201829957118
9162150.9996Joint effects of antibiotics and quorum sensing inhibitors on resistance development in bacteria. Quorum sensing inhibitors (QSIs) are promising alternatives to antibiotics. While QSIs have great application potential in a variety of fields, their joint effects with antibiotics on bacteria, especially on antibiotic resistance mutations, remain largely unexplored. Herein, we report the joint effects of four commonly used antibiotics and two QSIs on bacterial growth and resistance mutations in E. coli. It was found that QSIs presented antagonistic or additive effects with antibiotics on bacterial growth, and more importantly, QSIs exhibited an attenuating effect on antibiotic-induced resistance mutations. Further analysis demonstrated that antibiotics might enhance resistance mutations by promoting the expressions of rpoS, lexA and recA, while QSIs attenuated the mutations by promoting the expressions of mutS and uvrD. The present research provides a comprehensive understanding of the joint effects of antibiotics and QSIs on bacteria, which may benefit the risk assessment of their combined exposure.202134060581
9169160.9996Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance. Bacteria use a cell-to-cell communication activity termed "quorum sensing" to coordinate group behaviors in a cell density dependent manner. Quorum sensing influences the expression profile of diverse genes, including antibiotic tolerance and virulence determinants, via specific chemical compounds called "autoinducers". During quorum sensing, Gram-negative bacteria typically use an acylated homoserine lactone (AHL) called autoinducer 1. Since the first discovery of quorum sensing in a marine bacterium, it has been recognized that more than 100 species possess this mechanism of cell-to-cell communication. In addition to being of interest from a biological standpoint, quorum sensing is a potential target for antimicrobial chemotherapy. This unique concept of antimicrobial control relies on reducing the burden of virulence rather than killing the bacteria. It is believed that this approach will not only suppress the development of antibiotic resistance, but will also improve the treatment of refractory infections triggered by multi-drug resistant pathogens. In this paper, we review and track recent progress in studies on AHL inhibitors/modulators from a biological standpoint. It has been discovered that both natural and synthetic compounds can disrupt quorum sensing by a variety of means, such as jamming signal transduction, inhibition of signal production and break-down and trapping of signal compounds. We also focus on the regulatory elements that attenuate quorum sensing activities and discuss their unique properties. Understanding the biological roles of regulatory elements might be useful in developing inhibitor applications and understanding how quorum sensing is controlled.201323720655
9164170.9996Quorum quenching: role of nanoparticles as signal jammers in Gram-negative bacteria. Quorum sensing (QS) is a cell density dependent regulatory process that uses signaling molecules to manage the expression of virulence genes and biofilm formation. The study of QS inhibitors has emerged as one of the most fascinating areas of research to discover novel antimicrobial agents. Compounds that block QS have become candidates as unusual antimicrobial agents, as they are leading players in the regulation of virulence of drug-resistant pathogens. Metal and metal oxide nanoparticles offer novel alternatives to combat antibiotic resistance in Gram-negative bacteria aiming their capacity as QS inhibitors. This review provides an insight into the quorum quenching potential of metal and metal oxide nanoparticles by targeting QS regulated virulence of Gram-negative bacteria.201930539663
9152180.9996Pseudomonas aeruginosa biofilm sensitivity to biocides: use of hydrogen peroxide as model antimicrobial agent for examining resistance mechanisms. The biofilm mode of bacterial growth may be the preferred form of existence in nature. Because of the global impact of problematic biofilms, study of the mechanisms affording resistance to various biocides is of dire importance. Furthermore, understanding the physiological differences between biofilm and planktonic organisms ranks particularly high on the list of important and necessary research. Such contributions will only serve to broaden our knowledge base, especially regarding the development of better antimicrobials while also fine-tuning the use of current highly effective antimicrobials. Using H2O2 as a model oxidizing biocide, we demonstrate the marked resistance of biofilm bacteria relative to planktonic cells. Because many biocides are good oxidizing agents (e.g., H2O2, HOCl), understanding the mechanisms by which genes involved in combating oxidative stress are activated is important in determining the overall efficacy of such biocides. Future studies will focus on determining mechanisms of oxidative stress gene regulation in bacterial biofilms.199910547822
8288190.9996Metabolic pathways and antimicrobial peptide resistance in bacteria. Antimicrobial resistance is a pressing concern that poses a significant threat to global public health, necessitating the exploration of alternative strategies to combat drug-resistant microbial infections. Recently, antimicrobial peptides (AMPs) have gained substantial attention as possible replacements for conventional antibiotics. Because of their pharmacodynamics and killing mechanisms, AMPs display a lower risk of bacterial resistance evolution compared with most conventional antibiotics. However, bacteria display different mechanisms to resist AMPs, and the role of metabolic pathways in the resistance mechanism is not fully understood. This review examines the intricate relationship between metabolic genes and AMP resistance, focusing on the impact of metabolic pathways on various aspects of resistance. Metabolic pathways related to guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp) [collectively (p)ppGpp], the tricarboxylic acid (TCA) cycle, haem biosynthesis, purine and pyrimidine biosynthesis, and amino acid and lipid metabolism influence in different ways metabolic adjustments, biofilm formation and energy production that could be involved in AMP resistance. By targeting metabolic pathways and their associated genes, it could be possible to enhance the efficacy of existing antimicrobial therapies and overcome the challenges exhibited by phenotypic (recalcitrance) and genetic resistance toward AMPs. Further research in this area is needed to provide valuable insights into specific mechanisms, uncover novel therapeutic targets, and aid in the fight against antimicrobial resistance.202438742645