Disrupting antibiotic resistance propagation by inhibiting the conjugative DNA relaxase. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
908401.0000Disrupting antibiotic resistance propagation by inhibiting the conjugative DNA relaxase. Conjugative transfer of plasmid DNA via close cell-cell junctions is the main route by which antibiotic resistance genes spread between bacterial strains. Relaxases are essential for conjugative transfer and act by cleaving DNA strands and forming covalent phosphotyrosine linkages. Based on data indicating that multityrosine relaxase enzymes can accommodate two phosphotyrosine intermediates within their divalent metal-containing active sites, we hypothesized that bisphosphonates would inhibit relaxase activity and conjugative DNA transfer. We identified bisphosphonates that are nanomolar inhibitors of the F plasmid conjugative relaxase in vitro. Furthermore, we used cell-based assays to demonstrate that these compounds are highly effective at preventing DNA transfer and at selectively killing cells harboring conjugative plasmids. Two potent inhibitors, clodronate and etidronate, are already clinically approved to treat bone loss. Thus, the inhibition of conjugative relaxases is a potentially novel antimicrobial approach, one that selectively targets bacteria capable of transferring antibiotic resistance and generating multidrug resistant strains.200717630285
985210.9992Transposase-DNA Complex Structures Reveal Mechanisms for Conjugative Transposition of Antibiotic Resistance. Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes.201829551265
933220.9992Intercellular nanotubes mediate bacterial communication. Bacteria are known to communicate primarily via secreted extracellular factors. Here we identify a previously uncharacterized type of bacterial communication mediated by nanotubes that bridge neighboring cells. Using Bacillus subtilis as a model organism, we visualized transfer of cytoplasmic fluorescent molecules between adjacent cells. Additionally, by coculturing strains harboring different antibiotic resistance genes, we demonstrated that molecular exchange enables cells to transiently acquire nonhereditary resistance. Furthermore, nonconjugative plasmids could be transferred from one cell to another, thereby conferring hereditary features to recipient cells. Electron microscopy revealed the existence of variously sized tubular extensions bridging neighboring cells, serving as a route for exchange of intracellular molecules. These nanotubes also formed in an interspecies manner, between B. subtilis and Staphylococcus aureus, and even between B. subtilis and the evolutionary distant bacterium Escherichia coli. We propose that nanotubes represent a major form of bacterial communication in nature, providing a network for exchange of cellular molecules within and between species.201121335240
990230.9991Bacterial death comes full circle: targeting plasmid replication in drug-resistant bacteria. It is now common for bacterial infections to resist the preferred antibiotic treatment. In particular, hospital-acquired infections that are refractory to multiple antibiotics and ultimately result in death of the patient are prevalent. Many of the bacteria causing these infections have become resistant to antibiotics through the process of lateral gene transfer, with the newly acquired genes encoding a variety of resistance-mediating proteins. These foreign genes often enter the bacteria on plasmids, which are small, circular, extrachromosomal pieces of DNA. This plasmid-encoded resistance has been observed for virtually all classes of antibiotics and in a wide variety of Gram-positive and Gram-negative organisms; many antibiotics are no longer effective due to such plasmid-encoded resistance. The systematic removal of these resistance-mediating plasmids from the bacteria would re-sensitize bacteria to standard antibiotics. As such, plasmids offer novel targets that have heretofore been unexploited clinically. This Perspective details the role of plasmids in multi-drug resistant bacteria, the mechanisms used by plasmids to control their replication, and the potential for small molecules to disrupt plasmid replication and re-sensitize bacteria to antibiotics. An emphasis is placed on plasmid replication that is mediated by small counter-transcript RNAs, and the "plasmid addiction" systems that employ toxins and antitoxins.200515750634
935540.9991Conjugative type IV secretion systems enable bacterial antagonism that operates independently of plasmid transfer. Bacterial cooperation and antagonism mediated by secretion systems are among the ways in which bacteria interact with one another. Here we report the discovery of an antagonistic property of a type IV secretion system (T4SS) sourced from a conjugative plasmid, RP4, using engineering approaches. We scrutinized the genetic determinants and suggested that this antagonistic activity is independent of molecular cargos, while we also elucidated the resistance genes. We further showed that a range of Gram-negative bacteria and a mixed bacterial population can be eliminated by this T4SS-dependent antagonism. Finally, we showed that such an antagonistic property is not limited to T4SS sourced from RP4, rather it can also be observed in a T4SS originated from another conjugative plasmid, namely R388. Our results are the first demonstration of conjugative T4SS-dependent antagonism between Gram-negative bacteria on the genetic level and provide the foundation for future mechanistic studies.202438664513
985150.9991The potential of integrons and connected programmed rearrangements for mediating horizontal gene transfer. Site-specific recombination of integrons, mediates transfer of single genes in small genomes and plasmids. Recent data suggest that new genes are recruited to the cassettes--the units moved by integrons. Integrons are resident in a class of transposons with pronounced target selectivity for resolution loci in broad host range plasmids. A resulting network of programmed transfer routes, with potential offshoots reaching into eukaryotic cells, may channel genes to unexpectedly remote organisms. It has previously been observed that the conjugation apparatus of the broad host range plasmid R751 (IncP) which contains transposon Tn5090 harbouring an integron, promotes horizontal genetic transfer between bacteria and yeast. Furthermore, it is well known and fundamental for widely used gene replacement technologies, that site-specific recombination systems (e.g. Cre-lox of bacteriophage P1) related to the integrons are functional in higher eukaryotes. It seems very clear that integrons and associated programmed transfer mechanisms have high significance for the dissemination of antibiotic resistance genes in bacteria whereas further studies are needed to assess their importance for spreading of arbitrary genes in a wider range of host systems.19989850680
930660.9991Establishment Genes Present on pLS20 Family of Conjugative Plasmids Are Regulated in Two Different Ways. During conjugation, a conjugative DNA element is transferred from a donor to a recipient cell via a connecting channel. Conjugation has clinical relevance because it is the major route for spreading antibiotic resistance and virulence genes. The conjugation process can be divided into different steps. The initial steps carried out in the donor cell culminate in the transfer of a single DNA strand (ssDNA) of the conjugative element into the recipient cell. However, stable settlement of the conjugative element in the new host requires at least two additional events: conversion of the transferred ssDNA into double-stranded DNA and inhibition of the hosts' defence mechanisms to prevent degradation of the transferred DNA. The genes involved in this late step are historically referred to as establishment genes. The defence mechanisms of the host must be inactivated rapidly and-importantly-transiently, because prolonged inactivation would make the cell vulnerable to the attack of other foreign DNA, such as those of phages. Therefore, expression of the establishment genes in the recipient cell has to be rapid but transient. Here, we studied regulation of the establishment genes present on the four clades of the pLS20 family of conjugative plasmids harboured by different Bacillus species. Evidence is presented that two fundamentally different mechanisms regulate the establishment genes present on these plasmids. Identification of the regulatory sequences were critical in revealing the establishment regulons. Remarkably, whereas the conjugation genes involved in the early steps of the conjugation process are conserved and are located in a single large operon, the establishment genes are highly variable and organised in multiple operons. We propose that the mosaical distribution of establishment genes in multiple operons is directly related to the variability of defence genes encoded by the host bacterial chromosomes.202134946067
990370.9991Bacterial plasmid addiction systems and their implications for antibiotic drug development. Bacteria frequently carry mobile genetic elements capable of being passed to other bacterial cells. An example of this is the transfer of plasmids (small, circular DNA molecules) that often contain antibiotic resistance genes from one bacterium to another. Plasmids have evolved mechanisms to ensure their survival through generations by employing plasmids segregation and replication machinery and plasmid addiction systems. Plasmid addiction systems utilize a post-segregational killing of cells that have not received a plasmid. In this review, the types of plasmid addiction systems are described as well as their prevalence in antibiotic resistant bacteria. Lastly, the possibility of targeting these plasmid addiction systems for the treatment of antibiotic resistant bacterial infections is explored.201728781980
982980.9991Promiscuous transfer of drug resistance in gram-negative bacteria. Bacterial conjugation is a major mechanism for the spread of antibiotic-resistance genes in pathogenic organisms. In gram-negative bacteria, broad-host-range drug-resistance plasmids mediate genetic exchange between many unrelated species. The mechanism of conjugation encoded by the broad-host-range IncP plasmid RK2 has been studied in detail. The location and sequence of the transfer origin of RK2 has been determined. Several barriers limit plasmid transfer between unrelated bacteria: interactions at the cell surface may prevent effective mating contact, restriction systems may degrade foreign DNA, or the plasmid may not replicate in the new host. RK2 has evolved specific mechanisms by which it overcomes these barriers; this plasmid can mediate the transfer of resistance to most gram-negative bacteria.19846143782
930390.9991A Conserved Class II Type Thioester Domain-Containing Adhesin Is Required for Efficient Conjugation in Bacillus subtilis. Conjugation, the process by which a DNA element is transferred from a donor to a recipient cell, is the main horizontal gene transfer route responsible for the spread of antibiotic resistance and virulence genes. Contact between a donor and a recipient cell is a prerequisite for conjugation, because conjugative DNA is transferred into the recipient via a channel connecting the two cells. Conjugative elements encode proteins dedicated to facilitating the recognition and attachment to recipient cells, also known as mating pair formation. A subgroup of the conjugative elements is able to mediate efficient conjugation during planktonic growth, and mechanisms facilitating mating pair formation will be particularly important in these cases. Conjugative elements of Gram-negative bacteria encode conjugative pili, also known as sex pili, some of which are retractile. Far less is known about mechanisms that promote mating pair formation in Gram-positive bacteria. The conjugative plasmid pLS20 of the Gram-positive bacterium Bacillus subtilis allows efficient conjugation in liquid medium. Here, we report the identification of an adhesin gene in the pLS20 conjugation operon. The N-terminal region of the adhesin contains a class II type thioester domain (TED) that is essential for efficient conjugation, particularly in liquid medium. We show that TED-containing adhesins are widely conserved in Gram-positive bacteria, including pathogens where they often play crucial roles in pathogenesis. Our study is the first to demonstrate the involvement of a class II type TED-containing adhesin in conjugation.IMPORTANCE Bacterial resistance to antibiotics has become a serious health care problem. The spread of antibiotic resistance genes between bacteria of the same or different species is often mediated by a process named conjugation, where a donor cell transfers DNA to a recipient cell through a connecting channel. The first step in conjugation is recognition and attachment of the donor to a recipient cell. Little is known about this first step, particularly in Gram-positive bacteria. Here, we show that the conjugative plasmid pLS20 of Bacillus subtilis encodes an adhesin protein that is essential for effective conjugation. This adhesin protein has a structural organization similar to adhesins produced by other Gram-positive bacteria, including major pathogens, where the adhesins serve in attachment to host tissues during colonization and infection. Our findings may thus also open novel avenues to design drugs that inhibit the spread of antibiotic resistance by blocking the first recipient-attachment step in conjugation.202133727345
9398100.9990Effectiveness of CRISPR-Cas in Sensitizing Bacterial Populations with Plasmid-Encoded Antimicrobial Resistance. The spread of bacteria resistant to antibiotics poses a serious threat to human health. Genes that encode antibiotic resistance are often harbored on plasmids, extra-chromosomal DNA molecules found in bacteria. The emergence of multiresistance plasmids is particularly problematic and demands the development of new antibiotics and alternative strategies. CRISPR-Cas derived tools with their sequence specificity offer a promising new approach to combating antibiotic resistance. By introducing CRISPR-Cas encoding plasmids that %specifically target antibiotic resistance genes on plasmids, the susceptibility of bacteria to conventional antibiotics can be restored. However, genetic variation within bacterial populations can hinder the effectiveness of such CRISPR-Cas tools by allowing some mutant plasmids to evade CRISPR-mediated cleaving or gene silencing. In this study, we develop a model to test the effectiveness of CRISPR-Cas in sensitizing bacterial populations carrying resistance on non-transmissible plasmids and assess the success probability of a subsequent treatment with conventional antibiotics. We evaluate this probability according to the target interference mechanism, the copy number of the resistance-encoding plasmid, and its compatibility with the CRISPR-Cas encoding plasmid. Our results identify promising approaches to revert antibiotic resistance with CRISPR-Cas encoding plasmids: A DNA-cleaving CRISPR-Cas system on a plasmid incompatible with the targeted plasmid is most effective for low copy numbers, while for resistance plasmids with higher copy numbers gene silencing by CRISPR-Cas systems encoded on compatible plasmids is the superior solution.202540985758
6316110.9990A novel type of colistin resistance genes selected from random sequence space. Antibiotic resistance is a rapidly increasing medical problem that severely limits the success of antibiotic treatments, and the identification of resistance determinants is key for surveillance and control of resistance dissemination. Horizontal transfer is the dominant mechanism for spread of resistance genes between bacteria but little is known about the original emergence of resistance genes. Here, we examined experimentally if random sequences can generate novel antibiotic resistance determinants de novo. By utilizing highly diverse expression libraries encoding random sequences to select for open reading frames that confer resistance to the last-resort antibiotic colistin in Escherichia coli, six de novo colistin resistance conferring peptides (Dcr) were identified. The peptides act via direct interactions with the sensor kinase PmrB (also termed BasS in E. coli), causing an activation of the PmrAB two-component system (TCS), modification of the lipid A domain of lipopolysaccharide and subsequent colistin resistance. This kinase-activation was extended to other TCS by generation of chimeric sensor kinases. Our results demonstrate that peptides with novel activities mediated via specific peptide-protein interactions in the transmembrane domain of a sensory transducer can be selected de novo, suggesting that the origination of such peptides from non-coding regions is conceivable. In addition, we identified a novel class of resistance determinants for a key antibiotic that is used as a last resort treatment for several significant pathogens. The high-level resistance provided at low expression levels, absence of significant growth defects and the functionality of Dcr peptides across different genera suggest that this class of peptides could potentially evolve as bona fide resistance determinants in natura.202133411736
9283120.9990Vibrio cholerae: Measuring Natural Transformation Frequency. Many bacteria can become naturally competent to take up extracellular DNA across their outer and inner membranes by a dedicated competence apparatus. Whereas some studies show that the DNA delivered to the cytoplasm may be used for genome repair or for nutrition, it can also be recombined onto the chromosome by homologous recombination: a process called natural transformation. Along with conjugation and transduction, natural transformation represents a mechanism for horizontal transfer of genetic material, e.g., antibiotic resistance genes, which can confer new beneficial characteristics onto the recipient bacteria. Described here are protocols for quantifying the frequency of transformation for the human pathogen Vibrio cholerae, one of several Vibrio species recently shown to be capable of natural transformation.201425367272
9275130.9990Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids. Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple antibiotic-resistance genes containing plasmids are stably maintained in both Escherichia coli and Salmonella enterica in the absence of phages, while plasmid-dependent phage PRD1 causes a dramatic reduction in the frequency of antibiotic-resistant bacteria. The loss of antibiotic resistance in cells initially harbouring RP4 plasmid was shown to result from evolution of phage resistance where bacterial cells expelled their plasmid (and hence the suitable receptor for phages). Phages also selected for a low frequency of plasmid-containing, phage-resistant bacteria, presumably as a result of modification of the plasmid-encoded receptor. However, these double-resistant mutants had a growth cost compared with phage-resistant but antibiotic-susceptible mutants and were unable to conjugate. These results suggest that bacteriophages could play a significant role in restricting the spread of plasmid-encoded antibiotic resistance.201121632619
9248140.9990Towards an integrated model of bacterial conjugation. Bacterial conjugation is one of the main mechanisms for horizontal gene transfer. It constitutes a key element in the dissemination of antibiotic resistance and virulence genes to human pathogenic bacteria. DNA transfer is mediated by a membrane-associated macromolecular machinery called Type IV secretion system (T4SS). T4SSs are involved not only in bacterial conjugation but also in the transport of virulence factors by pathogenic bacteria. Thus, the search for specific inhibitors of different T4SS components opens a novel approach to restrict plasmid dissemination. This review highlights recent biochemical and structural findings that shed new light on the molecular mechanisms of DNA and protein transport by T4SS. Based on these data, a model for pilus biogenesis and substrate transfer in conjugative systems is proposed. This model provides a renewed view of the mechanism that might help to envisage new strategies to curb the threating expansion of antibiotic resistance.201525154632
9901150.9990Plasmid interference for curing antibiotic resistance plasmids in vivo. Antibiotic resistance increases the likelihood of death from infection by common pathogens such as Escherichia coli and Klebsiella pneumoniae in developed and developing countries alike. Most important modern antibiotic resistance genes spread between such species on self-transmissible (conjugative) plasmids. These plasmids are traditionally grouped on the basis of replicon incompatibility (Inc), which prevents coexistence of related plasmids in the same cell. These plasmids also use post-segregational killing ('addiction') systems, which poison any bacterial cells that lose the addictive plasmid, to guarantee their own survival. This study demonstrates that plasmid incompatibilities and addiction systems can be exploited to achieve the safe and complete eradication of antibiotic resistance from bacteria in vitro and in the mouse gut. Conjugative 'interference plasmids' were constructed by specifically deleting toxin and antibiotic resistance genes from target plasmids. These interference plasmids efficiently cured the corresponding antibiotic resistant target plasmid from different Enterobacteriaceae in vitro and restored antibiotic susceptibility in vivo to all bacterial populations into which plasmid-mediated resistance had spread. This approach might allow eradication of emergent or established populations of resistance plasmids in individuals at risk of severe sepsis, enabling subsequent use of less toxic and/or more effective antibiotics than would otherwise be possible, if sepsis develops. The generalisability of this approach and its potential applications in bioremediation of animal and environmental microbiomes should now be systematically explored.201728245276
9333160.9990Exclusion systems preserve host cell homeostasis and fitness, ensuring successful dissemination of conjugative plasmids and associated resistance genes. Plasmid conjugation is a major driver of antibiotic resistance dissemination in bacteria. In addition to genes required for transfer and maintenance, conjugative plasmids encode exclusion systems that prevent host cells from acquiring identical or redundant plasmids. Despite their ubiquity, the biological impact of these systems remains poorly understood. Here, we investigate the importance of the exclusion mechanism for plasmid dynamics and bacterial physiology at the single-cell level. Using real-time microscopy, we directly visualize how the absence of exclusion results in plasmid unregulated self-transfer, causing continuous and repeated plasmid exchange among host cells. This runaway conjugation severely compromises cell integrity, viability, and fitness, a largely undescribed phenomenon termed lethal zygosis. We demonstrate that lethal zygosis is associated with membrane stress, activation of the SOS response, and potential reactivation of SOS-inducible prophages, as well as chromosome replication and segregation defects. This study highlights how exclusion systems maintain host cell homeostasis by limiting plasmid transfer. Paradoxically, this restriction is critical to the successful dissemination of conjugative plasmids by conferring a selective advantage, which explains their evolutionary conservation and underscores their role in the spread of antibiotic resistance among pathogenic bacteria.202540966505
9305170.9990Control of genes for conjugative transfer of plasmids and other mobile elements. Conjugative transfer is a primary means of spread of mobile genetic elements (plasmids and transposons) between bacteria.It leads to the dissemination and evolution of the genes (such as those conferring resistance to antibiotics) which are carried by the plasmid. Expression of the plasmid genes needed for conjugative transfer is tightly regulated so as to minimise the burden on the host. For plasmids such as those belonging to the IncP group this results in downregulation of the transfer genes once all bacteria have a functional conjugative apparatus. For F-like plasmids (apart from F itself which is a derepressed mutant) tight control results in very few bacteria having a conjugative apparatus. Chance encounters between the rare transfer-proficient bacteria and a potential recipient initiate a cascade of transfer which can continue until all potential recipients have acquired the plasmid. Other systems express their transfer genes in response to specific stimuli. For the pheromone-responsive plasmids of Enterococcus it is small peptide signals from potential recipients which trigger the conjugative transfer genes. For the Ti plasmids of Agrobacterium it is the presence of wounded plants which are susceptible to infection which stimulates T-DNA transfer to plants. Transfer and integration of T-DNA induces production of opines which the plasmid-positive bacteria can utilise. They multiply and when they reach an appropriate density their plasmid transfer system is switched on to allow transfer of the Ti plasmid to other bacteria. Finally some conjugative transfer systems are induced by the antibiotics to which the elements confer resistance. Understanding these control circuits may help to modify management of microbial communities where plasmid transfer is either desirable or undesirable. z 1998 Published by Elsevier Science B.V.199825508777
6313180.9990A Novel Nonantibiotic, lgt-Based Selection System for Stable Maintenance of Expression Vectors in Escherichia coli and Vibrio cholerae. Antibiotic selection for the maintenance of expression plasmids is discouraged in the production of recombinant proteins for pharmaceutical or other human uses due to the risks of antibiotic residue contamination of the final products and the release of DNA encoding antibiotic resistance into the environment. We describe the construction of expression plasmids that are instead maintained by complementation of the lgt gene encoding a (pro)lipoprotein glyceryl transferase essential for the biosynthesis of bacterial lipoprotein. Mutations in lgt are lethal in Escherichia coli and other Gram-negative organisms. The lgt gene was deleted from E. coli and complemented by the Vibrio cholerae-derived gene provided in trans on a temperature-sensitive plasmid, allowing cells to grow at 30°C but not at 37°C. A temperature-insensitive expression vector carrying the V. cholerae-derived lgt gene was constructed, whereby transformants were selected by growth at 39°C. The vector was successfully used to express two recombinant proteins, one soluble and one forming insoluble inclusion bodies. Reciprocal construction was done by deleting the lgt gene from V. cholerae and complementing the lesion with the corresponding gene from E. coli The resulting strain was used to produce the secreted recombinant cholera toxin B subunit (CTB) protein, a component of licensed as well as newly developed oral cholera vaccines. Overall, the lgt system described here confers extreme stability on expression plasmids, and this strategy can be easily transferred to other Gram-negative species using the E. coli-derived lgt gene for complementation.IMPORTANCE Many recombinant proteins are produced in bacteria from genes carried on autonomously replicating DNA elements called plasmids. These plasmids are usually inherently unstable and rapidly lost. This can be prevented by using genes encoding antibiotic resistance. Plasmids are thus maintained by allowing only plasmid-containing cells to survive when the bacteria are grown in medium supplemented with antibiotics. In the described antibiotic-free system for the production of recombinant proteins, an essential gene is deleted from the bacterial chromosome and instead provided on a plasmid. The loss of the plasmid becomes lethal for the bacteria. Such plasmids can be used for the expression of recombinant proteins. This broadly applicable system removes the need for antibiotics in recombinant protein production, thereby contributing to reducing the spread of genes encoding antibiotic resistance, reducing the release of antibiotics into the environment, and freeing the final products (often used in pharmaceuticals) from contamination with potentially harmful antibiotic residues.201829222103
9211190.9990Use of Staby(®) technology for development and production of DNA vaccines free of antibiotic resistance gene. The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby(®) technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby(®) technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1).201324051431