# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9078 | 0 | 1.0000 | MetaCherchant: analyzing genomic context of antibiotic resistance genes in gut microbiota. MOTIVATION: Antibiotic resistance is an important global public health problem. Human gut microbiota is an accumulator of resistance genes potentially providing them to pathogens. It is important to develop tools for identifying the mechanisms of how resistance is transmitted between gut microbial species and pathogens. RESULTS: We developed MetaCherchant-an algorithm for extracting the genomic environment of antibiotic resistance genes from metagenomic data in the form of a graph. The algorithm was validated on a number of simulated and published datasets, as well as applied to new 'shotgun' metagenomes of gut microbiota from patients with Helicobacter pylori who underwent antibiotic therapy. Genomic context was reconstructed for several major resistance genes. Taxonomic annotation of the context suggests that within a single metagenome, the resistance genes can be contained in genomes of multiple species. MetaCherchant allows reconstruction of mobile elements with resistance genes within the genomes of bacteria using metagenomic data. Application of MetaCherchant in differential mode produced specific graph structures suggesting the evidence of possible resistance gene transmission within a mobile element that occurred as a result of the antibiotic therapy. MetaCherchant is a promising tool giving researchers an opportunity to get an insight into dynamics of resistance transmission in vivo basing on metagenomic data. AVAILABILITY AND IMPLEMENTATION: Source code and binaries are freely available for download at https://github.com/ctlab/metacherchant. The code is written in Java and is platform-independent. COTANCT: ulyantsev@rain.ifmo.ru. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. | 2018 | 29092015 |
| 9670 | 1 | 0.9994 | An Approach to In Silico Dissection of Bacterial Intelligence Through Selective Genomic Tools. All the genetic potential and the intelligence a bacteria can showcase in a given environment are embedded in its genome. In this study, we have presented systematic guidelines to understand a bacterial genome with the relevant set of in silico tools using a novel bacteria as an example. This study presents a multi-dimensional approach from genome annotation to tracing genes and their network of metabolism operating in an organism. It also shows how the sequence can be used to mine the enzymes and construction of its 3-dimensional structure so that its functional behavior can be predicted and compared. The discriminating algorithm allows analysis of the promoter region and provides the insight in the regulation of genes in spite of the similarity in its sequences. The ecological niche specific bacterial behavior and adapted altered physiology can be understood through the presence of secondary metabolite, antibiotic resistance genes, and viral genes; and it helps in the valorization of genetic information for developing new biological application/processes. This study provides an in silico work plan and necessary steps for genome analysis of novel bacteria without any rigorous wet lab experiments. | 2018 | 30013271 |
| 9744 | 2 | 0.9994 | PARGT: a software tool for predicting antimicrobial resistance in bacteria. With the ever-increasing availability of whole-genome sequences, machine-learning approaches can be used as an alternative to traditional alignment-based methods for identifying new antimicrobial-resistance genes. Such approaches are especially helpful when pathogens cannot be cultured in the lab. In previous work, we proposed a game-theory-based feature evaluation algorithm. When using the protein characteristics identified by this algorithm, called 'features' in machine learning, our model accurately identified antimicrobial resistance (AMR) genes in Gram-negative bacteria. Here we extend our study to Gram-positive bacteria showing that coupling game-theory-identified features with machine learning achieved classification accuracies between 87% and 90% for genes encoding resistance to the antibiotics bacitracin and vancomycin. Importantly, we present a standalone software tool that implements the game-theory algorithm and machine-learning model used in these studies. | 2020 | 32620856 |
| 9671 | 3 | 0.9994 | Genome-scale genetic manipulation methods for exploring bacterial molecular biology. Bacteria are diverse and abundant, playing key roles in human health and disease, the environment, and biotechnology. Despite progress in genome sequencing and bioengineering, much remains unknown about the functional organization of prokaryotes. For instance, roughly a third of the protein-coding genes of the best-studied model bacterium, Escherichia coli, currently lack experimental annotations. Systems-level experimental approaches for investigating the functional associations of bacterial genes and genetic structures are essential for defining the fundamental molecular biology of microbes, preventing the spread of antibacterial resistance in the clinic, and driving the development of future biotechnological applications. This review highlights recently introduced large-scale genetic manipulation and screening procedures for the systematic exploration of bacterial gene functions, molecular relationships, and the global organization of bacteria at the gene, pathway, and genome levels. | 2012 | 22517266 |
| 9566 | 4 | 0.9994 | Computational resources in the management of antibiotic resistance: Speeding up drug discovery. This article reviews more than 50 computational resources developed in past two decades for forecasting of antibiotic resistance (AR)-associated mutations, genes and genomes. More than 30 databases have been developed for AR-associated information, but only a fraction of them are updated regularly. A large number of methods have been developed to find AR genes, mutations and genomes, with most of them based on similarity-search tools such as BLAST and HMMER. In addition, methods have been developed to predict the inhibition potential of antibiotics against a bacterial strain from the whole-genome data of bacteria. This review also discuss computational resources that can be used to manage the treatment of AR-associated diseases. | 2021 | 33892146 |
| 9669 | 5 | 0.9994 | Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment. | 2014 | 25093819 |
| 9666 | 6 | 0.9994 | The comprehensive antibiotic resistance database. The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment. | 2013 | 23650175 |
| 9554 | 7 | 0.9993 | A multi-label learning framework for predicting antibiotic resistance genes via dual-view modeling. The increasing prevalence of antibiotic resistance has become a global health crisis. For the purpose of safety regulation, it is of high importance to identify antibiotic resistance genes (ARGs) in bacteria. Although culture-based methods can identify ARGs relatively more accurately, the identifying process is time-consuming and specialized knowledge is required. With the rapid development of whole genome sequencing technology, researchers attempt to identify ARGs by computing sequence similarity from public databases. However, these computational methods might fail to detect ARGs due to the low sequence identity to known ARGs. Moreover, existing methods cannot effectively address the issue of multidrug resistance prediction for ARGs, which is a great challenge to clinical treatments. To address the challenges, we propose an end-to-end multi-label learning framework for predicting ARGs. More specifically, the task of ARGs prediction is modeled as a problem of multi-label learning, and a deep neural network-based end-to-end framework is proposed, in which a specific loss function is introduced to employ the advantage of multi-label learning for ARGs prediction. In addition, a dual-view modeling mechanism is employed to make full use of the semantic associations among two views of ARGs, i.e. sequence-based information and structure-based information. Extensive experiments are conducted on publicly available data, and experimental results demonstrate the effectiveness of the proposed framework on the task of ARGs prediction. | 2022 | 35272349 |
| 9567 | 8 | 0.9993 | How to discover new antibiotic resistance genes? Antibiotic resistance (AR) is a worldwide concern and the description of AR have been discovered mainly because of their implications in human medicine. Since the recent burden of whole-genome sequencing of microorganisms, the number of new AR genes (ARGs) have dramatically increased over the last decade. Areas covered: In this review, we will describe the different methods that could be used to characterize new ARGs using classic or innovative methods. First, we will focus on the biochemical methods, then we will develop on molecular methods, next-generation sequencing and bioinformatics approaches. The use of various methods, including cloning, mutagenesis, transposon mutagenesis, functional genomics, whole genome sequencing, metagenomic and functional metagenomics will be reviewed here, outlining the advantages and drawbacks of each method. Bioinformatics softwares used for resistome analysis and protein modeling will be also described. Expert opinion: Biological experiments and bioinformatics analysis are complementary. Nowadays, the ARGs described only account for the tip of the iceberg of all existing resistance mechanisms. The multiplication of the ecosystems studied allows us to find a large reservoir of AR mechanisms. Furthermore, the adaptation ability of bacteria facing new antibiotics promises a constant discovery of new AR mechanisms. | 2019 | 30895843 |
| 9557 | 9 | 0.9993 | Antimicrobial Resistance Profile by Metagenomic and Metatranscriptomic Approach in Clinical Practice: Opportunity and Challenge. The burden of bacterial resistance to antibiotics affects several key sectors in the world, including healthcare, the government, and the economic sector. Resistant bacterial infection is associated with prolonged hospital stays, direct costs, and costs due to loss of productivity, which will cause policy makers to adjust their policies. Current widely performed procedures for the identification of antibiotic-resistant bacteria rely on culture-based methodology. However, some resistance determinants, such as free-floating DNA of resistance genes, are outside the bacterial genome, which could be potentially transferred under antibiotic exposure. Metagenomic and metatranscriptomic approaches to profiling antibiotic resistance offer several advantages to overcome the limitations of the culture-based approach. These methodologies enhance the probability of detecting resistance determinant genes inside and outside the bacterial genome and novel resistance genes yet pose inherent challenges in availability, validity, expert usability, and cost. Despite these challenges, such molecular-based and bioinformatics technologies offer an exquisite advantage in improving clinicians' diagnoses and the management of resistant infectious diseases in humans. This review provides a comprehensive overview of next-generation sequencing technologies, metagenomics, and metatranscriptomics in assessing antimicrobial resistance profiles. | 2022 | 35625299 |
| 9475 | 10 | 0.9993 | Rapidly evolving genes in pathogens: methods for detecting positive selection and examples among fungi, bacteria, viruses and protists. The ongoing coevolutionary struggle between hosts and pathogens, with hosts evolving to escape pathogen infection and pathogens evolving to escape host defences, can generate an 'arms race', i.e., the occurrence of recurrent selective sweeps that each favours a novel resistance or virulence allele that goes to fixation. Host-pathogen coevolution can alternatively lead to a 'trench warfare', i.e., balancing selection, maintaining certain alleles at loci involved in host-pathogen recognition over long time scales. Recently, technological and methodological progress has enabled detection of footprints of selection directly on genes, which can provide useful insights into the processes of coevolution. This knowledge can also have practical applications, for instance development of vaccines or drugs. Here we review the methods for detecting genes under positive selection using divergence data (i.e., the ratio of nonsynonymous to synonymous substitution rates, d(N)/d(S)). We also review methods for detecting selection using polymorphisms, such as methods based on F(ST) measures, frequency spectrum, linkage disequilibrium and haplotype structure. In the second part, we review examples where targets of selection have been identified in pathogens using these tests. Genes under positive selection in pathogens have mostly been sought among viruses, bacteria and protists, because of their paramount importance for human health. Another focus is on fungal pathogens owing to their agronomic importance. We finally discuss promising directions in pathogen studies, such as detecting selection in non-coding regions. | 2009 | 19442589 |
| 5102 | 11 | 0.9993 | Pipeline for Antimicrobial Resistance Gene Quantification from Host Tissue. Antibiotics are frequently used in food production animals to control disease and improve productivity, but this promotes the development of antimicrobial resistance (AMR) and subsequent broader spread of AMR bacteria throughout food chain, endangering the well-being and health of both animals and humans. In humans, the gut microbiome harbors a diverse range of AMR bacteria, known as the resistome. To effectively mitigate AMR in food animals requires first determining the expression and abundance of AMR-related genes in the gut resistome. Currently, such knowledge in regard to food animals is largely lacking. Gut tissue RNA sequencing (GTRS) can capture metabolically active transcripts from both the host and the microbes attached to the gut epithelium. Ideally, AMR genes can be quantified using GTRS data, making it possible to study the relationship between host and microbe. For the majority of these GTRS studies, only host transcriptome changes have been reported, while the microbial AMR remains largely unexamined, mainly due to the lack of easily implementable bioinformatics tools. Here we present a straightforward workflow to accomplish that using common command-line bioinformatics tools. With this pipeline, the host is considered noise, and host data are filtered out from the microbial reads. Transcript quantification of the AMR genes is then performed. The pipeline then continues through AMR transcript quantification, differential gene expression, and SNP analysis. Using open-source tools, we made this analytical pipeline easy to implement and able to generate results ready to be incorporated into publishable reports. Published 2025. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol: Running the gene quantification pipeline Support Protocol 1: Downloading FASTQ files from the NCBI database Support Protocol 2: Building a genome reference index of the host Support Protocol 3: Differential gene expression analysis Support Protocol 4: Single-nucleotide polymorphism (SNP) analysis. | 2025 | 40145236 |
| 9406 | 12 | 0.9993 | Proteomics as the final step in the functional metagenomics study of antimicrobial resistance. The majority of clinically applied antimicrobial agents are derived from natural products generated by soil microorganisms and therefore resistance is likely to be ubiquitous in such environments. This is supported by the fact that numerous clinically important resistance mechanisms are encoded within the genomes of such bacteria. Advances in genomic sequencing have enabled the in silico identification of putative resistance genes present in these microorganisms. However, it is not sufficient to rely on the identification of putative resistance genes, we must also determine if the resultant proteins confer a resistant phenotype. This will require an analysis pipeline that extends from the extraction of environmental DNA, to the identification and analysis of potential resistance genes and their resultant proteins and phenotypes. This review focuses on the application of functional metagenomics and proteomics to study antimicrobial resistance in diverse environments. | 2015 | 25784907 |
| 4002 | 13 | 0.9993 | Targeting bioinformatics tools to study the dissemination and spread of antibiotic resistant genes in the environment and clinical settings. Antibiotic resistance has expanded as a result of the careless use of antibiotics in the medical field, the food industry, agriculture, and other industries. By means of genetic recombination between commensal and pathogenic bacteria, the microbes obtain antibiotic resistance genes (ARGs). In bacteria, horizontal gene transfer (HGT) is the main mechanism for acquiring ARGs. With the development of high-throughput sequencing, ARG sequence analysis is now feasible and widely available. Preventing the spread of AMR in the environment requires the implementation of ARGs mapping. The metagenomic technique, in particular, has helped in identifying antibiotic resistance within microbial communities. Due to the exponential growth of experimental and clinical data, significant investments in computer capacity, and advancements in algorithmic techniques, the application of machine learning (ML) algorithms to the problem of AMR has attracted increasing attention over the past five years. The review article sheds a light on the application of bioinformatics for the antibiotic resistance monitoring. The most advanced tool currently being employed to catalog the resistome of various habitats are metagenomics and metatranscriptomics. The future lies in the hands of artificial intelligence (AI) and machine learning (ML) methods, to predict and optimize the interaction of antibiotic-resistant compounds with target proteins. | 2025 | 39552541 |
| 9667 | 14 | 0.9993 | Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs. Rates of infection with antibiotic-resistant bacteria have increased precipitously over the past several decades, with far-reaching healthcare and societal costs. Recent evidence has established a link between antibiotic resistance genes in human pathogens and those found in non-pathogenic, commensal, and environmental organisms, prompting deeper investigation of natural and human-associated reservoirs of antibiotic resistance. Functional metagenomic selections, in which shotgun-cloned DNA fragments are selected for their ability to confer survival to an indicator host, have been increasingly applied to the characterization of many antibiotic resistance reservoirs. These experiments have demonstrated that antibiotic resistance genes are highly diverse and widely distributed, many times bearing little to no similarity to known sequences. Through unbiased selections for survival to antibiotic exposure, functional metagenomics can improve annotations by reducing the discovery of false-positive resistance and by allowing for the identification of previously unrecognizable resistance genes. In this review, we summarize the novel resistance functions uncovered using functional metagenomic investigations of natural and human-impacted resistance reservoirs. Examples of novel antibiotic resistance genes include those highly divergent from known sequences, those for which sequence is entirely unable to predict resistance function, bifunctional resistance genes, and those with unconventional, atypical resistance mechanisms. Overcoming antibiotic resistance in the clinic will require a better understanding of existing resistance reservoirs and the dissemination networks that govern horizontal gene exchange, informing best practices to limit the spread of resistance-conferring genes to human pathogens. | 2013 | 23760651 |
| 8399 | 15 | 0.9993 | SYN-View: A Phylogeny-Based Synteny Exploration Tool for the Identification of Gene Clusters Linked to Antibiotic Resistance. The development of new antibacterial drugs has become one of the most important tasks of the century in order to overcome the posing threat of drug resistance in pathogenic bacteria. Many antibiotics originate from natural products produced by various microorganisms. Over the last decades, bioinformatical approaches have facilitated the discovery and characterization of these small compounds using genome mining methodologies. A key part of this process is the identification of the most promising biosynthetic gene clusters (BGCs), which encode novel natural products. In 2017, the Antibiotic Resistant Target Seeker (ARTS) was developed in order to enable an automated target-directed genome mining approach. ARTS identifies possible resistant target genes within antibiotic gene clusters, in order to detect promising BGCs encoding antibiotics with novel modes of action. Although ARTS can predict promising targets based on multiple criteria, it provides little information about the cluster structures of possible resistant genes. Here, we present SYN-view. Based on a phylogenetic approach, SYN-view allows for easy comparison of gene clusters of interest and distinguishing genes with regular housekeeping functions from genes functioning as antibiotic resistant targets. Our aim is to implement our proposed method into the ARTS web-server, further improving the target-directed genome mining strategy of the ARTS pipeline. | 2020 | 33396183 |
| 9405 | 16 | 0.9993 | Functional Metagenomic Screening for Antimicrobial Resistance in the Oral Microbiome. A large proportion of bacteria, from a multitude of environments, are not yet able to be grown in the laboratory, and therefore microbiological and molecular biological investigations of these bacteria are challenging. A way to circumvent this challenge is to analyze the metagenome, the entire collection of DNA molecules that can be isolated from a particular environment or sample. This collection of DNA molecules can be sequenced and assembled to determine what is present and infer functional potential, or used as a PCR template to detect known target DNA and potentially unknown regions of DNA nearby those targets; however assigning functions to new or conserved hypothetical, functionally cryptic, genes is difficult. Functional metagenomics allows researchers to determine which genes are responsible for selectable phenotypes, such as resistance to antimicrobials and metabolic capabilities, without the prerequisite needs to grow the bacteria containing those genes or to already know which genes are of interest. It is estimated that a third of the resident species of the human oral cavity is not yet cultivable and, together with the ease of sample acquisition, makes this metagenome particularly suited to functional metagenomic studies. Here we describe the methodology related to the collection of saliva samples, extraction of metagenomic DNA, construction of metagenomic libraries, as well as the description of functional assays that have previously led to the identification of new genes conferring antimicrobial resistance. | 2021 | 34410638 |
| 4774 | 17 | 0.9993 | Are antimicrobial resistance genes key targets to detect genetically modified microorganisms in fermentation products? As genetically modified microorganisms (GMM), commonly used by the food and feed industry to produce additives, enzymes and flavourings, are frequently harbouring antimicrobial resistance (AMR) genes as selection markers, health and environmental concerns were consequently raised. For this reason, the interest of the competent authorities to control such microbial fermentation products has strongly increased, especially since several recent accidental contaminations of unauthorized GMM, or associated recombinant DNA, in bacterial fermentation products intended for the European food and feed chain. However, no global screening strategy is currently available in enforcement laboratories to assess the presence of GMM harbouring AMR genes and/or the presence of full-length AMR genes. Moreover, the confidentiality of the related GMM dossiers strongly hampers the development of methods to perform such control. To overcome this issue, an analysis of related publicly available patents was performed in this study to identify all reported AMR genes. On this basis, the aminoglycoside adenyltransferase (aadD) gene, conferring a resistance to both kanamycin and neomycin, was identified as a key target to cover a large spectrum of GM bacteria. A real-time PCR method to screen for its potential presence as well as a nested-PCR method associated with a sequencing analysis to assess its full-length were developed to target this aadD gene. The performance of these new methods were successfully evaluated in terms of specificity, sensitivity and applicability, allowing their easy implementation in enforcement laboratories. Moreover, the integration of these newly developed methods to our very recently proposed strategy, initially targeting GMM carrying a chloramphenicol resistance gene, allows to drastically increase the detection spectrum of GM bacteria producing fermentation food and feed products. The data generated by the proposed strategy represents therefore a crucial support for the competent authorities, especially to evaluate potential risks for the food and feed safety. | 2020 | 32622259 |
| 9668 | 18 | 0.9993 | Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes. Microbial communities contain diverse bacteria that play important roles in every environment. Advances in sequencing and computational methodologies over the past decades have illuminated the phylogenetic and functional diversity of microbial communities from diverse habitats. Among the activities encoded in microbiomes are the abilities to synthesize and resist small molecules, yielding antimicrobial activity. These functions are of particular interest when viewed in light of the public health emergency posed by the increase in clinical antimicrobial resistance and the dwindling antimicrobial discovery and approval pipeline, and given the intimate ecological and evolutionary relationship between antimicrobial biosynthesis and resistance. Here, we review genomic and functional methods that have been developed for accessing the antimicrobial biosynthesis and resistance capacity of microbiomes and highlight outstanding examples of their applications. | 2017 | 27768825 |
| 9552 | 19 | 0.9993 | Addressing antibiotic resistance: computational answers to a biological problem? The increasing prevalence of infections caused by antibiotic-resistant bacteria is a global healthcare crisis. Understanding the spread of resistance is predicated on the surveillance of antibiotic resistance genes within an environment. Bioinformatics and artificial intelligence (AI) methods applied to metagenomic sequencing data offer the capacity to detect known and infer yet-unknown resistance mechanisms, and predict future outbreaks of antibiotic-resistant infections. Machine learning methods, in particular, could revive the waning antibiotic discovery pipeline by helping to predict the molecular structure and function of antibiotic resistance compounds, and optimising their interactions with target proteins. Consequently, AI has the capacity to play a central role in guiding antibiotic stewardship and future clinical decision-making around antibiotic resistance. | 2023 | 37031568 |