Mechanism of antibacterial phytoconstituents: an updated review. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
914201.0000Mechanism of antibacterial phytoconstituents: an updated review. The increase of multiple drug resistance bacteria significantly diminishes the effectiveness of antibiotic armory and subsequently exaggerates the level of therapeutic failure. Phytoconstituents are exceptional substitutes for resistance-modifying vehicles. The plants appear to be a deep well for the discovery of novel antibacterial compounds. This is owing to the numerous enticing characteristics of plants, they are easily accessible and inexpensive, extracts or chemicals derived from plants typically have significant levels of action against infections, and they rarely cause serious adverse effects. The enormous selection of phytochemicals offers very distinct chemical structures that may provide both novel mechanisms of antimicrobial activity and deliver us with different targets in the interior of the bacterial cell. They can directly affect bacteria or act together with the crucial events of pathogenicity, in this manner decreasing the aptitude of bacteria to create resistance. Abundant phytoconstituents demonstrate various mechanisms of action toward multi drug resistance bacteria. Overall, this comprehensive review will provide insights into the potential of phytoconstituents as alternative treatments for bacterial infections, particularly those caused by multi drug resistance strains. By examining the current state of research in this area, the review will shed light on potential future directions for the development of new antimicrobial therapies.202438913205
914910.9998Smart Multifunctional Polymer Systems as Alternatives or Supplements of Antibiotics To Overcome Bacterial Resistance. In recent years, infectious diseases have again become a critical threat to global public health largely due to the challenges posed by antimicrobial resistance. Conventional antibiotics have played a crucial role in combating bacterial infections; however, their efficacy is significantly impaired by widespread drug resistance. Natural antimicrobial peptides (AMPs) and their polymeric mimics demonstrate great potential for killing bacteria with low propensity of resistance as they target the microbial membrane rather than a specific molecular target, but they are also toxic to the host eukaryotic cells. To minimize antibiotics systemic spread and the required dose that promote resistance and to advocate practical realization of the promising activity of AMPs and polymers, smart systems to target bacteria are highly sought after. This review presents bacterial recognition by various specific targeting molecules and the delivery systems of active components in supramolecules. Bacteria-induced activations of antimicrobial-based nanoformulations are also included. Recent advances in the bacteria targeting and delivery of synthetic antimicrobial agents may assist in developing new classes of highly selective antimicrobial systems which can improve bactericidal efficacy and greatly minimize the spread of bacterial resistance.202235471022
959020.9998Recent advances in phage defense systems and potential overcoming strategies. Bacteriophages are effective in the prevention and control of bacteria, and many phage products have been permitted and applied in the field. Because bacteriophages are expected to replace other antimicrobial agents like antibiotics, the antibacterial effect of bacteriophage has attracted widespread attention. Recently, the diversified defense systems discovered in the target host have become potential threats to the continued effective application of phages. Therefore, a systematic summary and in-depth illustration of the interaction between phages and bacteria is conducive to the development of this biological control approach. In this review, we introduce different defense systems in bacteria against phages and emphasize newly discovered defense mechanisms in recent years. Additionally, we draw attention to the striking resemblance between defense system genes and antibiotic resistance genes, which raises concerns about the potential transfer of phage defense systems within bacterial populations and its future impact on phage efficacy. Thus, attention should be given to the effects of phage defense genes in practical applications. This article is not exhaustive, but strategies to overcome phage defense systems are also discussed to further promote more efficient use of phages.202337037289
953930.9997Materials for restoring lost Activity: Old drugs for new bugs. The escalation of bacterial resistance to conventional medical antibiotics is a serious concern worldwide. Improvements to current therapies are urgently needed to address this problem. The synergistic combination of antibiotics with other agents is a strategic solution to combat multi-drug-resistant bacteria. Although these combinations decrease the required high dosages and therefore, reduce the toxicity of both agents without compromising the bactericidal effect, they cannot stop the development of further resistance. Recent studies have shown certain elements restore the ability of antibiotics to destroy bacteria that have acquired resistance to them. Due to these synergistic activities, organic and inorganic molecules have been investigated with the goal of restoring antibiotics in new approaches that mitigate the risk of expanding resistance. Herein, we summarize recent studies that restore antibiotics once thought to be ineffective, but have returned to our armamentarium through innovative, combinatorial efforts. A special focus is placed on the mechanisms that allow the synergistic combinations to combat bacteria. The promising data that demonstrated restoration of antimicrobials, supports the notion to find more combinations that can combat antibiotic-resistant bacteria.202235461913
954040.9997Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.201122029522
953850.9997The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Bacterial drug resistance is rapidly developing as one of the greatest threats to human health. Bacteria will adopt corresponding strategies to crack the inhibitory effect of antibiotics according to the antibacterial mechanism of antibiotics, involving the mutation of drug target, secreting hydrolase, and discharging antibiotics out of cells through an efflux pump, etc. In recent years, bacteria are found to constantly evolve new resistance mechanisms to antibiotics, including target protective protein, changes in cell morphology, and so on, endowing them with multiple defense systems against antibiotics, leading to the emergence of multi-drug resistant (MDR) bacteria and the unavailability of drugs in clinics. Correspondingly, researchers attempt to uncover the mystery of bacterial resistance to develop more convenient and effective antibacterial strategies. Although traditional antibiotics still play a significant role in the treatment of diseases caused by sensitive pathogenic bacteria, they gradually lose efficacy in the MDR bacteria. Therefore, highly effective antibacterial compounds, such as phage therapy and CRISPER-Cas precision therapy, are gaining an increasing amount of attention, and are considered to be the treatments with the moist potential with regard to resistance against MDR in the future. In this review, nine identified drug resistance mechanisms are summarized, which enhance the retention rate of bacteria under the action of antibiotics and promote the distribution of drug-resistant bacteria (DRB) in the population. Afterwards, three kinds of potential antibacterial methods are introduced, in which new antibacterial compounds exhibit broad application prospects with different action mechanisms, the phage therapy has been successfully applied to infectious diseases caused by super bacteria, and the CRISPER-Cas precision therapy as a new technology can edit drug-resistant genes in pathogenic bacteria at the gene level, with high accuracy and flexibility. These antibacterial methods will provide more options for clinical treatment, and will greatly alleviate the current drug-resistant crisis.202236139994
954460.9997Nano-Strategies to Fight Multidrug Resistant Bacteria-"A Battle of the Titans". Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.201830013539
912870.9997Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.202439065030
954680.9997Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria. Bacterial resistance has intensified in recent years due to the uncontrolled use of conventional drugs, and new bacterial strains with multiple resistance have been reported. This problem may be solved by using antimicrobial peptides (AMPs), which fulfill their bactericidal activity without developing much bacterial resistance. The rapid interaction between AMPs and the bacterial cell membrane means that the bacteria cannot easily develop resistance mechanisms. In addition, various drugs for clinical use have lost their effect as a conventional treatment; however, the synergistic effect of AMPs with these drugs would help to reactivate and enhance antimicrobial activity. Their efficiency against multi-resistant and extensively resistant bacteria has positioned them as promising molecules to replace or improve conventional drugs. In this review, we examined the importance of antimicrobial peptides and their successful activity against critical and high-priority bacteria published in the WHO list.202134064302
954290.9997Development of quorum-based anti-virulence therapeutics targeting Gram-negative bacterial pathogens. Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria.201323939429
9141100.9997Metallic Nanoparticles-Friends or Foes in the Battle against Antibiotic-Resistant Bacteria? The rapid spread of antibiotic resistances among bacteria demands novel strategies for infection control, and metallic nanoparticles appear as promising tools because of their unique size and tunable properties that allow their antibacterial effects to be maximized. Furthermore, their diverse mechanisms of action towards multiple cell components have suggested that bacteria could not easily develop resistance against nanoparticles. However, research published over the last decade has proven that bacteria can indeed evolve stable resistance mechanisms upon continuous exposure to metallic nanoparticles. In this review, we summarize the currently known individual and collective strategies employed by bacteria to cope with metallic nanoparticles. Importantly, we also discuss the adverse side effects that bacterial exposure to nanoparticles may have on antibiotic resistance dissemination and that might constitute a challenge for the implementation of nanoparticles as antibacterial agents. Overall, studies discussed in this review point out that careful management of these very promising antimicrobials is necessary to preserve their efficacy for infection control.202133673231
9441110.9997Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. BACKGROUND: Antibiotic resistance is currently the most serious global threat to the effective treatment of bacterial infections. Antibiotic resistance has been established to adversely affect both clinical and therapeutic outcomes, with consequences ranging from treatment failures and the need for expensive and safer alternative drugs to the cost of higher rates of morbidity and mortality, longer hospitalization, and high-healthcare costs. The search for new antibiotics and other antimicrobials continues to be a pressing need in humanity's battle against bacterial infections. Antibiotic resistance appears inevitable, and there is a continuous lack of interest in investing in new antibiotic research by pharmaceutical industries. This review summarized some new strategies for tackling antibiotic resistance in bacteria. METHODS: To provide an overview of the recent research, we look at some new strategies for preventing resistance and/or reviving bacteria's susceptibility to already existing antibiotics. RESULTS: Substantial pieces of evidence suggest that antimicrobials interact with host immunity, leading to potent indirect effects that improve antibacterial activities and may result in more swift and complete bactericidal effects. A new class of antibiotics referred to as immuno-antibiotics and the targeting of some biochemical resistance pathway components including inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria can be considered as new emerging strategies to combat antibiotic resistance in bacteria. CONCLUSION: This review highlighted and discussed immuno-antibiotics and inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria as new weapons against antibiotic resistance in bacteria.202235949048
9543120.9997Antisense RNA regulation and application in the development of novel antibiotics to combat multidrug resistant bacteria. Despite the availability of antibiotics and vaccines, infectious diseases remain one of most dangerous threats to humans and animals. The overuse and misuse of antibacterial agents have led to the emergence of multidrug resistant bacterial pathogens. Bacterial cells are often resilient enough to survive in even the most extreme environments. To do so, the organisms have evolved different mechanisms, including a variety of two-component signal transduction systems, which allow the bacteria to sense the surrounding environment and regulate gene expression in order to adapt and respond to environmental stimuli. In addition, some bacteria evolve resistance to antibacterial agents while many bacterial cells are able to acquire resistance genes from other bacterial species to enable them to survive in the presence of toxic antimicrobial agents. The crisis of antimicrobial resistance is an unremitting menace to human health and a burden on public health. The rapid increase in antimicrobial resistant organisms and limited options for development of new classes of antibiotics heighten the urgent need to develop novel potent antibacterial therapeutics in order to combat multidrug resistant infections. In this review, we introduce the regulatory mechanisms of antisense RNA and significant applications of regulated antisense RNA interference technology in early drug discovery. This includes the identification and evaluation of drug targets in vitro and in vivo, the determination of mode of action for antibiotics and new antibacterial agents, as well as the development of peptide-nucleic acid conjugates as novel antibacterials.201323738437
9186130.9997From Gene Editing to Biofilm Busting: CRISPR-CAS9 Against Antibiotic Resistance-A Review. In recent decades, the development of novel antimicrobials has significantly slowed due to the emergence of antimicrobial resistance (AMR), intensifying the global struggle against infectious diseases. Microbial populations worldwide rapidly develop resistance due to the widespread use of antibiotics, primarily targeting drug-resistant germs. A prominent manifestation of this resistance is the formation of biofilms, where bacteria create protective layers using signaling pathways such as quorum sensing. In response to this challenge, the CRISPR-Cas9 method has emerged as a ground-breaking strategy to counter biofilms. Initially identified as the "adaptive immune system" of bacteria, CRISPR-Cas9 has evolved into a state-of-the-art genetic engineering tool. Its exceptional precision in altering specific genes across diverse microorganisms positions it as a promising alternative for addressing antibiotic resistance by selectively modifying genes in diverse microorganisms. This comprehensive review concentrates on the historical background, discovery, developmental stages, and distinct components of CRISPR Cas9 technology. Emphasizing its role as a widely used genome engineering tool, the review explores how CRISPR Cas9 can significantly contribute to the targeted disruption of genes responsible for biofilm formation, highlighting its pivotal role in reshaping strategies to combat antibiotic resistance and mitigate the challenges posed by biofilm-associated infectious diseases.202438702575
9440140.9997The Case against Antibiotics and for Anti-Virulence Therapeutics. Although antibiotics have been indispensable in the advancement of modern medicine, there are downsides to their use. Growing resistance to broad-spectrum antibiotics is leading to an epidemic of infections untreatable by first-line therapies. Resistance is exacerbated by antibiotics used as growth factors in livestock, over-prescribing by doctors, and poor treatment adherence by patients. This generates populations of resistant bacteria that can then spread resistance genes horizontally to other bacterial species, including commensals. Furthermore, even when antibiotics are used appropriately, they harm commensal bacteria leading to increased secondary infection risk. Effective antibiotic treatment can induce bacterial survival tactics, such as toxin release and increasing resistance gene transfer. These problems highlight the need for new approaches to treating bacterial infection. Current solutions include combination therapies, narrow-spectrum therapeutics, and antibiotic stewardship programs. These mediate the issues but do not address their root cause. One emerging solution to these problems is anti-virulence treatment: preventing bacterial pathogenesis instead of using bactericidal agents. In this review, we discuss select examples of potential anti-virulence targets and strategies that could be developed into bacterial infection treatments: the bacterial type III secretion system, quorum sensing, and liposomes.202134683370
9541150.9997The Role of the Hfq Protein in Bacterial Resistance to Antibiotics: A Narrative Review. The antibiotic resistance of pathogenic microorganisms is currently one of most major medical problems, causing a few million deaths every year worldwide due to untreatable bacterial infections. Unfortunately, the prognosis is even worse, as over 8 million deaths associated with antibiotic resistance are expected to occur in 2050 if no new effective antibacterial treatments are discovered. The Hfq protein has been discovered as a bacterial RNA chaperone. However, subsequent studies have indicated that this small protein (composed of 102 amino acid residues in Escherichia coli) has more activities, including binding to DNA and influencing its compaction, interaction with biological membranes, formation of amyloid-like structures, and others. Although Hfq is known to participate in many cellular processes, perhaps surprisingly, only reports from recent years have demonstrated its role in bacterial antibiotic resistance. The aim of this narrative review is to discuss how can Hfq affects antibiotic resistance in bacteria and propose how this knowledge may facilitate developing new therapeutic strategies against pathogenic bacteria. We indicate that the mechanisms by which the Hfq protein modulates the response of bacterial cells to antibiotics are quite different, from the regulation of the expression of genes coding for proteins directly involved in antibiotic transportation or action, through direct effects on membranes, to controlling the replication or transposition of mobile genetic elements bearing antibiotic resistance genes. Therefore, we suggest that Hfq could be considered a potential target for novel antimicrobial compounds. We also discuss difficulties in developing such drugs, but since Hfq appears to be a promising target for drugs that may enhance the efficacy of antibiotics, we propose that works on such potential therapeutics are encouraged.202540005731
9533160.9997The disparate effects of bacteriophages on antibiotic-resistant bacteria. Faced with the crisis of multidrug-resistant bacteria, bacteriophages, viruses that infect and replicate within bacteria, have been reported to have both beneficial and detrimental effects with respect to disease management. Bacteriophages (phages) have important ecological and evolutionary impacts on their bacterial hosts and have been associated with therapeutic use to kill bacterial pathogens, but can lead to the transmission of antibiotic resistance. Although the process known as transduction has been reported for many bacterial species by classic and modern genetic approaches, its contribution to the spread of antibiotic resistance in nature remains unclear. In addition, detailed molecular studies have identified phages residing in bacterial genomes, revealing unexpected interactions between phages and their bacterial hosts. Importantly, antibiotics can induce the production of phages and phage-encoded products, disseminating these viruses and virulence-related genes, which have dangerous consequences for disease severity. These unwanted side-effects of antibiotics cast doubt on the suitability of some antimicrobial treatments and may require new strategies to prevent and limit the selection for virulence. Foremost among these treatments is phage therapy, which could be used to treat many bacterial infectious diseases and confront the pressing problem of antibiotic resistance in pathogenic bacteria. This review discusses the interactions between bacteriophages, antibiotics, and bacteria and provides an integrated perspective that aims to inspire the development of successful antibacterial therapies.201830302018
9545170.9997MDR Pumps as Crossroads of Resistance: Antibiotics and Bacteriophages. At present, antibiotic resistance represents a global problem in modern medicine. In the near future, humanity may face a situation where medicine will be powerless against resistant bacteria and a post-antibiotic era will come. The development of new antibiotics is either very expensive or ineffective due to rapidly developing bacterial resistance. The need to develop alternative approaches to the treatment of bacterial infections, such as phage therapy, is beyond doubt. The cornerstone of bacterial defense against antibiotics are multidrug resistance (MDR) pumps, which are involved in antibiotic resistance, toxin export, biofilm, and persister cell formation. MDR pumps are the primary non-specific defense of bacteria against antibiotics, while drug target modification, drug inactivation, target switching, and target sequestration are the second, specific line of their defense. All bacteria have MDR pumps, and bacteriophages have evolved along with them and use the bacteria's need for MDR pumps to bind and penetrate into bacterial cells. The study and understanding of the mechanisms of the pumps and their contribution to the overall resistance and to the sensitivity to bacteriophages will allow us to either seriously delay the onset of the post-antibiotic era or even prevent it altogether due to phage-antibiotic synergy.202235740141
9145180.9997A mechanistic perspective on targeting bacterial drug resistance with nanoparticles. Bacterial infections are an important cause of mortality worldwide owing to the prevalence of drug resistant bacteria. Bacteria develop resistance against antimicrobial drugs by several mechanisms such as enzyme inactivation, reduced cell permeability, modifying target site or enzyme, enhanced efflux because of high expression of efflux pumps, biofilm formation or drug-resistance gene expression. New and alternative ways such as nanoparticle (NP) applications are being established to overcome the growing multidrug-resistance in bacteria. NPs have unique antimicrobial characteristics that make them appropriate for medical application to overcome antibiotic resistance. The proposed antibacterial mechanisms of NPs are cell membrane damage, changing cell wall penetration, reactive oxygen species (ROS) production, effect on DNA and proteins, and impact on biofilm formation. The present review mainly focuses on discussing various mechanisms of bacterial drug resistance and the applications of NPs as alternative antibacterial systems. Combination therapy of NPs and antibiotics as a novel approach in medicine towards antimicrobial resistance is also discussed.202133703979
9171190.9997Small molecules modulating AHL-based quorum sensing to attenuate bacteria virulence and biofilms as promising antimicrobial drugs. Clinically significant antibiotic resistance is one of the greatest challenges of the twenty-first century. Yet new antibiotics are currently being developed at a much slower pace than our growing need for such drugs. Instead of focusing on conventional therapeutics that target in vitro bacterial viability, an alternative therapy is to target virulence factors and biofilms. Such anti-virulence strategies have attracted more and more attention recently, for it would add both supplement and diversity to our current antimicrobial library. This approach has several potential advantages including imposing less evolutionary pressure on the development of antibiotic resistance, increasing the antibacterial targets and preserving the host endogenous microbiome. Quorum sensing is an intercellular communication process in bacterial communities, which can regulate coordinated expression of virulence factors and biofilms. N-Acyl homoserine lactones (AHLs) are autoinducers generated by a variety of Gram-negative bacteria. These signals combining with their cognate LuxR-type receptors trigger the expression of virulence genes. In this critical review, we summarize various structural types of small molecules targeting AHL-based quorum sensing to attenuate bacteria virulence factors and biofilms.201424164200