# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9100 | 0 | 1.0000 | Unlocking the bacterial membrane as a therapeutic target for next-generation antimicrobial amphiphiles. Gram-positive bacteria like Enterococcus faecium and Staphylococcus aureus, and Gram-negative bacteria like Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter Spp. are responsible for most of fatal bacterial infections. Bacteria present a handful of targets like ribosome, RNA polymerase, cell wall biosynthesis, and dihydrofolate reductase. Antibiotics targeting the protein synthesis like aminoglycosides and tetracyclines, inhibitors of RNA/DNA synthesis like fluoroquinolones, inhibitors of cell wall biosynthesis like glycopeptides and β-lactams, and membrane-targeting polymyxins and lipopeptides have shown very good success in combating the bacterial infections. Ability of the bacteria to develop drug resistance is a serious public health challenge as bacteria can develop antimicrobial resistance against newly introduced antibiotics that enhances the challenge for antibiotic drug discovery. Therefore, bacterial membranes present a suitable therapeutic target for development of antimicrobials as bacteria can find it difficult to develop resistance against membrane-targeting antimicrobials. In this review, we present the recent advances in engineering of membrane-targeting antimicrobial amphiphiles that can be effective alternatives to existing antibiotics in combating bacterial infections. | 2021 | 34325929 |
| 4434 | 1 | 0.9998 | Battle against Vancomycin-Resistant Bacteria: Recent Developments in Chemical Strategies. Vancomycin, a natural glycopeptide antibiotic, was used as the antibiotic of last resort for the treatment of multidrug-resistant Gram-positive bacterial infections. However, almost 30 years after its use, resistance to vancomycin was first reported in 1986 in France. This became a major health concern, and alternative treatment strategies were urgently needed. New classes of molecules, including semisynthetic antibacterial compounds and newer generations of the previously used antibiotics, were developed. Semisynthetic derivatives of vancomycin with enhanced binding affinity, membrane disruption ability, and lipid binding properties have exhibited promising results against both Gram-positive and Gram-negative bacteria. Various successful approaches developed to overcome the acquired resistance in Gram-positive bacteria, intrinsic resistance in Gram-negative bacteria, and other forms of noninherited resistance to vancomycin have been discussed in this Perspective. | 2019 | 30404451 |
| 9776 | 2 | 0.9997 | Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Polymyxins are polycationic antimicrobial peptides that are currently the last-resort antibiotics for the treatment of multidrug-resistant, Gram-negative bacterial infections. The reintroduction of polymyxins for antimicrobial therapy has been followed by an increase in reports of resistance among Gram-negative bacteria. Some bacteria, such as Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, develop resistance to polymyxins in a process referred to as acquired resistance, whereas other bacteria, such as Proteus spp., Serratia spp., and Burkholderia spp., are naturally resistant to these drugs. Reports of polymyxin resistance in clinical isolates have recently increased, including acquired and intrinsically resistant pathogens. This increase is considered a serious issue, prompting concern due to the low number of currently available effective antibiotics. This review summarizes current knowledge concerning the different strategies bacteria employ to resist the activities of polymyxins. Gram-negative bacteria employ several strategies to protect themselves from polymyxin antibiotics (polymyxin B and colistin), including a variety of lipopolysaccharide (LPS) modifications, such as modifications of lipid A with phosphoethanolamine and 4-amino-4-deoxy-L-arabinose, in addition to the use of efflux pumps, the formation of capsules and overexpression of the outer membrane protein OprH, which are all effectively regulated at the molecular level. The increased understanding of these mechanisms is extremely vital and timely to facilitate studies of antimicrobial peptides and find new potential drugs targeting clinically relevant Gram-negative bacteria. | 2014 | 25505462 |
| 4433 | 3 | 0.9997 | The Vancomycin Group of Antibiotics and the Fight against Resistant Bacteria. A last line of defence against "superbugs" are the vancomycin group antibiotics. This review describes the determination of their mode of action, and a mechanism of resistance to them. Remarkably, this mechanism of resistance can be overcome without directly modifying the binding site of the antibiotics for the cell-wall precursors of pathogenic bacteria. | 1999 | 29711719 |
| 9778 | 4 | 0.9997 | Antibiotic class with potent in vivo activity targeting lipopolysaccharide synthesis in Gram-negative bacteria. Here, we describe the identification of an antibiotic class acting via LpxH, a clinically unexploited target in lipopolysaccharide synthesis. The lipopolysaccharide synthesis pathway is essential in most Gram-negative bacteria and there is no analogous pathway in humans. Based on a series of phenotypic screens, we identified a hit targeting this pathway that had activity on efflux-defective strains of Escherichia coli. We recognized common structural elements between this hit and a previously published inhibitor, also with activity against efflux-deficient bacteria. With the help of X-ray structures, this information was used to design inhibitors with activity on efflux-proficient, wild-type strains. Optimization of properties such as solubility, metabolic stability and serum protein binding resulted in compounds having potent in vivo efficacy against bloodstream infections caused by the critical Gram-negative pathogens E. coli and Klebsiella pneumoniae. Other favorable properties of the series include a lack of pre-existing resistance in clinical isolates, and no loss of activity against strains expressing extended-spectrum-β-lactamase, metallo-β-lactamase, or carbapenemase-resistance genes. Further development of this class of antibiotics could make an important contribution to the ongoing struggle against antibiotic resistance. | 2024 | 38579010 |
| 4254 | 5 | 0.9997 | The forgotten Gram-negative bacilli: what genetic determinants are telling us about the spread of antibiotic resistance. Gram-negative bacilli have become increasingly resistant to antibiotics over the past 2 decades due to selective pressure from the extensive use of antibiotics in the hospital and community. In addition, these bacteria have made optimum use of their innate genetic capabilities to extensively mutate structural and regulatory genes of antibiotic resistance factors, broadening their ability to modify or otherwise inactivate antibiotics in the cell. The great genetic plasticity of bacteria have permitted the transfer of resistance genes on plasmids and integrons between bacterial species allowing an unprecedented dissemination of genes leading to broad-spectrum resistance. As a result, many Gram-negative bacilli possess a complicated set of genes encoding efflux pumps, alterations in outer membrane lipopolysaccharides, regulation of porins and drug inactivating enzymes such as beta-lactamases, that diminish the clinical utility of today's antibiotics. The cross-species mobility of these resistance genes indicates that multidrug resistance will only increase in the future, impacting the efficacy of existing antimicrobials. This trend toward greater resistance comes at a time when very few new antibiotics have been identified capable of controlling such multi-antibiotic resistant pathogens. The continued dissemination of these resistance genes underscores the need for new classes of antibiotics that do not possess the liability of cross-resistance to existing classes of drugs and thereby having diminished potency against Gram-negative bacilli. | 2006 | 16359640 |
| 9521 | 6 | 0.9997 | Next-generation strategy for treating drug resistant bacteria: Antibiotic hybrids. Resistance against nearly all antibiotics used clinically have been documented in bacteria. There is an ever-increasing danger caused by multidrug-resistant Gram-negative bacteria in both hospital and community settings. In Gram-negative bacteria, intrinsic resistance to currently available antibiotics is mainly due to overexpressed efflux pumps which are constitutively present and also presence of protective outer membrane. Combination therapy, i.e., use of two or more antibiotics, was thought to be an effective strategy because it took advantage of the additive effects of multiple antimicrobial mechanisms, lower risk of resistance development and lower mortality and improved clinical outcome. However, none of the benefits were seen in in vivo studies. Antibiotic hybrids are being used to challenge the growing drug resistance threat and increase the usefulness of current antibiotic arsenal. Antibiotic hybrids are synthetic constructs of two molecules which are covalently linked. These could be two antibiotics or antibiotic with an adjuvant (efflux pump inhibitor, siderophore, etc.) which increases the access of the antibiotics to the target. The concepts, developments and challenges in the future use of antibiotic hybrids are discussed here. Majority of the studies have been conducted on fluoroquinolones and aminoglycosides molecules. The antibiotic tobramycin has the property to enhance the action of antimicrobial agents against which the multidrug-resistant Gram-negative bacteria were earlier resistant, and thus potentiating the action of legacy antibiotics. Antibiotic hybrids may have a role as the silver bullet in Gram-negative bacteria to overcome drug resistance as well as extend the spectrum of existing antibiotics. | 2019 | 31219074 |
| 4442 | 7 | 0.9997 | Mechanisms of antimicrobial resistance in bacteria. The treatment of bacterial infections is increasingly complicated by the ability of bacteria to develop resistance to antimicrobial agents. Antimicrobial agents are often categorized according to their principal mechanism of action. Mechanisms include interference with cell wall synthesis (eg, beta-lactams and glycopeptide agents), inhibition of protein synthesis (macrolides and tetracyclines), interference with nucleic acid synthesis (fluoroquinolones and rifampin), inhibition of a metabolic pathway (trimethoprim-sulfamethoxazole), and disruption of bacterial membrane structure (polymyxins and daptomycin). Bacteria may be intrinsically resistant to > or =1 class of antimicrobial agents, or may acquire resistance by de novo mutation or via the acquisition of resistance genes from other organisms. Acquired resistance genes may enable a bacterium to produce enzymes that destroy the antibacterial drug, to express efflux systems that prevent the drug from reaching its intracellular target, to modify the drug's target site, or to produce an alternative metabolic pathway that bypasses the action of the drug. Acquisition of new genetic material by antimicrobial-susceptible bacteria from resistant strains of bacteria may occur through conjugation, transformation, or transduction, with transposons often facilitating the incorporation of the multiple resistance genes into the host's genome or plasmids. Use of antibacterial agents creates selective pressure for the emergence of resistant strains. Herein 3 case histories-one involving Escherichia coli resistance to third-generation cephalosporins, another focusing on the emergence of vancomycin-resistant Staphylococcus aureus, and a third detailing multidrug resistance in Pseudomonas aeruginosa-are reviewed to illustrate the varied ways in which resistant bacteria develop. | 2006 | 16813980 |
| 9126 | 8 | 0.9997 | The Exploration of Complement-Resistance Mechanisms of Pathogenic Gram-Negative Bacteria to Support the Development of Novel Therapeutics. Resistance to antibiotics in Bacteria is one of the biggest threats to human health. After decades of attempting to isolate or design antibiotics with novel mechanisms of action against bacterial pathogens, few approaches have been successful. Antibacterial drug discovery is now moving towards targeting bacterial virulence factors, especially immune evasion factors. Gram-negative bacteria present some of the most significant challenges in terms of antibiotic resistance. However, they are also able to be eliminated by the component of the innate immune system known as the complement system. In response, Gram-negative bacteria have evolved a variety of mechanisms by which they are able to evade complement and cause infection. Complement resistance mechanisms present some of the best novel therapeutic targets for defending against highly antibiotic-resistant pathogenic bacterial infections. | 2022 | 36015050 |
| 9520 | 9 | 0.9997 | Role of Natural Product in Modulation of Drug Transporters and New Delhi Metallo-β Lactamases. A rapid growth in drug resistance has brought options for treating antimicrobial resistance to a halt. Bacteria have evolved to accumulate a multitude of genes that encode resistance for a single drug within a single cell. Alternations of drug transporters are one of the causes for the development of resistance in drug interactions. Conversely, the production of enzymes also inactivates most antibiotics. The discovery of newer classes of antibiotics and drugs from natural products is urgently needed. Alternative medicines play an integral role in countries across the globe but many require validation for treatment strategies. It is essential to explore this chemical diversity in order to find novel drugs with specific activities which can be used as alternative drug targets. This review describes the interaction of drugs with resistant pathogens with a special focus on natural product-derived efflux pump and carbapenemase inhibitors. | 2019 | 30987566 |
| 9099 | 10 | 0.9997 | Small molecule downregulation of PmrAB reverses lipid A modification and breaks colistin resistance. Infections caused by multi-drug resistant bacteria, particularly Gram-negative bacteria, are an ever-increasing problem. While the development of new antibiotics remains one option in the fight against bacteria that have become resistant to currently available antibiotics, an attractive alternative is the development of adjuvant therapeutics that restore the efficacy of existing antibiotics. We report a small molecule adjuvant that suppresses colistin resistance in multidrug resistant Acinetobacter baumannii and Klebsiella pneumoniae by interfering with the expression of a two-component system. The compound downregulates the pmrCAB operon and reverses phosphoethanolamine modification of lipid A responsible for colistin resistance. Furthermore, colistin-susceptible and colistin-resistant bacteria do not evolve resistance to combination treatment. This represents the first definitive example of a compound that breaks antibiotic resistance by directly modulating two-component system activity. | 2014 | 24131198 |
| 4441 | 11 | 0.9997 | Mechanisms of antimicrobial resistance in bacteria. The treatment of bacterial infections is increasingly complicated by the ability of bacteria to develop resistance to antimicrobial agents. Antimicrobial agents are often categorized according to their principal mechanism of action. Mechanisms include interference with cell wall synthesis (e.g., beta-lactams and glycopeptide agents), inhibition of protein synthesis (macrolides and tetracyclines), interference with nucleic acid synthesis (fluoroquinolones and rifampin), inhibition of a metabolic pathway (trimethoprim-sulfamethoxazole), and disruption of bacterial membrane structure (polymyxins and daptomycin). Bacteria may be intrinsically resistant to > or =1 class of antimicrobial agents, or may acquire resistance by de novo mutation or via the acquisition of resistance genes from other organisms. Acquired resistance genes may enable a bacterium to produce enzymes that destroy the antibacterial drug, to express efflux systems that prevent the drug from reaching its intracellular target, to modify the drug's target site, or to produce an alternative metabolic pathway that bypasses the action of the drug. Acquisition of new genetic material by antimicrobial-susceptible bacteria from resistant strains of bacteria may occur through conjugation, transformation, or transduction, with transposons often facilitating the incorporation of the multiple resistance genes into the host's genome or plasmids. Use of antibacterial agents creates selective pressure for the emergence of resistant strains. Herein 3 case histories-one involving Escherichia coli resistance to third-generation cephalosporins, another focusing on the emergence of vancomycin-resistant Staphylococcus aureus, and a third detailing multidrug resistance in Pseudomonas aeruginosa--are reviewed to illustrate the varied ways in which resistant bacteria develop. | 2006 | 16735149 |
| 4246 | 12 | 0.9997 | Bacteriocins to Thwart Bacterial Resistance in Gram Negative Bacteria. An overuse of antibiotics both in human and animal health and as growth promoters in farming practices has increased the prevalence of antibiotic resistance in bacteria. Antibiotic resistant and multi-resistant bacteria are now considered a major and increasing threat by national health agencies, making the need for novel strategies to fight bugs and super bugs a first priority. In particular, Gram-negative bacteria are responsible for a high proportion of nosocomial infections attributable for a large part to Enterobacteriaceae, such as pathogenic Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. To cope with their highly competitive environments, bacteria have evolved various adaptive strategies, among which the production of narrow spectrum antimicrobial peptides called bacteriocins and specifically microcins in Gram-negative bacteria. They are produced as precursor peptides that further undergo proteolytic cleavage and in many cases more or less complex posttranslational modifications, which contribute to improve their stability and efficiency. Many have a high stability in the gastrointestinal tract where they can target a single pathogen whilst only slightly perturbing the gut microbiota. Several microcins and antibiotics can bind to similar bacterial receptors and use similar pathways to cross the double-membrane of Gram-negative bacteria and reach their intracellular targets, which they also can share. Consequently, bacteria may use common mechanisms of resistance against microcins and antibiotics. This review describes both unmodified and modified microcins [lasso peptides, siderophore peptides, nucleotide peptides, linear azole(in)e-containing peptides], highlighting their potential as weapons to thwart bacterial resistance in Gram-negative pathogens and discusses the possibility of cross-resistance and co-resistance occurrence between antibiotics and microcins in Gram-negative bacteria. | 2020 | 33240239 |
| 9506 | 13 | 0.9997 | Nisin resistance in Gram-positive bacteria and approaches to circumvent resistance for successful therapeutic use. Antibiotic resistance among bacterial pathogens is one of the most worrying problems in health systems today. To solve this problem, bacteriocins from lactic acid bacteria, especially nisin, have been proposed as an alternative for controlling multidrug-resistant bacteria. Bacteriocins are antimicrobial peptides that have activity mainly against Gram-positive strains. Nisin is one of the most studied bacteriocins and is already approved for use in food preservation. Nisin is still not approved for human clinical use, but many in vitro studies have shown its therapeutic effectiveness, especially for the control of antibiotic-resistant strains. Results from in vitro studies show the emergence of nisin-resistant bacteria after exposure to nisin. Considering that nisin has shown promising results for clinical use, studies to elucidate nisin-resistant mechanisms and the development of approaches to circumvent nisin-resistance are important. Thus, the objectives of this review are to identify the Gram-positive bacterial strains that have shown resistance to nisin, describe their resistance mechanisms and propose ways to overcome the development of nisin-resistance for its successful clinical application. | 2021 | 33689548 |
| 9754 | 14 | 0.9997 | The Resilience of Pseudomonas aeruginosa to Antibiotics and the Designing of Antimicrobial Peptides to Overcome Microbial Resistance. Pseudomonas aeruginosa (P. aeruginosa) is a bacterium of medical concern known for its potential to persist in diverse environments due to its metabolic capacity. Its survival ability is linked to its relatively large genome of 5.5-7 Mbp, from which several genes are employed in overcoming conventional antibiotic treatments and promoting resistance. The worldwide prevalence of antibiotic-resistant clones of P. aeruginosa necessitates novel approaches to researching their multiple resistance mechanisms, such as the use of antimicrobial peptides (AMPs). In this review, we briefly discuss the epidemiology of the resistant strains of P. aeruginosa and then describe their resistance mechanisms. Next, we explain the biology of AMPs, enlist the present database platforms that describe AMPs, and discuss their usefulness and limitations in treating P. aeruginosa strains. Finally, we present 13 AMPs with theoretical action against P. aeruginosa, all of which we evaluated in silico in this work. Our results suggest that the AMPs we evaluated have a carpet-like mode of action with a membranolytic function in Gram-positive and Gramnegative bacteria, with a clear potential of synthesis for in vitro evaluation. | 2022 | 36082872 |
| 793 | 15 | 0.9997 | Efflux-mediated drug resistance in bacteria. Drug resistance in bacteria, and especially resistance to multiple antibacterials, has attracted much attention in recent years. In addition to the well known mechanisms, such as inactivation of drugs and alteration of targets, active efflux is now known to play a major role in the resistance of many species to antibacterials. Drug-specific efflux (e.g. that of tetracycline) has been recognised as the major mechanism of resistance to this drug in Gram-negative bacteria. In addition, we now recognise that multidrug efflux pumps are becoming increasingly important. Such pumps play major roles in the antiseptic resistance of Staphylococcus aureus, and fluoroquinolone resistance of S. aureus and Streptococcus pneumoniae. Multidrug pumps, often with very wide substrate specificity, are not only essential for the intrinsic resistance of many Gram-negative bacteria but also produce elevated levels of resistance when overexpressed. Paradoxically, 'advanced' agents for which resistance is unlikely to be caused by traditional mechanisms, such as fluoroquinolones and beta-lactams of the latest generations, are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents. Such overproduction mutants are also selected for by the use of antiseptics and biocides, increasingly incorporated into consumer products, and this is also of major concern. We can consider efflux pumps as potentially effective antibacterial targets. Inhibition of efflux pumps by an efflux pump inhibitor would restore the activity of an agent subject to efflux. An alternative approach is to develop antibacterials that would bypass the action of efflux pumps. | 2004 | 14717618 |
| 4402 | 16 | 0.9997 | Mechanisms of antimicrobial resistance in Stenotrophomonas maltophilia: a review of current knowledge. Introduction: Stenotrophomonas maltophilia is a prototype of bacteria intrinsically resistant to antibiotics. The reduced susceptibility of this microorganism to antimicrobials mainly relies on the presence in its chromosome of genes encoding efflux pumps and antibiotic inactivating enzymes. Consequently, the therapeutic options for treating S. maltophilia infections are limited.Areas covered: Known mechanisms of intrinsic, acquired and phenotypic resistance to antibiotics of S. maltophilia and the consequences of such resistance for treating S. maltophilia infections are discussed. Acquisition of some genes, mainly those involved in co-trimoxazole resistance, contributes to acquired resistance. Mutation, mainly in the regulators of chromosomally-encoded antibiotic resistance genes, is a major cause for S. maltophilia acquisition of resistance. The expression of some of these genes is triggered by specific signals or stressors, which can lead to transient phenotypic resistance.Expert opinion: Treatment of S. maltophilia infections is difficult because this organism presents low susceptibility to antibiotics. Besides, it can acquire resistance to antimicrobials currently in use. Particularly problematic is the selection of mutants overexpressing efflux pumps since they present a multidrug resistance phenotype. The use of novel antimicrobials alone or in combination, together with the development of efflux pumps' inhibitors may help in fighting S. maltophilia infections. | 2020 | 32052662 |
| 4249 | 17 | 0.9997 | Detection of essential genes in Streptococcus pneumoniae using bioinformatics and allelic replacement mutagenesis. Although the emergence and spread of antimicrobial resistance in major bacterial pathogens for the past decades poses a growing challenge to public health, discovery of novel antimicrobial agents from natural products or modification of existing antibiotics cannot circumvent the problem of antimicrobial resistance. The recent development of bacterial genomics and the availability of genome sequences allow the identification of potentially novel antimicrobial agents. The cellular targets of new antimicrobial agents must be essential for the growth, replication, or survival of the bacterium. Conserved genes among different bacterial genomes often turn out to be essential (1, 2). Thus, the combination of comparative genomics and the gene knock-out procedure can provide effective ways to identify the essential genes of bacterial pathogens (3). Identification of essential genes in bacteria may be utilized for the development of new antimicrobial agents because common essential genes in diverse pathogens could constitute novel targets for broad-spectrum antimicrobial agents. | 2008 | 18392984 |
| 9756 | 18 | 0.9997 | Genomewide identification of genetic determinants of antimicrobial drug resistance in Pseudomonas aeruginosa. The emergence of antimicrobial drug resistance is of enormous public concern due to the increased risk of delayed treatment of infections, the increased length of hospital stays, the substantial increase in the cost of care, and the high risk of fatal outcomes. A prerequisite for the development of effective therapy alternatives is a detailed understanding of the diversity of bacterial mechanisms that underlie drug resistance, especially for problematic gram-negative bacteria such as Pseudomonas aeruginosa. This pathogen has impressive chromosomally encoded mechanisms of intrinsic resistance, as well as the potential to mutate, gaining resistance to current antibiotics. In this study we have screened the comprehensive nonredundant Harvard PA14 library for P. aeruginosa mutants that exhibited either increased or decreased resistance against 19 antibiotics commonly used in the clinic. This approach identified several genes whose inactivation sensitized the bacteria to a broad spectrum of different antimicrobials and uncovered novel genetic determinants of resistance to various classes of antibiotics. Knowledge of the enhancement of bacterial susceptibility to existing antibiotics and of novel resistance markers or modifiers of resistance expression may lay the foundation for effective therapy alternatives and will be the basis for the development of new strategies in the control of problematic multiresistant gram-negative bacteria. | 2009 | 19332674 |
| 9422 | 19 | 0.9997 | Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria. Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis. | 2014 | 25419466 |