Characterization of an Enterococcus faecalis Bacteriophage vB_EfaM_LG1 and Its Synergistic Effect With Antibiotic. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
909101.0000Characterization of an Enterococcus faecalis Bacteriophage vB_EfaM_LG1 and Its Synergistic Effect With Antibiotic. Enterococcus faecalis is a Gram-positive opportunistic pathogen that could cause pneumonia and bacteremia in stroke patients. The development of antibiotic resistance in hospital-associated E. faecalis is a formidable public health threat. Bacteriophage therapy is a renewed solution to treat antibiotic-resistant bacterial infections. However, bacteria can acquire phage resistance quite quickly, which is a significant barrier to phage therapy. Here, we characterized a lytic E. faecalis bacteriophage Vb_EfaM_LG1 with lytic activity. Its genome did not contain antibiotic resistance or virulence genes. Vb_EfaM_LG1 effectively inhibits E. faecalis growth for a short period, and phage resistance developed within hours. However, the combination of antibiotics and phage has a tremendous synergistic effect against E. faecalis, prevents the development of phage resistance, and disrupts the biofilm efficiently. Our results show that the phage-antibiotic combination has better killing efficiency against E. faecalis.202134336721
884910.9996Attenuating the Selection of Vancomycin Resistance Among Enterococci through the Development of Peptide-Based Vancomycin Antagonists. The emergence and spread of multidrug resistant (MDR) pathogens with acquired resistance to almost all available antimicrobial agents has severely threatened the international healthcare community over the last two decades. The last resort antibiotic vancomycin is critical for treatment of several of these pathogens; howeverc vancomycin resistance is spreading due to the undesired accumulation of IV vancomycin in the colon post-treatment. This accumulation exerts selective pressure upon members of the colonic microflora, including Enterococci, which possess vancomycin resistance genes. To ensure the continual effectiveness of vancomycin in the clinical setting by preventing the spread of antibiotic resistance, it is crucial to develop strategies that reduce selective pressure on the colonic microflora while allowing vancomycin to maintain its desired activity at the site of infection. Herein we report that modification of the native l-Lys-d-Ala-d-Ala vancomycin binding site can be used to produce peptides with the ability to competitively bind vancomycin, reducing its activity against susceptible Enterococci. Moreover, several modifications to the N-termini of the native tripeptide have produced compounds with enhanced vancomycin binding activity, including several analogs that were designed to covalently bind vancomycin, thereby acting as suicide inhibitors. Finally, in a mixed culture of susceptible and resistant bacteria, a single lead compound was found to protect high ratios of susceptible bacteria from vancomycin over the course of a week-long period, preventing the selection for vancomycin-resistant Enterococci. These findings demonstrate the ability of these peptides as potential therapeutic adjuvants for counteracting the undesired accumulation of colonic vancomycin, allowing for protection of the colonic microflora.202032946213
975520.9996Phages for treatment Pseudomonas aeruginosa infection. Pseudomonas aeruginosa is denoted as one of the highly threatening bacteria to the public health. It has acquired many virulent factors and resistant genes that make it difficult to control with conventional antibiotics. Thus, bacteriophage therapy (phage therapy) is a proposed alternative to antibiotics to fight against multidrug-resistant P. aeruginosa. Many phages have been isolated that exhibit a broad spectrum of activity against P. aeruginosa. In this chapter, the common virulent factors and the prevalence of antibiotic-resistance genes in P. aeruginosa were reported. In addition, recent efforts in the field of phage therapy against P. aeruginosa were highlighted, including wild-type phages, genetically modified phages, phage cocktails, and phage in combination with antibiotics against P. aeruginosa in the planktonic and biofilm forms. Recent regulations on phage therapy were also covered in this chapter.202337770166
947030.9996Practical Method for Isolation of Phage Deletion Mutants. The growing concern about multi-drug resistant pathogenic bacteria has led to a renewed interest in the study of bacteriophages as antimicrobials and as therapeutic agents against infectious diseases (phage therapy). Phages to be used for this purpose have to be subjected to in-depth genomic characterization. It is essential to ascribe specific functions to phage genes, which will give information to unravel phage biology and to ensure the lack of undesirable genes, such as virulence and antibiotic resistance genes. Here, we describe a simple protocol for the selection of phage mutants carrying random deletions along the phage genome. Theoretically, any DNA region might be removed with the only requirement that the phage particle viability remains unaffected. This technique is based on the instability of phage particles in the presence of chelating compounds. A fraction of the phage population naturally lacking DNA segments will survive the treatment. Within the context of phages as antimicrobials, this protocol is useful to select lytic variants from temperate phages. In terms of phage efficiency, virulent phages are preferred over temperate ones to remove undesirable bacteria. This protocol has been used to obtain gene mutations that are involved in the lysogenic cycle of phages infecting Gram-positive bacteria (Staphylococcus and Lactobacillus).201831164553
961140.9995Parallel evolution of Pseudomonas aeruginosa phage resistance and virulence loss in response to phage treatment in vivo and in vitro. With rising antibiotic resistance, there has been increasing interest in treating pathogenic bacteria with bacteriophages (phage therapy). One limitation of phage therapy is the ease at which bacteria can evolve resistance. Negative effects of resistance may be mitigated when resistance results in reduced bacterial growth and virulence, or when phage coevolves to overcome resistance. Resistance evolution and its consequences are contingent on the bacteria-phage combination and their environmental context, making therapeutic outcomes hard to predict. One solution might be to conduct 'in vitro evolutionary simulations' using bacteria-phage combinations from the therapeutic context. Overall, our aim was to investigate parallels between in vitro experiments and in vivo dynamics in a human participant. Evolutionary dynamics were similar, with high levels of resistance evolving quickly with limited evidence of phage evolution. Resistant bacteria-evolved in vitro and in vivo-had lower virulence. In vivo, this was linked to lower growth rates of resistant isolates, whereas in vitro phage resistant isolates evolved greater biofilm production. Population sequencing suggests resistance resulted from selection on de novo mutations rather than sorting of existing variants. These results highlight the speed at which phage resistance can evolve in vivo, and how in vitro experiments may give useful insights for clinical evolutionary outcomes.202235188102
909050.9995Defeating Antibiotic- and Phage-Resistant Enterococcus faecalis Using a Phage Cocktail in Vitro and in a Clot Model. The deteriorating effectiveness of antibiotics is propelling researchers worldwide towards alternative techniques such as phage therapy: curing infectious diseases using viruses of bacteria called bacteriophages. In a previous paper, we isolated phage EFDG1, highly effective against both planktonic and biofilm cultures of one of the most challenging pathogenic species, the vancomycin-resistant Enterococcus (VRE). Thus, it is a promising phage to be used in phage therapy. Further experimentation revealed the emergence of a mutant resistant to EFDG1 phage: EFDG1(r). This kind of spontaneous resistance to antibiotics would be disastrous occurrence, however for phage-therapy it is only a minor hindrance. We quickly and successfully isolated a new phage, EFLK1, which proved effective against both the resistant mutant EFDG1(r) and its parental VRE, Enterococcus faecalis V583. Furthermore, combining both phages in a cocktail produced an additive effect against E. faecalis V583 strains regardless of their antibiotic or phage-resistance profile. An analysis of the differences in genome sequence, genes, mutations, and tRNA content of both phages is presented. This work is a proof-of-concept of one of the most significant advantages of phage therapy, namely the ability to easily overcome emerging resistant bacteria.201829541067
884860.9995Harnessing the effect of iron deprivation to attenuate the growth of opportunistic pathogen Acinetobacter baumannii. Acinetobacter baumannii is an opportunistic pathogen having high infectivity among immunocompromised patients. The bacteria are resistant to major first-line antibiotics and have become a serious concern in the aspect of nosocomial and community-acquired infections. To overcome this dire situation, the necessity of introducing new approaches is undeniable, which can bypass the need for conventional antibiotic therapy. In this article, we have pinpointed the importance of iron in A. baumannii. Iron is an essential micronutrient in all bacteria. Loss of iron acquisition leads to membrane destabilization, and change in the expression of iron-transporting or -metabolizing genes causes death of the bacteria. Iron scavenging was primarily mediated by different chelators, and β-thujaplicin showed the best antibacterial efficacy with respect to time killing assay and CFU analysis. When iron (Fe(2+)) was supplemented after initial deficiency, the growth of the bacteria was seen to be restored. Iron deprivation also disintegrates the biofilm matrix, a major cause of bacterial resistance against different types of antibiotics. Moreover, iron scavenging promotes inhibition of biofilm sessile persister cells, the root cause of recalcitrant and chronic infection. As a part of antimicrobial therapy, β-thujaplicin was treated alongside colistin and chloramphenicol at an amount significantly lower than its MIC value. Our results indicated that β-thujaplicin nicely complemented those antibiotics to potentiate their antimicrobial action. In a nutshell, iron chelating agents are potential alternative therapeutics that can be used alongside different antibiotics to circumvent the resistance of different nosocomial pathogens.202540202344
885270.9995Diagnosis of cancer multidrug resistance by bacterium-mediated imaging. Multidrug resistance (MDR) is a phenomenon expressed by many tumors affecting the chemotherapy efficacy, treatment decision, and the disease prognosis. Considering its great implication, non-invasive approaches are needed to identify this phenomenon in early stages of the disease. This article discusses the potential of the emerging non-invasive bacterium-mediated imaging of cancer in diagnosis of MDR. This potential is derived from the effect of cancer MDR on the pharmacokinetics of certain antibiotics, which are substrates of the MDR proteins. Since MDR proteins actively pump their substrates outside the resistant cancer cells, the elimination of the employed reporter bacteria, proliferating within MDR cancer cells, would require a larger dose of these antibiotics compared to those inside non-MDR cancer cells. These bacteria bear reporter genes that produce specific signals such as bioluminescent, fluorescent, magnetic, or radioactive signals that can be detected by non-invasive imaging modalities. Therefore, the presence, degree, and mechanism of MDR can be estimated by comparing the concentration of the employed antibiotic, required to cease these signals (reflecting the elimination of the bacteria), to a pre-determined reference. The real time imaging of MDR cancer and the early diagnosis of MDR, offered by this approach, would provide a better tool for preclinical studies of MDR, and allow a prompt choice of the most appropriate therapy.201626968900
940080.9995Conjugative Delivery of CRISPR-Cas9 for the Selective Depletion of Antibiotic-Resistant Enterococci. The innovation of new therapies to combat multidrug-resistant (MDR) bacteria is being outpaced by the continued rise of MDR bacterial infections. Of particular concern are hospital-acquired infections (HAIs) that are recalcitrant to antibiotic therapies. The Gram-positive intestinal pathobiont Enterococcus faecalis is associated with HAIs, and some strains are MDR. Therefore, novel strategies to control E. faecalis populations are needed. We previously characterized an E. faecalis type II CRISPR-Cas system and demonstrated its utility in the sequence-specific removal of antibiotic resistance determinants. Here, we present work describing the adaption of this CRISPR-Cas system into a constitutively expressed module encoded on a pheromone-responsive conjugative plasmid that efficiently transfers to E. faecalis for the selective removal of antibiotic resistance genes. Using in vitro competition assays, we show that these CRISPR-Cas-encoding delivery plasmids, or CRISPR-Cas antimicrobials, can reduce the occurrence of antibiotic resistance in enterococcal populations in a sequence-specific manner. Furthermore, we demonstrate that deployment of CRISPR-Cas antimicrobials in the murine intestine reduces the occurrence of antibiotic-resistant E. faecalis by several orders of magnitude. Finally, we show that E. faecalis donor strains harboring CRISPR-Cas antimicrobials are immune to uptake of antibiotic resistance determinants in vivo Our results demonstrate that conjugative delivery of CRISPR-Cas antimicrobials may be adaptable for future deployment from probiotic bacteria for exact targeting of defined MDR bacteria or for precision engineering of polymicrobial communities in the mammalian intestine.201931527030
950690.9995Nisin resistance in Gram-positive bacteria and approaches to circumvent resistance for successful therapeutic use. Antibiotic resistance among bacterial pathogens is one of the most worrying problems in health systems today. To solve this problem, bacteriocins from lactic acid bacteria, especially nisin, have been proposed as an alternative for controlling multidrug-resistant bacteria. Bacteriocins are antimicrobial peptides that have activity mainly against Gram-positive strains. Nisin is one of the most studied bacteriocins and is already approved for use in food preservation. Nisin is still not approved for human clinical use, but many in vitro studies have shown its therapeutic effectiveness, especially for the control of antibiotic-resistant strains. Results from in vitro studies show the emergence of nisin-resistant bacteria after exposure to nisin. Considering that nisin has shown promising results for clinical use, studies to elucidate nisin-resistant mechanisms and the development of approaches to circumvent nisin-resistance are important. Thus, the objectives of this review are to identify the Gram-positive bacterial strains that have shown resistance to nisin, describe their resistance mechanisms and propose ways to overcome the development of nisin-resistance for its successful clinical application.202133689548
9546100.9995Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria. Bacterial resistance has intensified in recent years due to the uncontrolled use of conventional drugs, and new bacterial strains with multiple resistance have been reported. This problem may be solved by using antimicrobial peptides (AMPs), which fulfill their bactericidal activity without developing much bacterial resistance. The rapid interaction between AMPs and the bacterial cell membrane means that the bacteria cannot easily develop resistance mechanisms. In addition, various drugs for clinical use have lost their effect as a conventional treatment; however, the synergistic effect of AMPs with these drugs would help to reactivate and enhance antimicrobial activity. Their efficiency against multi-resistant and extensively resistant bacteria has positioned them as promising molecules to replace or improve conventional drugs. In this review, we examined the importance of antimicrobial peptides and their successful activity against critical and high-priority bacteria published in the WHO list.202134064302
4266110.9995Novel Bacteriophages Capable of Disrupting Biofilms From Clinical Strains of Aeromonas hydrophila. The increase in global warming has favored growth of a range of opportunistic environmental bacteria and allowed some of these to become more pathogenic to humans. Aeromonas hydrophila is one such organism. Surviving in moist conditions in temperate climates, these bacteria have been associated with a range of diseases in humans, and in systemic infections can cause mortality in up to 46% of cases. Their capacity to form biofilms, carry antibiotic resistance mechanisms, and survive disinfection, has meant that they are not easily treated with traditional methods. Bacteriophage offer a possible alternative approach for controlling their growth. This study is the first to report the isolation and characterization of bacteriophages lytic against clinical strains of A. hydrophila which carry intrinsic antibiotic resistance genes. Functionally, these novel bacteriophages were shown to be capable of disrupting biofilms caused by clinical isolates of A. hydrophila. The potential exists for these to be tested in clinical and environmental settings.202032117183
9431120.9995Biofilms and antimicrobial resistance. The pathogenesis of many orthopaedic infections is related to the presence of microorganisms in biofilms. I examine the emerging understanding of the mechanisms of biofilm-associated antimicrobial resistance. Biofilm-associated resistance to antimicrobial agents begins at the attachment phase and increases as the biofilm ages. A variety of reasons for the increased antimicrobial resistance of microorganisms in biofilms have been postulated and investigated. Although bacteria in biofilms are surrounded by an extracellular matrix that might physically restrict the diffusion of antimicrobial agents, this does not seem to be a predominant mechanism of biofilm-associated antimicrobial resistance. Nutrient and oxygen depletion within the biofilm cause some bacteria to enter a nongrowing (ie, stationary) state, in which they are less susceptible to growth-dependent antimicrobial killing. A subpopulation of bacteria might differentiate into a phenotypically resistant state. Finally, some organisms in biofilms have been shown to express biofilm-specific antimicrobial resistance genes that are not required for biofilm formation. Overall, the mechanism of biofilm-associated antimicrobial resistance seems to be multifactorial and may vary from organism to organism. Techniques that address biofilm susceptibility testing to antimicrobial agents may be necessary before antimicrobial regimens for orthopaedic prosthetic device-associated infections can be appropriately defined in research and clinical settings. Finally, a variety of approaches are being defined to overcome biofilm-associated antimicrobial resistance.200516056024
9469130.9995Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Pathogen resistance to antibiotics is a rapidly growing problem, leading to an urgent need for novel antimicrobial agents. Unfortunately, development of new antibiotics faces numerous obstacles, and a method that resensitizes pathogens to approved antibiotics therefore holds key advantages. We present a proof of principle for a system that restores antibiotic efficiency by reversing pathogen resistance. This system uses temperate phages to introduce, by lysogenization, the genes rpsL and gyrA conferring sensitivity in a dominant fashion to two antibiotics, streptomycin and nalidixic acid, respectively. Unique selective pressure is generated to enrich for bacteria that harbor the phages carrying the sensitizing constructs. This selection pressure is based on a toxic compound, tellurite, and therefore does not forfeit any antibiotic for the sensitization procedure. We further demonstrate a possible way of reducing undesirable recombination events by synthesizing dominant sensitive genes with major barriers to homologous recombination. Such synthesis does not significantly reduce the gene's sensitization ability. Unlike conventional bacteriophage therapy, the system does not rely on the phage's ability to kill pathogens in the infected host, but instead, on its ability to deliver genetic constructs into the bacteria and thus render them sensitive to antibiotics prior to host infection. We believe that transfer of the sensitizing cassette by the constructed phage will significantly enrich for antibiotic-treatable pathogens on hospital surfaces. Broad usage of the proposed system, in contrast to antibiotics and phage therapy, will potentially change the nature of nosocomial infections toward being more susceptible to antibiotics rather than more resistant.201222113912
4292140.9995The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria. BACKGROUND: The emergence and ongoing spread of antimicrobial-resistant bacteria is a major public health threat. Infections caused by antimicrobial-resistant bacteria are associated with substantially higher rates of morbidity and mortality compared to infections caused by antimicrobial-susceptible bacteria. The emergence and spread of these bacteria is complex and requires incorporating numerous interrelated factors which clinical studies cannot adequately address. METHODS/PRINCIPAL FINDINGS: A model is created which incorporates several key factors contributing to the emergence and spread of resistant bacteria including the effects of the immune system, acquisition of resistance genes and antimicrobial exposure. The model identifies key strategies which would limit the emergence of antimicrobial-resistant bacterial strains. Specifically, the simulations show that early initiation of antimicrobial therapy and combination therapy with two antibiotics prevents the emergence of resistant bacteria, whereas shorter courses of therapy and sequential administration of antibiotics promote the emergence of resistant strains. CONCLUSIONS/SIGNIFICANCE: The principal findings suggest that (i) shorter lengths of antibiotic therapy and early interruption of antibiotic therapy provide an advantage for the resistant strains, (ii) combination therapy with two antibiotics prevents the emergence of resistance strains in contrast to sequential antibiotic therapy, and (iii) early initiation of antibiotics is among the most important factors preventing the emergence of resistant strains. These findings provide new insights into strategies aimed at optimizing the administration of antimicrobials for the treatment of infections and the prevention of the emergence of antimicrobial resistance.200819112501
8839150.9995Bacteriophage infection drives loss of β-lactam resistance in methicillin-resistant Staphylococcus aureus. Bacteriophage (phage) therapy is a promising means to combat drug-resistant bacterial pathogens. Infection by phage can select for mutations in bacterial populations that confer resistance against phage infection. However, resistance against phage can yield evolutionary trade-offs of biomedical relevance. Here, we report the discovery that infection by certain staphylococcal phages sensitizes different strains of methicillin-resistant Staphylococcus aureus (MRSA) to β-lactams, a class of antibiotics against which MRSA is typically resistant. MRSA cells that survive infection by these phages display significant reductions in minimal inhibitory concentration against different β-lactams compared to uninfected bacteria. Transcriptomic profiling reveals that these evolved MRSA strains possess highly modulated transcriptional profiles, where numerous genes involved in S. aureus virulence are downregulated. Phage-treated MRSA exhibited attenuated virulence phenotypes in the form of reduced hemolysis and clumping. Despite sharing similar phenotypes, whole-sequencing analysis revealed that the different MRSA strains evolved unique genetic profiles during infection. These results suggest complex evolutionary trajectories in MRSA during phage predation and open up new possibilities to reduce drug resistance and virulence in MRSA infections.202540637714
9803160.9995Combating antibiotic resistance in bacteria. Combinations of certain antibiotics select against resistant strains of bacteria. This finding may provide a strategy of combating antibiotic resistant bacteria.200723100665
9473170.9995The role of the animal host in the management of bacteriophage resistance during phage therapy. Multi-drug-resistant bacteria are associated with significantly higher morbidity and mortality. The possibilities for discovering new antibiotics are limited, but phage therapy - the use of bacteriophages (viruses infecting bacteria) to cure infections - is now being investigated as an alternative or complementary treatment to antibiotics. However, one of the major limitations of this approach lies in the antagonistic coevolution between bacteria and bacteriophages, which determines the ultimate success or failure of phage therapy. Here, we review the possible influence of the animal host on phage resistance and its consequences for the efficacy of phage therapy. We also discuss the value of in vitro assays for anticipating the dynamics of phage resistance observed in vivo.202336512896
9804180.9995Antimicrobial Peptides as an Alternative for the Eradication of Bacterial Biofilms of Multi-Drug Resistant Bacteria. Bacterial resistance is an emergency public health problem worldwide, compounded by the ability of bacteria to form biofilms, mainly in seriously ill hospitalized patients. The World Health Organization has published a list of priority bacteria that should be studied and, in turn, has encouraged the development of new drugs. Herein, we explain the importance of studying new molecules such as antimicrobial peptides (AMPs) with potential against multi-drug resistant (MDR) and extensively drug-resistant (XDR) bacteria and focus on the inhibition of biofilm formation. This review describes the main causes of antimicrobial resistance and biofilm formation, as well as the main and potential AMP applications against these bacteria. Our results suggest that the new biomacromolecules to be discovered and studied should focus on this group of dangerous and highly infectious bacteria. Alternative molecules such as AMPs could contribute to eradicating biofilm proliferation by MDR/XDR bacteria; this is a challenging undertaking with promising prospects.202235336016
4434190.9995Battle against Vancomycin-Resistant Bacteria: Recent Developments in Chemical Strategies. Vancomycin, a natural glycopeptide antibiotic, was used as the antibiotic of last resort for the treatment of multidrug-resistant Gram-positive bacterial infections. However, almost 30 years after its use, resistance to vancomycin was first reported in 1986 in France. This became a major health concern, and alternative treatment strategies were urgently needed. New classes of molecules, including semisynthetic antibacterial compounds and newer generations of the previously used antibiotics, were developed. Semisynthetic derivatives of vancomycin with enhanced binding affinity, membrane disruption ability, and lipid binding properties have exhibited promising results against both Gram-positive and Gram-negative bacteria. Various successful approaches developed to overcome the acquired resistance in Gram-positive bacteria, intrinsic resistance in Gram-negative bacteria, and other forms of noninherited resistance to vancomycin have been discussed in this Perspective.201930404451