# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9126 | 0 | 1.0000 | The Exploration of Complement-Resistance Mechanisms of Pathogenic Gram-Negative Bacteria to Support the Development of Novel Therapeutics. Resistance to antibiotics in Bacteria is one of the biggest threats to human health. After decades of attempting to isolate or design antibiotics with novel mechanisms of action against bacterial pathogens, few approaches have been successful. Antibacterial drug discovery is now moving towards targeting bacterial virulence factors, especially immune evasion factors. Gram-negative bacteria present some of the most significant challenges in terms of antibiotic resistance. However, they are also able to be eliminated by the component of the innate immune system known as the complement system. In response, Gram-negative bacteria have evolved a variety of mechanisms by which they are able to evade complement and cause infection. Complement resistance mechanisms present some of the best novel therapeutic targets for defending against highly antibiotic-resistant pathogenic bacterial infections. | 2022 | 36015050 |
| 9127 | 1 | 0.9999 | Antimicrobial Peptides: Virulence and Resistance Modulation in Gram-Negative Bacteria. Growing resistance to antibiotics is one of the biggest threats to human health. One of the possibilities to overcome this resistance is to use and develop alternative molecules such as antimicrobial peptides (AMPs). However, an increasing number of studies have shown that bacterial resistance to AMPs does exist. Since AMPs are immunity molecules, it is important to ensure that their potential therapeutic use is not harmful in the long term. Recently, several studies have focused on the adaptation of Gram-negative bacteria to subinhibitory concentrations of AMPs. Such concentrations are commonly found in vivo and in the environment. It is therefore necessary to understand how bacteria detect and respond to low concentrations of AMPs. This review focuses on recent findings regarding the impact of subinhibitory concentrations of AMPs on the modulation of virulence and resistance in Gram-negative bacteria. | 2020 | 32092866 |
| 9422 | 2 | 0.9999 | Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria. Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis. | 2014 | 25419466 |
| 9543 | 3 | 0.9999 | Antisense RNA regulation and application in the development of novel antibiotics to combat multidrug resistant bacteria. Despite the availability of antibiotics and vaccines, infectious diseases remain one of most dangerous threats to humans and animals. The overuse and misuse of antibacterial agents have led to the emergence of multidrug resistant bacterial pathogens. Bacterial cells are often resilient enough to survive in even the most extreme environments. To do so, the organisms have evolved different mechanisms, including a variety of two-component signal transduction systems, which allow the bacteria to sense the surrounding environment and regulate gene expression in order to adapt and respond to environmental stimuli. In addition, some bacteria evolve resistance to antibacterial agents while many bacterial cells are able to acquire resistance genes from other bacterial species to enable them to survive in the presence of toxic antimicrobial agents. The crisis of antimicrobial resistance is an unremitting menace to human health and a burden on public health. The rapid increase in antimicrobial resistant organisms and limited options for development of new classes of antibiotics heighten the urgent need to develop novel potent antibacterial therapeutics in order to combat multidrug resistant infections. In this review, we introduce the regulatory mechanisms of antisense RNA and significant applications of regulated antisense RNA interference technology in early drug discovery. This includes the identification and evaluation of drug targets in vitro and in vivo, the determination of mode of action for antibiotics and new antibacterial agents, as well as the development of peptide-nucleic acid conjugates as novel antibacterials. | 2013 | 23738437 |
| 9125 | 4 | 0.9999 | Coevolution of Resistance Against Antimicrobial Peptides. Antimicrobial peptides (AMPs) are produced by all forms of life, ranging from eukaryotes to prokaryotes, and they are a crucial component of innate immunity, involved in clearing infection by inhibiting pathogen colonization. In the recent past, AMPs received high attention due to the increase of extensive antibiotic resistance by these pathogens. AMPs exhibit a diverse spectrum of activity against bacteria, fungi, parasites, and various types of cancer. AMPs are active against various bacterial pathogens that cause disease in animals and plants. However, because of the coevolution of host and pathogen interaction, bacteria have developed the mechanisms to sense and exhibit an adaptive response against AMPs. These resistance mechanisms are playing an important role in bacterial virulence within the host. Here, we have discussed the different resistance mechanisms used by gram-positive and gram-negative bacteria to sense and combat AMP actions. Understanding the mechanism of AMP resistance may provide directions toward the development of novel therapeutic strategies to control multidrug-resistant pathogens. | 2020 | 32119634 |
| 9542 | 5 | 0.9999 | Development of quorum-based anti-virulence therapeutics targeting Gram-negative bacterial pathogens. Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria. | 2013 | 23939429 |
| 9137 | 6 | 0.9999 | Virulence- and antibiotic resistance-associated two-component signal transduction systems of Gram-positive pathogenic bacteria as targets for antimicrobial therapy. Two-component signal transduction systems are central elements of the virulence and antibiotic resistance responses of opportunistic bacterial pathogens. These systems allow the bacterium to sense and respond to signals emanating from the host environment and to modulate the repertoire of genes expressed to allow invasion and growth in the host. The integral role of two-component systems in virulence and antibiotic sensitivity, and the existence of essential two-component systems in several pathogenic bacteria, suggests that these systems may be novel targets for antimicrobial intervention. This review discusses the potential use of two-component systems as targets for antimicrobial therapy against Gram-positive pathogens and the current status in the development of inhibitors specific for these systems. | 2002 | 12191621 |
| 9130 | 7 | 0.9999 | Glycopeptide antibiotic resistance. Glycopeptide antibiotics are integral components of the current antibiotic arsenal that is under strong pressures as a result of the emergence of a variety of resistance mechanisms over the past 15 years. Resistance has manifested itself largely through the expression of genes that encode proteins that reprogram cell wall biosynthesis and thus evade the action of the antibiotic in the enterococci, though recently new mechanisms have appeared that afford resistance and tolerance in the more virulent staphylococci and streptococci. Overcoming glycopeptide resistance will require innovative approaches to generate new antibiotics or otherwise to inhibit the action of resistance elements in various bacteria. The chemical complexity of the glycopeptides, the challenges of discovering and successfully exploiting new targets, and the growing number of distinct resistance types all increase the difficulty of the current problem we face as a result of the emergence of glycopeptide resistance. | 2002 | 11807177 |
| 4433 | 8 | 0.9999 | The Vancomycin Group of Antibiotics and the Fight against Resistant Bacteria. A last line of defence against "superbugs" are the vancomycin group antibiotics. This review describes the determination of their mode of action, and a mechanism of resistance to them. Remarkably, this mechanism of resistance can be overcome without directly modifying the binding site of the antibiotics for the cell-wall precursors of pathogenic bacteria. | 1999 | 29711719 |
| 9129 | 9 | 0.9999 | Overcoming Intrinsic and Acquired Resistance Mechanisms Associated with the Cell Wall of Gram-Negative Bacteria. The global increase in multi-drug-resistant bacteria is severely impacting our ability to effectively treat common infections. For Gram-negative bacteria, their intrinsic and acquired resistance mechanisms are heightened by their unique cell wall structure. The cell wall, while being a target of some antibiotics, represents a barrier due to the inability of most antibacterial compounds to traverse and reach their intended target. This means that its composition and resulting mechanisms of resistance must be considered when developing new therapies. Here, we discuss potential antibiotic targets within the most well-characterised resistance mechanisms associated with the cell wall in Gram-negative bacteria, including the outer membrane structure, porins and efflux pumps. We also provide a timely update on the current progress of inhibitor development in these areas. Such compounds could represent new avenues for drug discovery as well as adjuvant therapy to help us overcome antibiotic resistance. | 2020 | 32961699 |
| 9421 | 10 | 0.9999 | The neglected intrinsic resistome of bacterial pathogens. Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature. | 2008 | 18286176 |
| 9520 | 11 | 0.9999 | Role of Natural Product in Modulation of Drug Transporters and New Delhi Metallo-β Lactamases. A rapid growth in drug resistance has brought options for treating antimicrobial resistance to a halt. Bacteria have evolved to accumulate a multitude of genes that encode resistance for a single drug within a single cell. Alternations of drug transporters are one of the causes for the development of resistance in drug interactions. Conversely, the production of enzymes also inactivates most antibiotics. The discovery of newer classes of antibiotics and drugs from natural products is urgently needed. Alternative medicines play an integral role in countries across the globe but many require validation for treatment strategies. It is essential to explore this chemical diversity in order to find novel drugs with specific activities which can be used as alternative drug targets. This review describes the interaction of drugs with resistant pathogens with a special focus on natural product-derived efflux pump and carbapenemase inhibitors. | 2019 | 30987566 |
| 9546 | 12 | 0.9999 | Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria. Bacterial resistance has intensified in recent years due to the uncontrolled use of conventional drugs, and new bacterial strains with multiple resistance have been reported. This problem may be solved by using antimicrobial peptides (AMPs), which fulfill their bactericidal activity without developing much bacterial resistance. The rapid interaction between AMPs and the bacterial cell membrane means that the bacteria cannot easily develop resistance mechanisms. In addition, various drugs for clinical use have lost their effect as a conventional treatment; however, the synergistic effect of AMPs with these drugs would help to reactivate and enhance antimicrobial activity. Their efficiency against multi-resistant and extensively resistant bacteria has positioned them as promising molecules to replace or improve conventional drugs. In this review, we examined the importance of antimicrobial peptides and their successful activity against critical and high-priority bacteria published in the WHO list. | 2021 | 34064302 |
| 9541 | 13 | 0.9999 | The Role of the Hfq Protein in Bacterial Resistance to Antibiotics: A Narrative Review. The antibiotic resistance of pathogenic microorganisms is currently one of most major medical problems, causing a few million deaths every year worldwide due to untreatable bacterial infections. Unfortunately, the prognosis is even worse, as over 8 million deaths associated with antibiotic resistance are expected to occur in 2050 if no new effective antibacterial treatments are discovered. The Hfq protein has been discovered as a bacterial RNA chaperone. However, subsequent studies have indicated that this small protein (composed of 102 amino acid residues in Escherichia coli) has more activities, including binding to DNA and influencing its compaction, interaction with biological membranes, formation of amyloid-like structures, and others. Although Hfq is known to participate in many cellular processes, perhaps surprisingly, only reports from recent years have demonstrated its role in bacterial antibiotic resistance. The aim of this narrative review is to discuss how can Hfq affects antibiotic resistance in bacteria and propose how this knowledge may facilitate developing new therapeutic strategies against pathogenic bacteria. We indicate that the mechanisms by which the Hfq protein modulates the response of bacterial cells to antibiotics are quite different, from the regulation of the expression of genes coding for proteins directly involved in antibiotic transportation or action, through direct effects on membranes, to controlling the replication or transposition of mobile genetic elements bearing antibiotic resistance genes. Therefore, we suggest that Hfq could be considered a potential target for novel antimicrobial compounds. We also discuss difficulties in developing such drugs, but since Hfq appears to be a promising target for drugs that may enhance the efficacy of antibiotics, we propose that works on such potential therapeutics are encouraged. | 2025 | 40005731 |
| 9506 | 14 | 0.9999 | Nisin resistance in Gram-positive bacteria and approaches to circumvent resistance for successful therapeutic use. Antibiotic resistance among bacterial pathogens is one of the most worrying problems in health systems today. To solve this problem, bacteriocins from lactic acid bacteria, especially nisin, have been proposed as an alternative for controlling multidrug-resistant bacteria. Bacteriocins are antimicrobial peptides that have activity mainly against Gram-positive strains. Nisin is one of the most studied bacteriocins and is already approved for use in food preservation. Nisin is still not approved for human clinical use, but many in vitro studies have shown its therapeutic effectiveness, especially for the control of antibiotic-resistant strains. Results from in vitro studies show the emergence of nisin-resistant bacteria after exposure to nisin. Considering that nisin has shown promising results for clinical use, studies to elucidate nisin-resistant mechanisms and the development of approaches to circumvent nisin-resistance are important. Thus, the objectives of this review are to identify the Gram-positive bacterial strains that have shown resistance to nisin, describe their resistance mechanisms and propose ways to overcome the development of nisin-resistance for its successful clinical application. | 2021 | 33689548 |
| 9423 | 15 | 0.9999 | Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Antimicrobial peptides (AMPs) are promising antimicrobials, however, the potential of bacterial resistance is a major concern. Here we systematically study the evolution of resistance to 14 chemically diverse AMPs and 12 antibiotics in Escherichia coli. Our work indicates that evolution of resistance against certain AMPs, such as tachyplesin II and cecropin P1, is limited. Resistance level provided by point mutations and gene amplification is very low and antibiotic-resistant bacteria display no cross-resistance to these AMPs. Moreover, genomic fragments derived from a wide range of soil bacteria confer no detectable resistance against these AMPs when introduced into native host bacteria on plasmids. We have found that simple physicochemical features dictate bacterial propensity to evolve resistance against AMPs. Our work could serve as a promising source for the development of new AMP-based therapeutics less prone to resistance, a feature necessary to avoid any possible interference with our innate immune system. | 2019 | 31586049 |
| 9420 | 16 | 0.9999 | The intrinsic resistance of bacteria. Antibiotic resistance is often considered to be a trait acquired by previously susceptible bacteria, on the basis of which can be attributed to the horizontal acquisition of new genes or the occurrence of spontaneous mutation. In addition to acquired resistance, bacteria have a trait of intrinsic resistance to different classes of antibiotics. An intrinsic resistance gene is involved in intrinsic resistance, and its presence in bacterial strains is independent of previous antibiotic exposure and is not caused by horizontal gene transfer. Recently, interest in intrinsic resistance genes has increased, because these gene products not only may provide attractive therapeutic targets for development of novel drugs that rejuvenate the activity of existing antibiotics, and but also might predict future emergence of resistant pathogens if they become mobilized. In the present review, we summarize the conventional examples of intrinsic resistance, including the impermeability of cellular envelopes, the activity of multidrug efflux pumps or lack of drug targets. We also demonstrate that transferases and enzymes involved in basic bacterial metabolic processes confer intrinsic resistance in Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. We present as well information on the cryptic intrinsic resistance genes that do not confer resistance to their native hosts but are capable of conferring resistance when their expression levels are increased and the activation of the cryptic genes. Finally, we discuss that intrinsic genes could be the origin of acquired resistance, especially in the genus Acinetobacter. | 2016 | 27806928 |
| 4250 | 17 | 0.9999 | Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Gram-negative bacteria are responsible for a large proportion of antimicrobial-resistant infections in humans and animals. Among this class of bacteria are also some of the most successful environmental organisms. Part of this success is their adaptability to a variety of different niches, their intrinsic resistance to antimicrobial drugs and their ability to rapidly acquire resistance mechanisms. These mechanisms of resistance are not exclusive and the interplay of several mechanisms causes high levels of resistance. In this review, we explore the molecular mechanisms underlying resistance in Gram-negative organisms and how these different mechanisms enable them to survive many different stress conditions. | 2017 | 28258229 |
| 9436 | 18 | 0.9999 | Phenotypic Resistance to Antibiotics. The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented. | 2013 | 27029301 |
| 9415 | 19 | 0.9998 | Antibacterial contact-dependent proteins secreted by Gram-negative cystic fibrosis respiratory pathogens. Cystic fibrosis (CF) is a genetic disease that affects almost 100 000 people worldwide. CF patients suffer from chronic bacterial airway infections that are often polymicrobial and are the leading cause of mortality. Interactions between pathogens modulate expression of genes responsible for virulence and antibiotic resistance. One of the ways bacteria can interact is through contact-dependent systems, which secrete antibacterial proteins (effectors) that confer advantages to cells that harbor them. Here, we highlight recent work that describes effectors used by Gram-negative CF pathogens to eliminate competitor bacteria. Understanding the mechanisms of secreted effectors may lead to novel insights into the ecology of bacteria that colonize respiratory tracts and could also pave the way for the design of new therapeutics. | 2022 | 35487848 |