# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9069 | 0 | 1.0000 | Pdif-mediated antibiotic resistance genes transfer in bacteria identified by pdifFinder. Modules consisting of antibiotic resistance genes (ARGs) flanked by inverted repeat Xer-specific recombination sites were thought to be mobile genetic elements that promote horizontal transmission. Less frequently, the presence of mobile modules in plasmids, which facilitate a pdif-mediated ARGs transfer, has been reported. Here, numerous ARGs and toxin-antitoxin genes have been found in pdif site pairs. However, the mechanisms underlying this apparent genetic mobility is currently not understood, and the studies relating to pdif-mediated ARGs transfer onto most bacterial genera are lacking. We developed the web server pdifFinder based on an algorithm called PdifSM that allows the prediction of diverse pdif-ARGs modules in bacterial genomes. Using test set consisting of almost 32 thousand plasmids from 717 species, PdifSM identified 481 plasmids from various bacteria containing pdif sites with ARGs. We found 28-bp-long elements from different genera with clear base preferences. The data we obtained indicate that XerCD-dif site-specific recombination mechanism may have evolutionary adapted to facilitate the pdif-mediated ARGs transfer. Through multiple sequence alignment and evolutionary analyses of duplicated pdif-ARGs modules, we discovered that pdif sites allow an interspecies transfer of ARGs but also across different genera. Mutations in pdif sites generate diverse arrays of modules which mediate multidrug-resistance, as these contain variable numbers of diverse ARGs, insertion sequences and other functional genes. The identification of pdif-ARGs modules and studies focused on the mechanism of ARGs co-transfer will help us to understand and possibly allow controlling the spread of MDR bacteria in clinical settings. The pdifFinder code, standalone software package and description with tutorials are available at https://github.com/mjshao06/pdifFinder. | 2023 | 36470841 |
| 9880 | 1 | 0.9996 | Plasmid Classification in an Era of Whole-Genome Sequencing: Application in Studies of Antibiotic Resistance Epidemiology. Plasmids are extra-chromosomal genetic elements ubiquitous in bacteria, and commonly transmissible between host cells. Their genomes include variable repertoires of 'accessory genes,' such as antibiotic resistance genes, as well as 'backbone' loci which are largely conserved within plasmid families, and often involved in key plasmid-specific functions (e.g., replication, stable inheritance, mobility). Classifying plasmids into different types according to their phylogenetic relatedness provides insight into the epidemiology of plasmid-mediated antibiotic resistance. Current typing schemes exploit backbone loci associated with replication (replicon typing), or plasmid mobility (MOB typing). Conventional PCR-based methods for plasmid typing remain widely used. With the emergence of whole-genome sequencing (WGS), large datasets can be analyzed using in silico plasmid typing methods. However, short reads from popular high-throughput sequencers can be challenging to assemble, so complete plasmid sequences may not be accurately reconstructed. Therefore, localizing resistance genes to specific plasmids may be difficult, limiting epidemiological insight. Long-read sequencing will become increasingly popular as costs decline, especially when resolving accurate plasmid structures is the primary goal. This review discusses the application of plasmid classification in WGS-based studies of antibiotic resistance epidemiology; novel in silico plasmid analysis tools are highlighted. Due to the diverse and plastic nature of plasmid genomes, current typing schemes do not classify all plasmids, and identifying conserved, phylogenetically concordant genes for subtyping and phylogenetics is challenging. Analyzing plasmids as nodes in a network that represents gene-sharing relationships between plasmids provides a complementary way to assess plasmid diversity, and allows inferences about horizontal gene transfer to be made. | 2017 | 28232822 |
| 9879 | 2 | 0.9995 | IntegronFinder 2.0: Identification and Analysis of Integrons across Bacteria, with a Focus on Antibiotic Resistance in Klebsiella. Integrons are flexible gene-exchanging platforms that contain multiple cassettes encoding accessory genes whose order is shuffled by a specific integrase. Integrons embedded within mobile genetic elements often contain multiple antibiotic resistance genes that they spread among nosocomial pathogens and contribute to the current antibiotic resistance crisis. However, most integrons are presumably sedentary and encode a much broader diversity of functions. IntegronFinder is a widely used software to identify novel integrons in bacterial genomes, but has aged and lacks some useful functionalities to handle very large datasets of draft genomes or metagenomes. Here, we present IntegronFinder version 2. We have updated the code, improved its efficiency and usability, adapted the output to incomplete genome data, and added a few novel functions. We describe these changes and illustrate the relevance of the program by analyzing the distribution of integrons across more than 20,000 fully sequenced genomes. We also take full advantage of its novel capabilities to analyze close to 4000 Klebsiella pneumoniae genomes for the presence of integrons and antibiotic resistance genes within them. Our data show that K. pneumoniae has a large diversity of integrons and the largest mobile integron in our database of plasmids. The pangenome of these integrons contains a total of 165 different gene families with most of the largest families being related with resistance to numerous types of antibiotics. IntegronFinder is a free and open-source software available on multiple public platforms. | 2022 | 35456751 |
| 9878 | 3 | 0.9995 | Two novel trimethoprim resistance genes, dfra50 and dfra51, identified in phage-plasmids. Phage-plasmids carry a significant burden of clinically relevant antibiotic resistance genes (ARGs). Intriguingly, the majority of these ARGs are found within plasmids with phage features, with a single exception residing in a phage genome with plasmid features. Therefore, we speculate that phage genomes with plasmid features, whose sequences are highly homologous to bacterial plasmids, may carry novel ARGs. We subsequently identified 46 such phage genomes by employing Hidden Markov models (HMMs) based on plasmid-specific protein profiles andbasic local alignment search tool (BLASTn) searches against the National Center for Biotechnology Information (NCBI) RefSeq Plasmid Database. Among them, six phages harbored seven ARGs identified through a lenient-threshold search strategy, of which only two had been previously reported. The remaining five ARGs were categorized as novel ARGs since their encoded proteins differed from known ARGs. Notably, half of the phages carried trimethoprim-resistant dfrA-like genes. Functional studies characterized these genes and demonstrated that the expression of two of these dfrA genes (dfrA50 and dfrA51) can confer resistance to trimethoprim in Escherichia coli. Through genome analysis, we found that these phages with plasmid features likely contributed to the natural dissemination of these dfrA genes, as evidenced by their widespread presence in plasmids across various pathogenic bacteria. These findings underscore the importance of identifying and monitoring ARGs encoded by phage genomes with plasmid features that also function as plasmids in bacteria, aiming to proactively address the antibiotic resistance challenges posed by these phage-mediated dissemination events. | 2025 | 40503927 |
| 9071 | 4 | 0.9994 | RAC: Repository of Antibiotic resistance Cassettes. Antibiotic resistance in bacteria is often due to acquisition of resistance genes associated with different mobile genetic elements. In Gram-negative bacteria, many resistance genes are found as part of small mobile genetic elements called gene cassettes, generally found integrated into larger elements called integrons. Integrons carrying antibiotic resistance gene cassettes are often associated with mobile elements and here are designated 'mobile resistance integrons' (MRIs). More than one cassette can be inserted in the same integron to create arrays that contribute to the spread of multi-resistance. In many sequences in databases such as GenBank, only the genes within cassettes, rather than whole cassettes, are annotated and the same gene/cassette may be given different names in different entries, hampering analysis. We have developed the Repository of Antibiotic resistance Cassettes (RAC) website to provide an archive of gene cassettes that includes alternative gene names from multiple nomenclature systems and allows the community to contribute new cassettes. RAC also offers an additional function that allows users to submit sequences containing cassettes or arrays for annotation using the automatic annotation system Attacca. Attacca recognizes features (gene cassettes, integron regions) and identifies cassette arrays as patterns of features and can also distinguish minor cassette variants that may encode different resistance phenotypes (aacA4 cassettes and bla cassettes-encoding β-lactamases). Gaps in annotations are manually reviewed and those found to correspond to novel cassettes are assigned unique names. While there are other websites dedicated to integrons or antibiotic resistance genes, none includes a complete list of antibiotic resistance gene cassettes in MRI or offers consistent annotation and appropriate naming of all of these cassettes in submitted sequences. RAC thus provides a unique resource for researchers, which should reduce confusion and improve the quality of annotations of gene cassettes in integrons associated with antibiotic resistance. DATABASE URL: http://www2.chi.unsw.edu.au/rac. | 2011 | 22140215 |
| 9848 | 5 | 0.9994 | Cargo Genes of Tn7-Like Transposons Comprise an Enormous Diversity of Defense Systems, Mobile Genetic Elements, and Antibiotic Resistance Genes. Transposition is a major mechanism of horizontal gene mobility in prokaryotes. However, exploration of the genes mobilized by transposons (cargo) is hampered by the difficulty in delineating integrated transposons from their surrounding genetic context. Here, we present a computational approach that allowed us to identify the boundaries of 6,549 Tn7-like transposons. We found that 96% of these transposons carry at least one cargo gene. Delineation of distinct communities in a gene-sharing network demonstrates how transposons function as a conduit of genes between phylogenetically distant hosts. Comparative analysis of the cargo genes reveals significant enrichment of mobile genetic elements (MGEs) nested within Tn7-like transposons, such as insertion sequences and toxin-antitoxin modules, and of genes involved in recombination, anti-MGE defense, and antibiotic resistance. More unexpectedly, cargo also includes genes encoding central carbon metabolism enzymes. Twenty-two Tn7-like transposons carry both an anti-MGE defense system and antibiotic resistance genes, illustrating how bacteria can overcome these combined pressures upon acquisition of a single transposon. This work substantially expands the distribution of Tn7-like transposons, defines their evolutionary relationships, and provides a large-scale functional classification of prokaryotic genes mobilized by transposition. IMPORTANCE Transposons are major vehicles of horizontal gene transfer that, in addition to genes directly involved in transposition, carry cargo genes. However, characterization of these genes is hampered by the difficulty of identification of transposon boundaries. We developed a computational approach for detecting transposon ends and applied it to perform a comprehensive census of the cargo genes of Tn7-like transposons, a large class of bacterial mobile genetic elements (MGE), many of which employ a unique, CRISPR-mediated mechanism of site-specific transposition. The cargo genes encompass a striking diversity of MGE, defense, and antibiotic resistance systems. Unexpectedly, we also identified cargo genes encoding metabolic enzymes. Thus, Tn7-like transposons mobilize a vast repertoire of genes that can have multiple effects on the host bacteria. | 2021 | 34872347 |
| 9889 | 6 | 0.9994 | Evolution and dissemination of L and M plasmid lineages carrying antibiotic resistance genes in diverse Gram-negative bacteria. Conjugative, broad host-range plasmids of the L/M complex have been associated with antibiotic resistance since the 1970s. They are found in Gram-negative bacterial genera that cause human infections and persist in hospital environments. It is crucial that these plasmids are typed accurately so that their clinical and global dissemination can be traced in epidemiological studies. The L/M complex has previously been divided into L, M1 and M2 subtypes. However, those types do not encompass all diversity seen in the group. Here, we have examined 148 complete L/M plasmid sequences in order to understand the diversity of the complex and trace the evolution of distinct lineages. The backbone sequence of each plasmid was determined by removing translocatable genetic elements and reversing their effects in silico. The sequence identities of replication regions and complete backbones were then considered for typing. This supported the distinction of L and M plasmids and revealed that there are five L and eight M types, where each type is comprised of further sub-lineages that are distinguished by variation in their backbone and translocatable element content. Regions containing antibiotic resistance genes in L and M sub-lineages have often formed by initial rare insertion events, followed by insertion of other translocatable elements within the inceptive element. As such, islands evolve in situ to contain genes conferring resistance to multiple antibiotics. In some cases, different plasmid sub-lineages have acquired the same or related resistance genes independently. This highlights the importance of these plasmids in acting as vehicles for the dissemination of emerging resistance genes. Materials are provided here for typing plasmids of the L/M complex from complete sequences or draft genomes. This should enable rapid identification of novel types and facilitate tracking the evolution of existing lineages. | 2021 | 32781088 |
| 3773 | 7 | 0.9994 | Understanding the rapid spread of antimicrobial resistance genes mediated by IS26. Insertion sequences (ISs) promote the transmission of antimicrobial resistance genes (ARGs) across bacterial populations. However, their contributions and dynamics during the transmission of resistance remain unclear. In this study, we selected IS26 as a representative transposable element to decipher the relationship between ISs and ARGs and to investigate their transfer features and transmission trends. We retrieved 2656 translocatable IS 26 -bounded units with ARGs (tIS26-bUs-ARGs) in complete bacterial genomes from the NCBI RefSeq database. In total, 124 ARGs spanning 12 classes of antibiotics were detected, and the average contribution rate of IS26 to these genes was 41.2%. We found that IS 26 -bounded units (IS26-bUs) mediated extensive ARG dissemination within the bacteria of the Gammaproteobacteria class, showing strong transfer potential between strains, species, and even phyla. The IS26-bUs expanded in bacterial populations over time, and their temporal expansion trend was significantly correlated with antibiotic usage. This wide dissemination could be due to the nonspecific target site preference of IS26. Finally, we experimentally confirmed that the introduction of a single copy of IS26 could lead to the formation of a composite transposon mediating the transmission of "passenger" genes. These observations extend our knowledge of the IS26 and provide new insights into the mediating role of ISs in the dissemination of antibiotic resistance. | 2024 | 38827508 |
| 9867 | 8 | 0.9993 | Mosaic plasmids are abundant and unevenly distributed across prokaryotic taxa. Mosaic plasmids, plasmids composed of genetic elements from distinct sources, are associated with the spread of antibiotic resistance genes. Transposons are considered the primary mechanism for mosaic plasmid formation, though other mechanisms have been observed in specific instances. The frequency with which mosaic plasmids have been described suggests they may play an important role in plasmid population dynamics. Our survey of the confirmed plasmid sequences available from complete and draft genomes in the RefSeq database shows that 46% of them fit a strict definition of mosaic. Mosaic plasmids are also not evenly distributed over the taxa represented in the database. Plasmids from some genera, including Piscirickettsia and Yersinia, are almost all mosaic, while plasmids from other genera, including Borrelia, are rarely mosaic. While some mosaic plasmids share identical regions with hundreds of others, the median mosaic plasmid only shares with 8 other plasmids. When considering only plasmids from finished genomes (51.6% of the total), mosaic plasmids have significantly higher proportions of transposase and antibiotic resistance genes. Conversely, only 56.6% of mosaic fragments (DNA fragments shared between mosaic plasmids) contain a recognizable transposase gene, and only 1.2% of mosaic fragments are flanked by inverted repeats. Mosaic fragments associated with the IS26 transposase gene are 3.8-fold more abundant than any other sequence shared between mosaic plasmids in the database, though this is at least partly due to overrepresentation of Enterobacteriaceae plasmids. Mosaic plasmids are a complicated trait of some plasmid populations, only partly explained by transposition. Though antibiotic resistance genes led to the identification of many mosaic plasmids, mosaic plasmids are a broad phenomenon encompassing many more traits than just antibiotic resistance. Further research will be required to determine the influence of ecology, host repair mechanisms, conjugation, and plasmid host range on the formation and influence of mosaic plasmids. AUTHOR SUMMARY: Plasmids are extrachromosomal genetic entities that are found in many prokaryotes. They serve as flexible storage for genes, and individual cells can make substantial changes to their characteristics by acquiring, losing, or modifying a plasmid. In some pathogenic bacteria, such as Escherichia coli, antibiotic resistance genes are known to spread primarily on plasmids. By analyzing a database of 8592 plasmid sequences we determined that many of these plasmids have exchanged genes with each other, becoming mosaics of genes from different sources. We next separated these plasmids into groups based on the organism they were isolated from and found that different groups had different fractions of mosaic plasmids. This result was unexpected and suggests that the mechanisms and selective pressures causing mosaic plasmids do not occur evenly over all species. It also suggests that plasmids may provide different levels of potential variation to different species. This work uncovers a previously unrecognized pattern in plasmids across prokaryotes, that could lead to new insights into the evolutionary role that plasmids play. | 2019 | 30797764 |
| 9888 | 9 | 0.9993 | Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria. The large, broad host range IncC plasmids are important contributors to the spread of key antibiotic resistance genes and over 200 complete sequences of IncC plasmids have been reported. To track the spread of these plasmids accurate typing to identify the closest relatives is needed. However, typing can be complicated by the high variability in resistance gene content and various typing methods that rely on features of the conserved backbone have been developed. Plasmids can be broadly typed into two groups, type 1 and type 2, using four features that differentiate the otherwise closely related backbones. These types are found in many different countries in bacteria from humans and animals. However, hybrids of type 1 and type 2 are also occasionally seen, and two further types, each represented by a single plasmid, were distinguished. Generally, the antibiotic resistance genes are located within a small number of resistance islands, only one of which, ARI-B, is found in both type 1 and type 2. The introduction of each resistance island generates a new lineage and, though they are continuously evolving via the loss of resistance genes or introduction of new ones, the island positions serve as valuable lineage-specific markers. A current type 2 lineage of plasmids is derived from an early type 2 plasmid but the sequences of early type 1 plasmids include features not seen in more recent type 1 plasmids, indicating a shared ancestor rather than a direct lineal relationship. Some features, including ones essential for maintenance or for conjugation, have been examined experimentally. | 2018 | 30081066 |
| 4661 | 10 | 0.9993 | Methods for the targeted sequencing and analysis of integrons and their gene cassettes from complex microbial communities. Integrons are microbial genetic elements that can integrate mobile gene cassettes. They are mostly known for spreading antibiotic resistance cassettes among human pathogens. However, beyond clinical settings, gene cassettes encode an extraordinarily diverse range of functions important for bacterial adaptation. The recovery and sequencing of cassettes has promising applications, including: surveillance of clinically important genes, particularly antibiotic resistance determinants; investigating the functional diversity of integron-carrying bacteria; and novel enzyme discovery. Although gene cassettes can be directly recovered using PCR, there are no standardised methods for their amplification and, importantly, for validating sequences as genuine integron gene cassettes. Here, we present reproducible methods for the amplification, sequence processing, and validation of gene cassette amplicons from complex communities. We describe two different PCR assays that either amplify cassettes together with integron integrases, or gene cassettes together within cassette arrays. We compare the performance of Nanopore and Illumina sequencing, and present bioinformatic pipelines that filter sequences to ensure that they represent amplicons from genuine integrons. Using a diverse set of environmental DNAs, we show that our approach can consistently recover thousands of unique cassettes per sample and up to hundreds of different integron integrases. Recovered cassettes confer a wide range of functions, including antibiotic resistance, with as many as 300 resistance cassettes found in a single sample. In particular, we show that class one integrons are collecting and concentrating resistance genes out of the broader diversity of cassette functions. The methods described here can be applied to any environmental or clinical microbiome sample. | 2022 | 35298369 |
| 9886 | 11 | 0.9993 | Development of an antimicrobial resistance plasmid transfer gene database for enteric bacteria. Introduction: Type IV secretion systems (T4SSs) are integral parts of the conjugation process in enteric bacteria. These secretion systems are encoded within the transfer (tra) regions of plasmids, including those that harbor antimicrobial resistance (AMR) genes. The conjugal transfer of resistance plasmids can lead to the dissemination of AMR among bacterial populations. Methods: To facilitate the analyses of the conjugation-associated genes, transfer related genes associated with key groups of AMR plasmids were identified, extracted from GenBank and used to generate a plasmid transfer gene dataset that is part of the Virulence and Plasmid Transfer Factor Database at FDA, serving as the foundation for computational tools for the comparison of the conjugal transfer genes. To assess the genetic feature of the transfer gene database, genes/proteins of the same name (e.g., traI/TraI) or predicted function (VirD4 ATPase homologs) were compared across the different plasmid types to assess sequence diversity. Two analyses tools, the Plasmid Transfer Factor Profile Assessment and Plasmid Transfer Factor Comparison tools, were developed to evaluate the transfer genes located on plasmids and to facilitate the comparison of plasmids from multiple sequence files. To assess the database and associated tools, plasmid, and whole genome sequencing (WGS) data were extracted from GenBank and previous WGS experiments in our lab and assessed using the analysis tools. Results: Overall, the plasmid transfer database and associated tools proved to be very useful for evaluating the different plasmid types, their association with T4SSs, and increased our understanding how conjugative plasmids contribute to the dissemination of AMR genes. | 2023 | 38033626 |
| 9070 | 12 | 0.9993 | Automated annotation of mobile antibiotic resistance in Gram-negative bacteria: the Multiple Antibiotic Resistance Annotator (MARA) and database. BACKGROUND: Multiresistance in Gram-negative bacteria is often due to acquisition of several different antibiotic resistance genes, each associated with a different mobile genetic element, that tend to cluster together in complex conglomerations. Accurate, consistent annotation of resistance genes, the boundaries and fragments of mobile elements, and signatures of insertion, such as DR, facilitates comparative analysis of complex multiresistance regions and plasmids to better understand their evolution and how resistance genes spread. OBJECTIVES: To extend the Repository of Antibiotic resistance Cassettes (RAC) web site, which includes a database of 'features', and the Attacca automatic DNA annotation system, to encompass additional resistance genes and all types of associated mobile elements. METHODS: Antibiotic resistance genes and mobile elements were added to RAC, from existing registries where possible. Attacca grammars were extended to accommodate the expanded database, to allow overlapping features to be annotated and to identify and annotate features such as composite transposons and DR. RESULTS: The Multiple Antibiotic Resistance Annotator (MARA) database includes antibiotic resistance genes and selected mobile elements from Gram-negative bacteria, distinguishing important variants. Sequences can be submitted to the MARA web site for annotation. A list of positions and orientations of annotated features, indicating those that are truncated, DR and potential composite transposons is provided for each sequence, as well as a diagram showing annotated features approximately to scale. CONCLUSIONS: The MARA web site (http://mara.spokade.com) provides a comprehensive database for mobile antibiotic resistance in Gram-negative bacteria and accurately annotates resistance genes and associated mobile elements in submitted sequences to facilitate comparative analysis. | 2018 | 29373760 |
| 9960 | 13 | 0.9993 | Integrons, transposons and IS elements promote diversification of multidrug resistance plasmids and adaptation of their hosts to antibiotic pollutants from pharmaceutical companies. Plasmids are important vehicles for the dissemination of antibiotic resistance genes (ARGs) among bacteria by conjugation. Here, we determined the complete nucleotide sequences of nine different plasmids previously obtained by exogenous plasmid isolation from river and creek sediments and wastewater from a pharmaceutical company. We identified six IncP/P-1ε plasmids and single members of IncL, IncN and IncFII-like plasmids. Genetic structures of the accessory regions of the IncP/P-1ε plasmids obtained implied that multiple insertions and deletions had occurred, mediated by different transposons and Class 1 integrons with various ARGs. Our study provides compelling evidence that Class 1 integrons, Tn402-like transposons, Tn3-like transposons and/or IS26 played important roles in the acquisition of ARGs across all investigated plasmids. Our plasmid sequencing data provide new insights into how these mobile genetic elements could mediate the acquisition and spread of ARGs in environmental bacteria. | 2023 | 37655671 |
| 9847 | 14 | 0.9993 | Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. Integrating and conjugative elements (ICEs) are one of the three principal types of self-transmissible mobile genetic elements in bacteria. ICEs, like plasmids, transfer via conjugation; but unlike plasmids and similar to many phages, these elements integrate into and replicate along with the host chromosome. Members of the SXT/R391 family of ICEs have been isolated from several species of gram-negative bacteria, including Vibrio cholerae, the cause of cholera, where they have been important vectors for disseminating genes conferring resistance to antibiotics. Here we developed a plasmid-based system to capture and isolate SXT/R391 ICEs for sequencing. Comparative analyses of the genomes of 13 SXT/R391 ICEs derived from diverse hosts and locations revealed that they contain 52 perfectly syntenic and nearly identical core genes that serve as a scaffold capable of mobilizing an array of variable DNA. Furthermore, selection pressure to maintain ICE mobility appears to have restricted insertions of variable DNA into intergenic sites that do not interrupt core functions. The variable genes confer diverse element-specific phenotypes, such as resistance to antibiotics. Functional analysis of a set of deletion mutants revealed that less than half of the conserved core genes are required for ICE mobility; the functions of most of the dispensable core genes are unknown. Several lines of evidence suggest that there has been extensive recombination between SXT/R391 ICEs, resulting in re-assortment of their respective variable gene content. Furthermore, our analyses suggest that there may be a network of phylogenetic relationships among sequences found in all types of mobile genetic elements. | 2009 | 20041216 |
| 3782 | 15 | 0.9993 | CRISPR spacers acquired from plasmids primarily target backbone genes, making them valuable for predicting potential hosts and host range. In recent years, there has been a surge in metagenomic studies focused on identifying plasmids in environmental samples. Although these studies have unearthed numerous novel plasmids, enriching our understanding of their environmental roles, a significant gap remains: the scarcity of information regarding the bacterial hosts of these newly discovered plasmids. Furthermore, even when plasmids are identified within bacterial isolates, the reported host is typically limited to the original isolate, with no insights into alternative hosts or the plasmid's potential host range. Given that plasmids depend on hosts for their existence, investigating plasmids without the knowledge of potential hosts offers only a partial perspective. This study introduces a method for identifying potential hosts and host ranges for plasmids through alignment with CRISPR spacers. To validate the method, we compared the PLSDB plasmids database with the CRISPR spacers database, yielding host predictions for 46% of the plasmids. When compared with reported hosts, our predictions achieved 84% concordance at the family level and 99% concordance at the phylum level. Moreover, the method frequently identified multiple potential hosts for a plasmid, thereby enabling predictions of alternative hosts and the host range. Notably, we found that CRISPR spacers predominantly target plasmid backbone genes while sparing functional genes, such as those linked to antibiotic resistance, aligning with our hypothesis that CRISPR spacers are acquired from plasmid-specific regions rather than insertion elements from diverse sources. Finally, we illustrate the network of connections among different bacterial taxa through plasmids, revealing potential pathways for horizontal gene transfer.IMPORTANCEPlasmids are notorious for their role in distributing antibiotic resistance genes, but they may also carry and distribute other environmentally important genes. Since plasmids are not free-living entities and rely on host bacteria for survival and propagation, predicting their hosts is essential. This study presents a method for predicting potential hosts for plasmids and offers insights into the potential paths for spreading functional genes between different bacteria. Understanding plasmid-host relationships is crucial for comprehending the ecological and clinical impact of plasmids and implications for various biological processes. | 2024 | 39508585 |
| 3774 | 16 | 0.9993 | Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Antibiotic resistance spreads among bacteria through horizontal transfer of antibiotic resistance genes (ARGs). Here, we set out to determine predictive features of ARG transfer among bacterial clades. We use a statistical framework to identify putative horizontally transferred ARGs and the groups of bacteria that disseminate them. We identify 152 gene exchange networks containing 22,963 bacterial genomes. Analysis of ARG-surrounding sequences identify genes encoding putative mobilisation elements such as transposases and integrases that may be involved in gene transfer between genomes. Certain ARGs appear to be frequently mobilised by different mobile genetic elements. We characterise the phylogenetic reach of these mobilisation elements to predict the potential future dissemination of known ARGs. Using a separate database with 472,798 genomes from Streptococcaceae, Staphylococcaceae and Enterobacteriaceae, we confirm 34 of 94 predicted mobilisations. We explore transfer barriers beyond mobilisation and show experimentally that physiological constraints of the host can explain why specific genes are largely confined to Gram-negative bacteria although their mobile elements support dissemination to Gram-positive bacteria. Our approach may potentially enable better risk assessment of future resistance gene dissemination. | 2021 | 33893312 |
| 4162 | 17 | 0.9993 | Gene sharing among plasmids and chromosomes reveals barriers for antibiotic resistance gene transfer. The emergence of antibiotic resistant bacteria is a major threat to modern medicine. Rapid adaptation to antibiotics is often mediated by the acquisition of plasmids carrying antibiotic resistance (ABR) genes. Nonetheless, the determinants of plasmid-mediated ABR gene transfer remain debated. Here, we show that the propensity of ABR gene transfer via plasmids is higher for accessory chromosomal ABR genes in comparison with core chromosomal ABR genes, regardless of the resistance mechanism. Analysing the pattern of ABR gene occurrence in the genomes of 2635 Enterobacteriaceae isolates, we find that 33% of the 416 ABR genes are shared between chromosomes and plasmids. Phylogenetic reconstruction of ABR genes occurring on both plasmids and chromosomes supports their evolution by lateral gene transfer. Furthermore, accessory ABR genes (encoded in less than 10% of the chromosomes) occur more abundantly in plasmids in comparison with core ABR genes (encoded in greater than or equal to 90% of the chromosomes). The pattern of ABR gene occurrence in plasmids and chromosomes is similar to that in the total Escherichia genome. Our results thus indicate that the previously recognized barriers for gene acquisition by lateral gene transfer apply also to ABR genes. We propose that the functional complexity of the underlying ABR mechanism is an important determinant of ABR gene transferability. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'. | 2022 | 34839702 |
| 4163 | 18 | 0.9993 | The integron/gene cassette system: an active player in bacterial adaptation. The integron includes a site-specific recombination system capable of integrating and expressing genes contained in structures called mobile gene cassettes. Integrons were originally identified on mobile elements from pathogenic bacteria and were found to be a major reservoir of antibiotic-resistance genes. Integrons are now known to be ancient structures that are phylogenetically diverse and, to date, have been found in approximately 9% of sequenced bacterial genomes. Overall, gene diversity in cassettes is extraordinarily high, suggesting that the integron/gene cassette system has a broad role in adaptation rather than being confined to simply conferring resistance to antibiotics. In this chapter, we provide a review of the integron/gene cassette system highlighting characteristics associated with this system, diversity of elements contained within it, and their importance in driving bacterial evolution and consequently adaptation. Ideas on the evolution of gene cassettes and gene cassette arrays are discussed. | 2009 | 19271181 |
| 9894 | 19 | 0.9993 | Mechanisms of Evolution in High-Consequence Drug Resistance Plasmids. The dissemination of resistance among bacteria has been facilitated by the fact that resistance genes are usually located on a diverse and evolving set of transmissible plasmids. However, the mechanisms generating diversity and enabling adaptation within highly successful resistance plasmids have remained obscure, despite their profound clinical significance. To understand these mechanisms, we have performed a detailed analysis of the mobilome (the entire mobile genetic element content) of a set of previously sequenced carbapenemase-producing Enterobacteriaceae (CPE) from the National Institutes of Health Clinical Center. This analysis revealed that plasmid reorganizations occurring in the natural context of colonization of human hosts were overwhelmingly driven by genetic rearrangements carried out by replicative transposons working in concert with the process of homologous recombination. A more complete understanding of the molecular mechanisms and evolutionary forces driving rearrangements in resistance plasmids may lead to fundamentally new strategies to address the problem of antibiotic resistance. IMPORTANCE: The spread of antibiotic resistance among Gram-negative bacteria is a serious public health threat, as it can critically limit the types of drugs that can be used to treat infected patients. In particular, carbapenem-resistant members of the Enterobacteriaceae family are responsible for a significant and growing burden of morbidity and mortality. Here, we report on the mechanisms underlying the evolution of several plasmids carried by previously sequenced clinical Enterobacteriaceae isolates from the National Institutes of Health Clinical Center (NIH CC). Our ability to track genetic rearrangements that occurred within resistance plasmids was dependent on accurate annotation of the mobile genetic elements within the plasmids, which was greatly aided by access to long-read DNA sequencing data and knowledge of their mechanisms. Mobile genetic elements such as transposons and integrons have been strongly associated with the rapid spread of genes responsible for antibiotic resistance. Understanding the consequences of their actions allowed us to establish unambiguous evolutionary relationships between plasmids in the analysis set. | 2016 | 27923922 |