Related carbapenemase-producing Klebsiella isolates detected in both a hospital and associated aquatic environment in Sweden. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
90601.0000Related carbapenemase-producing Klebsiella isolates detected in both a hospital and associated aquatic environment in Sweden. Carbapenem antibiotics are one of the last-resort agents against multidrug-resistant (MDR) bacteria. The occurrence of carbapenemase-producing Enterobacteriaceae (CPE) in wastewater and aquatic environments is an indication of MDR bacteria in the community. This study evaluated CPE in aquatic environments and compared them to the local hospital isolates in Sweden. Phenotypic and genotypic analyses of antibiotic resistance of environmental and clinical CPE were performed. The relatedness of the isolates and possible clonal dissemination was evaluated using phylogenetic and phyloproteomic analysis. Klebsiella oxytoca carrying carbapenemase genes (bla(VIM-1), bla(IMP-29)) were isolated from wastewater and the recipient river, while K. oxytoca (bla(VIM-1)) and Klebsiella pneumoniae (bla(VIM-1), bla(OXA-48), bla(NDM-1), bla(KPC-3)) were isolated from patients at the local clinics or hospital. The K. oxytoca classified as sequence type 172 (ST172) isolated from the river was genotypically related to two clinical isolates recovered from patients. The similarity between environmental and clinical isolates suggests the dispersion of bla(VIM-1) producing K. oxytoca ST172 from hospital to aquatic environment and the likelihood of its presence in the community. This is the first report of CPE in aquatic environments in Sweden; therefore, surveillance of aquatic and hospital environments for CPE in other urban areas is important to determine the major transfer routes in order to formulate strategies to prevent the spread of MDR bacteria.201830171482
87810.9999Environmental Spread of New Delhi Metallo-β-Lactamase-1-Producing Multidrug-Resistant Bacteria in Dhaka, Bangladesh. Resistance to carbapenem antibiotics through the production of New Delhi metallo-β-lactamase-1 (NDM-1) constitutes an emerging challenge in the treatment of bacterial infections. To monitor the possible source of the spread of these organisms in Dhaka, Bangladesh, we conducted a comparative analysis of wastewater samples from hospital-adjacent areas (HAR) and from community areas (COM), as well as public tap water samples, for the occurrence and characteristics of NDM-1-producing bacteria. Of 72 HAR samples tested, 51 (71%) samples were positive for NDM-1-producing bacteria, as evidenced by phenotypic tests and the presence of the bla(NDM-1) gene, compared to 5 of 41 (12.1%) samples from COM samples (P < 0.001). All tap water samples were negative for NDM-1-producing bacteria. Klebsiella pneumoniae (44%) was the predominant bacterial species among bla(NDM-1)-positive isolates, followed by Escherichia coli (29%), Acinetobacter spp. (15%), and Enterobacter spp. (9%). These bacteria were also positive for one or more other antibiotic resistance genes, including bla(CTX-M-1) (80%), bla(CTX-M-15) (63%), bla(TEM) (76%), bla(SHV) (33%), bla(CMY-2) (16%), bla(OXA-48-like) (2%), bla(OXA-1) (53%), and bla(OXA-47-like) (60%) genes. Around 40% of the isolates contained a qnr gene, while 50% had 16S rRNA methylase genes. The majority of isolates hosted multiple plasmids, and plasmids of 30 to 50 MDa carrying bla(NDM-1) were self-transmissible. Our results highlight a number of issues related to the characteristics and source of spread of multidrug-resistant bacteria as a potential public health threat. In view of the existing practice of discharging untreated liquid waste into the environment, hospitals in Dhaka city contribute to the potential dissemination of NDM-1-producing bacteria into the community.IMPORTANCE Infections caused by carbapenemase-producing Enterobacteriaceae are extremely difficult to manage due to their marked resistance to a wide range of antibiotics. NDM-1 is the most recently described carbapenemase, and the bla(NDM-1) gene, which encodes NDM-1, is located on self-transmissible plasmids that also carry a considerable number of other antibiotic resistance genes. The present study shows a high prevalence of NDM-1-producing organisms in the wastewater samples from hospital-adjacent areas as a potential source for the spread of these organisms to community areas in Dhaka, Bangladesh. The study also examines the characteristics of the isolates and their potential to horizontally transmit the resistance determinants. The significance of our research is in identifying the mode of spread of multiple-antibiotic-resistant organisms, which will allow the development of containment measures, leading to broader impacts in reducing their spread to the community.201728526792
168520.9998Molecular epidemiology and mechanisms of carbapenem and colistin resistance in Klebsiella and other Enterobacterales from treated wastewater in Croatia. Among the most problematic bacteria with clinical relevance are the carbapenem-resistant Enterobacterales (CRE), as there are very limited options for their treatment. Treated wastewater can be a route for the release of these bacteria into the environment and the population. The aim of this study was to isolate CRE from treated wastewater from the Zagreb wastewater treatment plant and to determine their phenotypic and genomic characteristics. A total of 200 suspected CRE were isolated, 148 of which were confirmed as Enterobacterales by MALDI-TOF MS. The predominant species was Klebsiella spp. (n = 47), followed by Citrobacter spp. (n = 40) and Enterobacter cloacae complex (cplx.) (n = 35). All 148 isolates were carbapenemase producers with a multidrug-resistant phenotype. Using multi-locus sequence typing and whole-genome sequencing (WGS), 18 different sequence types were identified among these isolates, 14 of which were associated with human-associated clones. The virulence gene analysis of the sequenced Klebsiella isolates (n = 7) revealed their potential pathogenicity. PCR and WGS showed that the most frequent carbapenemase genes in K. pneumoniae were bla(OXA-48) and bla(NDM-1), which frequently occurred together, while bla(KPC-2) together with bla(NDM-1) was mainly detected in K. oxytoca, E. cloacae cplx. and Citrobacter spp. Colistin resistance was observed in 40% of Klebsiella and 57% of Enterobacter isolates. Underlying mechanisms identified by WGS include known and potentially novel intrinsic mechanisms (point mutations in the pmrA/B, phoP/Q, mgrB and crrB genes) and acquired mechanisms (mcr-4.3 gene). The mcr-4.3 gene was identified for the first time in K. pneumoniae and is probably located on the conjugative IncHI1B plasmid. In addition, WGS analysis of 13 isolates revealed various virulence genes and resistance genes to other clinically relevant antibiotics as well as different plasmids possibly associated with carbapenemase genes. Our study demonstrates the important role that treated municipal wastewater plays in harboring and spreading enterobacterial pathogens that are resistant to last-resort antibiotics.202438479059
90330.9998Carbapenemase and ESBL genes with class 1 integron among fermenting and nonfermenting bacteria isolated from water sources from India. The present study was aimed to detect the carbapenemase, extended-spectrum β-lactamase (ESBL), and intI1 gene of class 1 integron among fermenting (n = 61) and nonfermenting (n = 10) bacterial isolates recovered from water samples (n = 128). Isolates were identified by 16S rRNA sequencing. These isolates showed reduced-susceptibility to third-generation cephalosporins and carbapenems. The isolates varied in number and size of plasmids (2 kb to >20 kb). Plasmid DNA screening showed 5·6, 7, 11·2 and 26·7% prevalence of bla(KPC) , bla(NDM) , bla(SHV) and bla(TEM) genes respectively. Diverse bla(NDM) (bla(NDM-1) and bla(NDM-4) ) and bla(SHV) subtypes (bla(SHV-2) and bla(SHV-11) ) were recorded, unlike the single allelic bla(KPC) (bla(KPC-2) ) and bla(TEM) (bla(TEM-1) ) gene. Of the total 27 bla-gene-producing bacterial isolates, seven isolates co-harboured the carbapenemase genes (bla(NDM) or bla(KPC) or the both) along with the ESBL genes (bla(SHV) or bla(TEM) ). The intI1 gene of class 1 integron was detected among 12 (44·4%) of ESBL- and/or carbapenemase-harbouring isolates. Gene transferability was seen among four of the 10 Enterobacteriaceae donors. Carbapenemases and ESBLs with class 1 integron among aquatic environmental isolates raise the serious issue of the biosecurity and health of the ecosystem. SIGNIFICANCE AND IMPACT OF THE STUDY: Anthropologically affected and polluted environment harbours the resistance threats, where a diverse bacterial species maintain, develop and exchange genetic determinants that constitute a risk to human and ecological health. The antimicrobial resistance (AMR) in Enterobacteriaceae and non-Enterobacteriaceae bacteria caused the failure of the therapy of last resort (carbapenems) and thus lead to life-threatening infections affecting public health. Surveillance and monitoring of AMR could be important for epidemiological, diagnostic testing and control of pathogens. This is a point-prevalence study reporting the comparative occurrence and co-occurrence of carbapenemase and extended-spectrum β-lactamase genes among fermenting and nonfermenting bacteria isolated from the aquatic environment in India.202031587338
95540.9998Occurrence and characteristics of extended-spectrum β-lactamase- and carbapenemase- producing bacteria from hospital effluents in Singapore. One of the most important resistance mechanisms in Gram-negative bacteria today is the production of enzymes causing resistance to cephalosporin and carbapenem antibiotics. The spread of extended-spectrum β-lactamases (ESBL)- and carbapenemase- producing Gram-negative bacteria is an emerging global public health problem. The aim of the present study was to (i) assess the prevalence of carbapenem-resistant bacteria (CRB) and ESBL-producing strains in sewage effluents from two major hospitals in Singapore, (ii) characterize the isolated strains and (iii) identify some of the ESBL and carbapenemase genes responsible for the resistance. CHROMagar ESBL and KPC plates were used to rapidly screen for ESBL-producing bacteria and those expressing reduced susceptibility to carbapenems, respectively. The abundance of ESBL-producers and CRB in hospital wastewater ranged between 10(3) and 10(6)CFU/mL. Out of the 66 isolates picked from ESBL and KPC plates, 95%, 82%, 82% and 76% were resistant to ceftriaxone, ceftazidime (3rd generation cephalosporin family), ertapenem and meropenem (carbapenem family), respectively. Among the resistant isolates, the most predominant taxa identified were Pseudomonas spp. (28.2%), Klebsiella spp. (28.2%), Enterobacter spp. (18.3%) and Citrobacter spp. (11.3%). PCR and sequencing analysis showed that the predominant β-lactamase genes were bla(SHV) (41.1%) followed by bla(NDM-1) (35.6%), bla(CTX) (35.6%) and bla(KPC) (28.8%). The results of this study show a high prevalence of bacteria resistant to modern extended-spectrum cephalosporins and carbapenems and the presence of ESBL- and carbapenemase producers in hospital effluents. These findings support the need to improve management of hospital wastewater in order to minimize the spread of antimicrobial resistant microorganisms from this source.201829751417
90050.9998Presence of OXA-23-producing isolates of Acinetobacter baumannii in wastewater from hospitals in southern Brazil. The aim of the study was to evaluate the dissemination of multiresistant isolates of Acinetobacter baumannii carrying resistance genes, by samples of wastewater from hospitals in Porto Alegre, Rio Grande do Sul, Brazil. We obtained 303 bacterial isolates from the wastewater of three hospitals in Porto Alegre, Rio Grande do Sul. For each isolate, we determined the profile of susceptibility to antimicrobials and the presence of the genes bla(OXA-23), bla(OXA-24), bla(OXA-51), bla(OXA-58), bla(SPM-1), bla(IMP), and bla(VIM.) The bla(OXA-51) gene was found in 56% of the isolates, indicating the presence of A. baumannii in this environment. Of these, three multiresistant isolates were positive for the bla(OXA-23) gene, in wastewater from two of the hospitals. The results obtained in this study indicate that isolates of A. baumannii which are multiresistant and carry resistance genes such as bla(OXA-51) and bla(OXA-23) are being released into the environment in the wastewater from the hospitals analyzed. Multiresistant Acinetobacter junii, the newly emerging pathogen, were also found among the multiresistant isolates. Hospital wastewater may be crucial to the development and dispersal of multiresistant bacteria, making waterbodies reservoirs of bacterial resistance.201121254809
90560.9998Cefiderocol-resistant pathogens in German hospital wastewater: a reservoir for multidrug resistance. Cefiderocol-resistant bacteria pose a growing concern in both clinical and environmental settings. This study investigates cefiderocol-resistant bacteria in wastewater from six German tertiary care hospitals. A total of 36 samples were analysed using a culture-dependent approach involving cefiderocol pre-enrichment, yielding 97 cefiderocol-resistant isolates-primarily Enterobacter roggenkampii, Klebsiella oxytoca, Serratia marcescens, and Citrobacter farmeri. Most isolates exhibited high minimum inhibitory concentrations against cefiderocol and resistance to multiple antibiotics. Resistance rates were lower for meropenem-vaborbactam (10.3%) and imipenem-relebactam (33.0%), while all isolates remained susceptible to aztreonam-avibactam. Whole-genome sequencing of 79 isolates revealed a diverse resistome, with 78.5% (62/79) carrying carbapenemase genes. Some isolates harbored up to six distinct β-lactamase genes, including combinations of extended-spectrum β-lactamases (ESBLs), AmpC β-lactamases, and one or multiple carbapenemases-such as as bla(OXA-48) co-occurring with bla(NDM-1) or bla(VIM-1). In addition, biocide and heavy metal resistance genes were prevalent, highlighting bacterial adaptation to harsh environments. Plasmid profiling showed significant interspecies variation, with C. farmeri and K. oxytoca displaying the highest plasmid loads. Across all isolates, 38 unique plasmid incompatibility types were detected, 18 of which were species-specific. These findings highlight the multidrug-resistant nature of wastewater-derived pathogens and the importance of monitoring resistance dissemination in healthcare environments.202540866524
90470.9998High prevalence of contamination of sink drains with carbapenemase-producing Enterobacteriaceae in 4 intensive care units apart from any epidemic context. We report a high prevalence (28%) of sink drains contaminated with carbapenemase-producing Enterobacteriaceae (CPE) in 4 intensive care units with a history of CPE carriage in hospitalized patients within the previous 5 years, but apart from any current epidemic context. Carbapenemase genes, particularly bla(VIM) and bla(NDM), were identified by polymerase chain reaction in sink drains in which no CPE was detected, but very few data are available in the literature concerning their presence in sink drains.202031495643
90180.9998Emergence of plasmid-borne bla (oxa-181) gene in Ochrobactrum intermedium: first report from India. Wastewater has become a potential habitat for multi-drug-resistant bacteria. The present study aims to screen for the presence of carbapenem-resistant bacteria in sewage water samples collected from hospital and non-hospital sources. From a total of 19 sewage water samples collected, 100 carbapenem-resistant non-lactose-fermenting Gram-negative bacteria (CR-NF-GNB) were isolated using MacConkey agar cultured with 8 mg l(-1) of meropenem. On screening for beta-lactamase resistance genes (bla (NDM), bla (OXA-48-like), bla (IMP), bla (VIM) and bla (KPC)), one isolate, Ochrobactrum intermedium , was found to carry the plasmid-borne bla (OXA-48-like) gene. To the best of our knowledge, we provide the first report of the rare and emerging opportunistic pathogen Ochrobactrum intermedium encoding the OXA-181 gene in its plasmid.201932974517
100290.9998Genetic diversity and prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in aquatic environments receiving untreated hospital effluents. The spread of extended-spectrum beta-lactamase (ESBL)-producing bacteria in the environment has been recognized as a challenge to public health. The aim of the present study was to assess the occurrence of ESBL-producing Escherichia coli and Klebsiella pneumoniae from selected water bodies receiving hospital effluents in Kerala, India. Nearly 69.8% of Enterobacteriaceae isolates were multi-drug resistant by the Kirby-Bauer disc diffusion method. The double disc synergy test was used to detect the ESBL production and the genes responsible for imparting resistance were detected by PCR. Conjugation experiments confirmed the mechanism of plasmid-mediated transfer of resistance. The prevalence of ESBL production in E. coli and K. pneumoniae was 49.2 and 46.8%, respectively. Among the ESBL-encoding genes, bla(CTX-M) was the most prevalent group followed by bla(TEM), bla(OXA), bla(CMY,) and bla(SHV). The results suggest that healthcare settings are one of the key contributors to the spread of ESBL-producing bacteria, not only through cross-transmission and ingestion of antibiotics but also through the discharge of waste without a proper treatment, leading to harmful effects on the aquatic environment. The high prevalence of ESBL-producing Enterobacteriaceae with resistance genes in public water bodies even post-treatment poses a serious threat.202336705498
1037100.9998Genetic Background of β-Lactamases in Enterobacteriaceae Isolates from Environmental Samples. The prevalence of β-lactamase-producing Enterobacteriaceae has increased worldwide. Although antibiotic-resistant bacteria are usually associated with hospitals, there are a growing number of reports of resistant bacteria in other environments. Concern about resistant microorganisms outside the hospital setting highlights the need to investigate mechanisms of antibiotic resistance in isolates collected from the environment. The present study evaluated the resistance mechanism to β-lactam antibiotics in 40 isolates from hospital sewage and surface water from the Dilúvio Stream, Porto Alegre City, Southern Brazil. The multiplex PCR technique was used to detect several resistance genes of β-lactamases: extended-spectrum β-lactamases (ESBLs), carbapenemases, and β-lactamase AmpC. After genes, detection amplicons were sequenced to confirm their identification. The clonal relationship was established by DNA macrorestriction using the XbaI enzyme, followed by pulsed-field gel electrophoresis (PFGE). The results indicated that resistance genes were present in 85% of the isolates. The most prevalent genes encoded narrow-spectrum β-lactamase, such as TEM-1 and SHV-1 with 70% of the strains, followed by carbapenemase KPC and GES (45%), ESBL types SHV-5 and CTX-M-8 (27.5%), and AmpC (ACT-1/MIR-1) (2.5%). Twelve isolates contained only one resistance gene, 14 contained two, and eight isolates had three resistance genes. PFGE indicated a clonal relationship among K. pneumoniae isolates. It was not possible to establish a clonal relationship between Enterobacter sp. isolates. The results highlight the potential of these resistance genes to spread in the polluted environment and to present a health risk to communities. This report is the first description of these resistance genes present in environmental samples other than a hospital in the city of Porto Alegre/RS.201728378066
2760110.9998Extended-spectrum β-lactamase-producing bacteria and their resistance determinants in different wastewaters and rivers in Nepal. Wastewaters serve as significant reservoirs of antibiotic resistant bacteria. Despite the evidence of antimicrobial resistance in wastewaters and river water in Kathmandu, direct linkage between them is not discussed yet. This study investigated the prevalence of extended-spectrum β-lactamase (ESBL)-producing bacteria and associated resistance genes in wastewaters and river water. Out of 246 bacteria from wastewaters, 57.72% were ESBL producers and 77.64% of them were multidrug resistant (MDR). ESBL producing E. coli was dominant in municipal and hospital wastewaters (HWW) as well as in river water while K. pneumoniae was common in pharmaceutical wastewater. The bla(SHV) and bla(TEM) genes were prevalent and commonly co-occurred with aac(6')-Ib-cr in K. pneumoniae isolated pharmaceutical wastewater. bla(CTX-M) carrying E. coli from hospital co-harbored aac(6')-Ib-cr while that from municipal influent and river water co-harbored qnrS. Whole genome sequencing data revealed the presence of diverse ARGs in bacterial isolates against multiple antibiotics. In average, an E. coli and a K. pneumoniae isolate contained 55.75 ± 0.96 and 40.2 ± 5.36 ARGs, respectively. Multi-locus sequence typing showed the presence of globally high-risk clones with wider host range such as E. coli ST10, and K. pneumoniae ST15 and ST307 in HWW and river indicating frequent dissemination of antimicrobial resistance in wastewater of Kathmandu. Whole genome sequence data aligned with phenotypic antibiograms and resistance genes detected by PCR in selected isolates. The presence of significant plasmid replicons (IncF, IncY) and mobile genetic elements (IS903, IS26) indicate high frequency of spreading antibiotic resistance. These findings indicate burden and dissemination of antimicrobial resistance in the environment and highlight the need for effective strategies to mitigate the antibiotic resistance.202438795483
909120.9998First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Herein, we describe a case report of carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae isolates that were identified from the same patient at a Tertiary University Hospital Centre in Portugal. Antimicrobial susceptibility and the molecular characterization of resistance and virulence determinants were performed. PCR screening identified the presence of the resistance genes bla(KPC-3), bla(TEM-1) and bla(SHV-1) in both isolates. The KPC-3 K. pneumoniae isolate belonged to the ST-14 high risk clone and accumulated an uncommon resistance and virulence profile additional to a horizontal dissemination capacity. In conclusion, the molecular screening led to the first identification of the A. baumannii KPC-3 producer in Portugal with a full antimicrobial resistance profile including tigecycline and colistin.201830404152
919130.9998Molecular Characteristics of Carbapenem-Resistant Enterobacter cloacae in Ningxia Province, China. The emergence of carbapenem-resistant Enterobacteriaceae (CRE) has become a major public health concern worldwide and a new challenge in the treatment of infectious diseases. The molecular characteristics of Enterobacter cloacae in Ningxia China are unknown. In this study, we reported 10 carbapenem-resistant E. cloacae isolates from the General Hospital of Ningxia Medical University, the largest university hospital in Ningxia between January 2012 and December 2013. Bacteria isolates were identified by Vitek2 compact and the identity of non-duplicate E. cloacae isolates was further confirmed by PCR and sequencing. The drug susceptibility and phenotype identification of these isolates were analyzed by agar dilution method, modified Hodge test (MHT), and EDTA synergy test. Beta-lactamase (bla) genes bla(NDM-1) was found in 8 out of 10 isolates. Most isolates harbored multiple resistance genes including bla(ESBL), bla(AmpC), quinolones, aminoglycosides, and disinfectant resistance genes. Pulsed field gel electrophoresis (PFGE) showed that these E. cloacae isolates were grouped into 6 clusters based on a cutoff of 80% genetic similarity. In conjugative assay, 9 out of 10 isolates transferred carbapenem-resistant genes to Escherichia coli. Our study has revealed that NDM-1-producing isolates are the most prevalent carbapenem-resistant E. cloacae in Ningxia. These isolates also carry several other carbapenem-resistant genes and can transfer these genes to other bacteria through conjugation. These findings highlight an urgent need to monitor these isolates to prevent their further spread in this region.201728197140
918140.9998Carbapenem Resistance in Gram-Negative Bacteria: A Hospital-Based Study in Egypt. Background and Objectives: The global spread of carbapenem resistance and the resulting increase in mortality forced the World Health Organization (WHO) to claim carbapenem-resistant enterobacteriaceae (CRE) as global priority pathogens. Our study aimed to determine the prevalence of carbapenemase-encoding genes and major plasmid incompatibility groups among Gram-negative hospital-based isolates in Egypt. Material and Methods: This cross-sectional study was carried out at Mansoura University Hospitals over 12 months, from January to December 2019. All the isolates were tested for carbapenem resistance. The selected isolates were screened by conventional polymerase chain reaction (PCR) for the presence of carbapenemase genes, namely bla(KPC), bla(IMP), bla(VIM), and bla(NDM-1). PCR-based plasmid replicon typing was performed using the commercial PBRT kit. Results: Out of 150 isolates, only 30 (20.0%) demonstrated carbapenem resistance. Klebsiella pneumoniae was the most resistant of all isolated bacteria, and bla(NDM) was the predominant carbapenemases gene, while the most prevalent plasmid replicons were the F replicon combination (FIA, FIB, and FII) and A/C. Plasmids were detected only in Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, and Pseudomonas aeruginosa. Remarkably, we found a statistically significant association between carbapenemase genes and plasmid replicons, including bla(NDM), IncA/C, and IncX. Conclusions: Our study demonstrated an alarming rise of plasmid-mediated carbapenem-resistant bacteria in our locality. The coexistence of resistance genes and plasmids highlights the importance of a targeted antibiotic surveillance program and the development of alternative therapeutic options at the local and international levels. Based on our results, we suggest a large-scale study with more Enterobacteriaceae isolates, testing other carbapenemase-encoding genes, and comparing the replicon typing method with other plasmid detection methods. We also recommend a national action plan to control the irrational use of antibiotics in Egypt.202336837486
1680150.9998Emergence of carbapenem resistant gram-negative pathogens with high rate of colistin resistance in Egypt: A cross sectional study to assess resistance trends during the COVID-19 pandemic. The current study investigated the temporal phenotypic and genotypic antimicrobial resistance (AMR) trends among multi-drug resistant and carbapenem-resistant Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa recovered from Egyptian clinical settings between 2020 and 2021. Bacterial identification and antimicrobial sensitivity of 111 clinical isolates against a panel of antibiotics were performed. Molecular screening for antibiotic resistance determinants along with integrons and associated gene cassettes was implemented. An alarming rate (98.2%) of these isolates were found to be phenotypically resistant to carbapenem. Although 23.9 % K. pneumoniae isolates were phenotypically resistant to colistin, no mobile colistin resistance (mcr) genes were detected. Among carbapenem-resistant isolates, bla(NDM) and bla(OXA-48)-like were the most prevalent genetic determinants and were significantly overrepresented among K. pneumoniae. Furthermore, 84.78% of K. pneumoniae isolates co-produced these two carbapenemase genes. The plasmid-mediated quinolone resistance genes (qnrS and qnrB) were detected among the bacterial species and were significantly more prevalent among K. pneumoniae. Moreover, Class 1 integron was detected in 82% of the bacterial isolates. This study alarmingly reveals elevated resistance to last-resort antibiotics such as carbapenems as well as colistin which impose a considerable burden in the health care settings in Egypt. Our future work will implement high throughput sequencing-based antimicrobial resistance surveillance analysis for characterization of novel AMR determinants. This information could be applied as a step forward to establish a robust antibiotic stewardship program in Egyptian clinical settings, thereby addressing the rising challenges of AMR.202438494251
1003160.9998Molecular Surveillance and Dissemination of Klebsiella pneumoniae on Frequently Encountered Surfaces in South African Public Hospitals. Bacteria that cause life-threatening illnesses in humans are also capable of contaminating hospital surfaces, thus pose as a potential source of infection. This study aimed to investigate the prevalence, genetic diversity, virulence, and antibiotic resistance profile of Klebsiella pneumoniae in South Africa. In a nonoutbreak setting involving four public hospitals, 777 samples were collected in three different wards from 11 different sites. Phenotypic and genotypic methods were used for isolation and identification. The Kirby-Bauer disk-diffusion method was used to examine antibiotic resistance followed by the combination disk method to characterize extended-spectrum β-lactamases (ESBLs). Antibiotic resistance and virulence genes were screened using PCR and clonality was investigated using enterobacterial repetitive intergenic consensus (ERIC)-PCR. Seventy-five (10%) K. pneumoniae isolates were recovered. These isolates were obtained from all four hospitals and all three wards involved. However, only six frequently touched surfaces were contaminated. Thirty (40%) isolates were characterized as ESBLs showing high resistance to antibiotics and mostly harboring the bla(CTX-M) group one gene. Virulence genes were highly prevalent among all the isolates. ERIC-PCR showed that the isolates recovered from different sites within the same hospital were genetically similar. The study highlighted that K. pneumoniae can contaminate various surfaces and this persistence allows for the dissemination of bacteria within the hospital environment. The information from this study can assist hospitals to evaluate and improve current infection prevention and control interventions in place.202234170205
1004170.9998Hospital Wastes as Potential Sources for Multi-Drug-Resistant ESBL-Producing Bacteria at a Tertiary Hospital in Ethiopia. The hospital environment is increasingly becoming an important reservoir for multi-drug-resistant (MDR) Gram-negative bacteria, posing serious challenges to efforts to combat antimicrobial resistance (AMR). This study aimed to investigate the role of hospital waste as a potential source of MDR ESBL-producing bacteria. Samples were collected from multiple sources within a hospital and its vicinity, including surface swabs, houseflies, and sewage samples. The samples were subsequently processed in a microbiology laboratory to identify potential pathogenic bacteria and confirmed using MALDI-TOF MS. Bacteria were isolated from 87% of samples, with the predominant isolates being E. coli (30.5%), Klebsiella spp. (12.4%), Providencia spp. (12.4%), and Proteus spp. (11.9%). According to the double disc synergy test (DDST) analysis, nearly half (49.2%) of the bacteria were identified as ESBL producers. However, despite exhibiting complete resistance to beta-lactam antibiotics, 11.8% of them did not test positive for ESBL production. The characterization of E. coli revealed that 30.6% and 5.6% of them carried blaCTX-M group 1 type-15 and blaNDM genes, respectively. This finding emphasizes the importance of proper hospital sanitation and waste management practices to mitigate the spread of AMR within the healthcare setting and safeguard the health of both patients and the wider community.202438667050
1668180.9998Detection of OXA-181 Carbapenemase in Shigella flexneri. We report the detection of OXA-181 carbapenemase in an azithromycin-resistant Shigella spp. bacteria in an immunocompromised patient. The emergence of OXA-181 in Shigella spp. bacteria raises concerns about the global dissemination of carbapenem resistance in Enterobacterales and its implications for the treatment of infections caused by Shigella bacteria.202438666725
980190.9998Phenotypic and Molecular Characterization of Extended-Spectrum β-Lactamase, Plasmid-Mediated- AmpC, and Carbapenemase-Producing Enterobacteriaceae Isolated from Companion and Production Animals in Brazil. The crisis of bacterial resistance is an emerging One Health challenge, driven by the overuse of antimicrobials in medical and agricultural settings. This study aimed to investigate extended-spectrum β-lactamase (ESBL), Ampicillinase (AmpC), and carbapenemase production, and the presence of genes encoding these enzymes in Escherichia coli, Klebsiella spp., and Proteus spp., major contributors to infections and resistance isolates from animals. From 2016 to 2021, 130 multidrug-resistant (MDR) or extensively drug-resistant (XDR) isolates were recovered from the secretions, excretions, and organs of companion and production animals with active infections. Antibacterial sensitivity tests, along with phenotypic and genotypic detection of resistance enzymes, were performed. To the best of our knowledge, this is the first study in Brazil to estimate the prevalence of XDR Enterobacteriales isolated from companion and production animals, which accounted for 13.8% of the strains. Statistically significant differences (P < 0.05) in resistant bacteria between different classes and within the same class of antibacterial bacteria were found. The statistical probability between genotypic detection of ESBL (OR = 3.1) and phenotypic tests for AmpC (OR = 2.3) was also established. Approximately 32.3%, 17.6%, and 16.8% of the strains had positive phenotypic tests for ESBL, AmpC, and carbapenemases, respectively. Genetic analysis revealed the presence of bla(CTX-M) (60.0%), bla(AmpC) (9.18%), bla(KPC-2) (0.76%), and bla(NDM) (1.52%). AmpC genes were identified in 8.46% of the samples, with bla(CMY) being the most frequent (6.92%), followed by bla(DHA) (0.77%), and bla(FOX) (0.77%). The sequenced amplicons were deposited in NCBI. This study reveals critical data on Enterobacteriaceae with antibacterial resistance genes isolated from animals and may pose a significant threat to One health.202539903315