# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9017 | 0 | 1.0000 | Molecular mechanism of Hfq-dependent sRNA1039 and sRNA1600 regulating antibiotic resistance and virulence in Shigella sonnei. Bacillary dysentery caused by Shigella spp. is a significant concern for human health. Small non-coding RNA (sRNA) plays a crucial role in regulating antibiotic resistance and virulence in Shigella spp. However, the specific mechanisms behind this phenomenon are still not fully understood. This study discovered two sRNAs (sRNA1039 and sRNA1600) that may be involved in bacterial resistance and virulence. By constructing deletion mutants (WT/ΔSR1039 and WT/ΔSR1600), this study found that the WT/ΔSR1039 mutants caused a two-fold increase in sensitivity to ampicillin, gentamicin and cefuroxime, and the WT/ΔSR1600 mutants caused a two-fold increase in sensitivity to cefuroxime. Furthermore, the WT/ΔSR1600 mutants caused a decrease in the adhesion and invasion of bacteria to HeLa cells (P<0.01), and changed the oxidative stress level of bacteria to reduce their survival rate (P<0.001). Subsequently, this study explored the molecular mechanisms by which sRNA1039 and sRNA1600 regulate antibiotic resistance and virulence. The deletion of sRNA1039 accelerated the degradation of target gene cfa mRNA and reduced its expression, thereby regulating the expression of pore protein gene ompD indirectly and negatively to increase bacterial sensitivity to ampicillin, gentamicin and cefuroxime. The inactivation of sRNA1600 reduced the formation of persister cells to reduce resistance to cefuroxime, and reduced the expression of type-III-secretion-system-related genes to reduce bacterial virulence by reducing the expression of target gene tomB. These results provide new insights into Hfq-sRNA-mRNA regulation of the resistance and virulence network of Shigella sonnei, which could potentially promote the development of more effective treatment strategies. | 2024 | 38141834 |
| 8908 | 1 | 0.9993 | Characterization and Transcriptome Analysis of Acinetobacter baumannii Persister Cells. Acinetobacter baumannii is a nonfermenting Gram-negative bacillus. A. baumannii resistance is a significant obstacle to clinical infection treatment. The existence of persister cells (persisters) might represent the reason for therapy failure and relapse, and such cells may be the driving force behind rising resistance rates. In this study, A. baumannii ATCC 19606 was used as a target to explore the essential features of A. baumannii persisters. Antibiotic treatment of A. baumannii cultures at 50-fold the minimum inhibitory concentration resulted in a distinct plateau of surviving drug-tolerant persisters. The sensitive bacteria were lysed with ceftazidime, and the nonreplicating bacteria were isolated for transcriptome analysis using RNA sequencing. We analyzed the transcriptome of A. baumannii persisters and identified significantly differentially expressed genes, as well as their enriched pathways. The results showed that both the GP49 (HigB)/Cro (HigA) and DUF1044/RelB toxin/antitoxin systems were significantly increased during the persister incubation period. In addition, the activities of certain metabolic pathways (such as electron transport, adenosine triphosphate [ATP], and the citrate cycle) decreased sharply after antibiotic treatment and remained low during the persister period, while aromatic compound degradation genes were only upregulated in persisters. These results suggest the involvement of aromatic compound degradation genes in persister formation and maintenance. They further provide the first insight into the mechanism of persister formation in A. baumannii. | 2018 | 29902105 |
| 8879 | 2 | 0.9992 | Global metabolic regulation in Vibrio parahaemolyticus under polymyxin B stimulation. Vibrio parahaemolyticus is responsible for infection diseases of people who consume the contaminated seafood, but its metabolic regulation profile in response to colistin, the last treatment option for multidrug-resistant Gram-negative bacteria, remains unclear. In this study, the metabolic regulation profile of V. parahaemolyticus ATCC33846 under polymyxin B stimulation has been investigated. V. parahaemolyticus exposed to polymyxin B resulted in 4597 differentially transcribed genes, including 673 significantly up-regulated genes and 569 significantly down-regulated genes. In V. parahaemolyticus under polymyxin B stimulation, the cellular antioxidant systems to prevent bacteria from oxidant stress was activated, the synthesis of some nonessential macromolecules was reduced, and the assembly and modification of lipopolysaccharide and peptidoglycan to resist the attack from other antibiotics were promoted. These findings provide new insights into polymyxin B-related stress response in V. parahaemolyticus which should be useful for developing novel drugs for infection. | 2021 | 34688850 |
| 8867 | 3 | 0.9992 | Hfq plays important roles in virulence and stress adaptation in Cronobacter sakazakii ATCC 29544. Cronobacter spp. are opportunistic pathogens that cause neonatal meningitis and sepsis with high mortality in neonates. Despite the peril associated with Cronobacter infection, the mechanisms of pathogenesis are still being unraveled. Hfq, which is known as an RNA chaperone, participates in the interaction with bacterial small RNAs (sRNAs) to regulate posttranscriptionally the expression of various genes. Recent studies have demonstrated that Hfq contributes to the pathogenesis of numerous species of bacteria, and its roles are varied between bacterial species. Here, we tried to elucidate the role of Hfq in C. sakazakii virulence. In the absence of hfq, C. sakazakii was highly attenuated in dissemination in vivo, showed defects in invasion (3-fold) into animal cells and survival (10(3)-fold) within host cells, and exhibited low resistance to hydrogen peroxide (10(2)-fold). Remarkably, the loss of hfq led to hypermotility on soft agar, which is contrary to what has been observed in other pathogenic bacteria. The hyperflagellated bacteria were likely to be attributable to the increased transcription of genes associated with flagellar biosynthesis in a strain lacking hfq. Together, these data strongly suggest that hfq plays important roles in the virulence of C. sakazakii by participating in the regulation of multiple genes. | 2015 | 25754196 |
| 8909 | 4 | 0.9992 | Nanoalumina triggers the antibiotic persistence of Escherichia coli through quorum sensing regulators lrsF and qseB. Nanomaterials with bactericidal effects might provide novel strategies against bacteria. However, some bacteria can survive despite the exposure to nanomaterials, which challenges the safety of antibacterial nanomaterials. Here, we used a high dose of antibiotics to kill the E. coli. that survived under different concentrations of nanoalumina treatment to screen persisters, and found that nanoalumina could significantly trigger persisters formation. Treatment with 50 mg/L nanoalumina for 4 h resulted in the formation of (0.084 ± 0.005) % persisters. Both reactive oxygen species (ROS) and toxin-antitoxin (TA) system were involved in persisters formation. Interestingly, RT-PCR analysis and knockout of the five genes related to ROS and TA confirmed that only hipB was associated with the formation of persisters, suggesting the involvement of other mechanisms. We further identified 73 differentially expressed genes by transcriptome sequencing and analyzed them with bioinformatics tools. We selected six candidate genes and verified that five of them closely related to quorum sensing (QS) that were involved in persisters formation, and further validated that the coexpression of QS factors lrsF and qseB was a novel pathway for persisters. Our findings provided a better understanding on the emergence of bacterial persistence and the microbial behavior under nanomaterials exposure. | 2022 | 35739728 |
| 8880 | 5 | 0.9991 | Nisin and acid resistance in Salmonella is enhanced by N-dodecanoyl-homoserine lactone. Salmonella is a foodborne pathogen that can develop resistance to different stresses, which is essential for successful infection of the host. Some genes directly related to acid resistance are also involved in cationic peptide resistance in Gram-negative bacteria and could be under the control of quorum sensing (QS) mediated by autoinducer 1, known as acyl-homoserine lactone. Here, we investigated the influence of autoinducer 1, N-dodecanoyl-homoserine lactone (C12-HSL) on the resistance of Salmonella enterica subspecies enterica serovar Enteritidis to nisin and acid stress. Salmonella cells growing in anaerobic tryptic soy agar (TSB) at a pH of 7.0 for 7 h were submitted to acid stress at a pH of 4.5 in the presence and absence of nisin and were either supplemented or not with C12-HSL. Viable cell counts, gene expression, membrane charge alterations, fatty acid composition, and intracellular content leakage were observed. The autoinducer C12-HSL increased nisin resistance and survival at a pH of 4.5 in Salmonella. Also, C12-HSL increased the expression of the genes, phoP, phoQ, pmrA, and pmrB, which are involved with antimicrobial and acid resistance. The positive charge on the cell surface and concentration of cyclopropane fatty acid of the cellular membrane were increased in the presence of C12-HSL under acidic conditions, whereas membrane fluidity decreased. The loss of K(+) and NADPH, promoted by nisin, was reduced in the presence of C12-HSL at a pH of 4.5. Taken together, these findings suggest that quorum sensing plays an important role in enhanced nisin and acid resistance in Salmonella. | 2020 | 32534181 |
| 8964 | 6 | 0.9991 | Analysis of the Oxidative Stress Regulon Identifies soxS as a Genetic Target for Resistance Reversal in Multidrug-Resistant Klebsiella pneumoniae. In bacteria, the defense system deployed to counter oxidative stress is orchestrated by three transcriptional factors, SoxS, SoxR, and OxyR. Although the regulon that these factors control is known in many bacteria, similar data are not available for Klebsiella pneumoniae. To address this data gap, oxidative stress was artificially induced in K. pneumoniae MGH78578 using paraquat and the corresponding oxidative stress regulon recorded using transcriptome sequencing (RNA-seq). The soxS gene was significantly induced during oxidative stress, and a knockout mutant was constructed to explore its functionality. The wild type and mutant were grown in the presence of paraquat and subjected to RNA-seq to elucidate the soxS regulon in K. pneumoniae MGH78578. Genes that are commonly regulated both in the oxidative stress and soxS regulons were identified and denoted as the oxidative SoxS regulon; these included a group of genes specifically regulated by SoxS. Efflux pump-encoding genes and global regulators were identified as part of this regulon. Consequently, the isogenic soxS mutant was found to exhibit a reduction in the minimum bactericidal concentration against tetracycline compared to that of the wild type. Impaired efflux activity, allowing tetracycline to be accumulated in the cytoplasm to bactericidal levels, was further evaluated using a tetraphenylphosphonium (TPP(+)) accumulation assay. The soxS mutant was also susceptible to tetracycline in vivo in a zebrafish embryo model. We conclude that the soxS gene could be considered a genetic target against which an inhibitor could be developed and used in combinatorial therapy to combat infections associated with multidrug-resistant K. pneumoniae. IMPORTANCE Antimicrobial resistance is a global health challenge. Few new antibiotics have been developed for use over the years, and preserving the efficacy of existing compounds is an important step to protect public health. This paper describes a study that examines the effects of exogenously induced oxidative stress on K. pneumoniae and uncovers a target that could be useful to harness as a strategy to mitigate resistance. | 2021 | 34098732 |
| 6292 | 7 | 0.9991 | Genome-Wide Screening and Characterization of Genes Involved in Response to High Dose of Ciprofloxacin in Escherichia coli. The global emergence of antibiotic resistance, especially in Gram-negative bacteria, is an urgent threat to public health. Inevitably, considering its extensive use and misuse, resistance toward ciprofloxacin has increased in almost all clinically relevant bacteria. This study aimed to investigate the transcriptome changes at a high concentration of ciprofloxacin in Escherichia coli. In brief, 1,418 differentially expressed genes (DEGs) were identified, from which 773 genes were upregulated by ciprofloxacin, whereas 651 genes were downregulated. Enriched biological pathways reflected the upregulation of biological processes such as DNA damage and repair system, toxin/antitoxin systems, formaldehyde detoxification system. With kyoto encyclopedia of genes and genomes pathway analysis, higher expressed DEGs were associated with "LPS biosynthesis," "streptomycin biosynthesis," and "polyketide sugar unit biosynthesis." Lower expressed DEGs were associated with "biosynthesis of amino acids" and "flagellar assembly" pathways. After treatment of ciprofloxacin, lipopolysaccharide (LPS) release was increased by two times, and the gene expression level of LPS synthesis was elevated (p < 0.05) in both reference and clinical strains. Our results demonstrated that transient exposure to high-dose ciprofloxacin is a double-edged sword. Cautions should be taken when administering high-dose antibiotic treatment for infectious diseases. | 2022 | 35512736 |
| 8868 | 8 | 0.9991 | Effects of Stress, Reactive Oxygen Species, and the SOS Response on De Novo Acquisition of Antibiotic Resistance in Escherichia coli. Strategies to prevent the development of antibiotic resistance in bacteria are needed to reduce the threat of infectious diseases to human health. The de novo acquisition of resistance due to mutations and/or phenotypic adaptation occurs rapidly as a result of interactions of gene expression and mutations (N. Handel, J. M. Schuurmans, Y. Feng, S. Brul, and B. H. Ter Kuile, Antimicrob Agents Chemother 58:4371-4379, 2014, http://dx.doi.org/10.1128/AAC.02892-14). In this study, the contribution of several individual genes to the de novo acquisition of antibiotic resistance in Escherichia coli was investigated using mutants with deletions of genes known to be involved in antibiotic resistance. The results indicate that recA, vital for the SOS response, plays a crucial role in the development of antibiotic resistance. Likewise, deletion of global transcriptional regulators, such as gadE or soxS, involved in pH homeostasis and superoxide removal, respectively, can slow the acquisition of resistance to a degree depending on the antibiotic. Deletion of the transcriptional regulator soxS, involved in superoxide removal, slowed the acquisition of resistance to enrofloxacin. Acquisition of resistance occurred at a lower rate in the presence of a second stress factor, such as a lowered pH or increased salt concentration, than in the presence of optimal growth conditions. The overall outcome suggests that a central cellular mechanism is crucial for the development of resistance and that genes involved in the regulation of transcription play an essential role. The actual cellular response, however, depends on the class of antibiotic in combination with environmental conditions. | 2015 | 26666928 |
| 8945 | 9 | 0.9991 | Adaptation of a fluoroquinolone-sensitive Shigella sonnei to norfloxacin exposure. Shigella causes shigellosis that requires antibiotic treatment in severe cases. Sublethal antibiotic concentrations can promote resistance, but their effect on antibiotic-sensitive bacteria before resistance development is unclear. This study investigated the effects of sublethal norfloxacin (NOR) challenges on a NOR-sensitive strain, Shigella sonnei UKMCC1015. Firstly, the whole genome of S. sonnei UKMCC1015 was assembled, and 45 antimicrobial resistance (AMR) genes were identified. Interestingly, transcriptomic analysis showed that low NOR levels do not change either the expression of the AMR genes or NOR targets such as gyrA. Instead, multiple ribosomal protein genes were downregulated, which could be attributed to decreased ribosomal protein promoter activity, modulated by elevated guanosine pentaphosphate and tetraphosphate (ppGpp) levels. This alarmone is involved in the bacterial stringent response during environmental stress, and it is mainly produced from the ppGpp synthetase (relA). Additionally, we observed that a relA overexpression (prolonged period of elevated ppGpp levels) may negatively affect the NOR tolerance of the bacteria. In conclusion, this study revealed that a NOR-sensitive strain responds differently to sublethal NOR than commonly reported in resistant strains. | 2024 | 39100177 |
| 6288 | 10 | 0.9991 | Regulation of ofloxacin resistance in Escherichia coli strains causing calf diarrhea by quorum-sensing acyl-homoserine lactone signaling molecules. Escherichia coli is a major pathogen responsible for calf diarrhea. However, it has developed resistance to many antimicrobial drugs for their inappropriate usage. The bacterial quorum sensing system transmits information between bacteria, it's important in regulating bacterial virulence, drug and acid resistance and so on. This system can found in Gram-negative bacteria and operates through acyl-homoserine lactone (AHL) signaling molecules. In this study, a type I quorum sensing AHL, N-Octanoyl-L-Homoserine lactone (C8), was added to E. coli growth medium to investigate its regulatory functions in drug resistance. After screening out the strains of E. coli that showed an obvious regulatory effect to the drug ofloxacin (OFX), transcriptomic sequencing was performed on the E. coli strains from the sub-inhibitory concentration group that concentration plus C8 group, and the control group. It shows that C8 significantly influenced resistance to OFX and the minimum inhibitory concentration of OFX in the tested strain was significantly increased. To Analyze transcriptome sequencing results identified 415 differentially expressed genes between the control and sub-inhibitory concentration groups, of which 201 were up-regulated and 214 were down. There were 125 differentially expressed genes between bacteria treated with a sub-inhibitory concentration of OFX and those treated with C8, of which 102 were up-regulated and 23 were down. Finally, It found that to adding the C8 significantly increased the resistance of tested bacteria to OFX. Data from transcriptome sequencing on differently expressed genes helps to explain how the type I quorum sensing system controls drug resistance in E. coli. | 2025 | 39974163 |
| 8965 | 11 | 0.9991 | Resistance characterization and transcriptomic analysis of imipenem-induced drug resistance in Escherichia coli. BACKGROUND: Bacteria can develop resistance to various antibiotics under selective pressure, leading to multifaceted changes in resistance mechanisms. Transcriptomic sequencing allows for the observation of transcriptional level alterations in cells under antibiotic stress. Understanding the bacterial response to such stress is essential for deciphering their strategy against drug-resistant antibiotics and identifying potential targets for antibiotic development. METHODS: This study using wild-type (WT) Escherichia coli (E. coli) discovered that continuous in vitro induction screening for imipenem-resistant strains resulted in bacteria with enhanced biofilm-forming ability and mutations in antibiotic target sites. Transcriptomic sequencing of the resistant bacteria revealed significant changes in carbon and amino acid metabolism, nutrient assimilation, substance transport, nucleotide metabolism, protein biosynthesis, and cell wall biosynthesis. The up-regulated drug efflux genes were disrupted using gene knockout technology. Drug sensitivity tests indicated that drug efflux has a minimal effect on imipenem resistance. RESULTS: This suggests a strategy for E. coli drug resistance involving the reduction of unnecessary substance synthesis and metabolism, coupled with an increase in activities that aid in resisting foreign threats. | 2024 | 39624129 |
| 8970 | 12 | 0.9991 | Transcriptomic Analyses to Unravel Cronobacter sakazakii Resistance Pathways. The proliferation of antibiotic usage has precipitated the emergence of drug-resistant variants of bacteria, thereby augmenting their capacity to withstand pharmaceutical interventions. Among these variants, Cronobacter sakazakii (C. sakazakii), prevalent in powdered infant formula (PIF), poses a grave threat to the well-being of infants. Presently, global contamination by C. sakazakii is being observed. Consequently, research endeavors have been initiated to explore the strain's drug resistance capabilities, alterations in virulence levels, and resistance mechanisms. The primary objective of this study is to investigate the resistance mechanisms and virulence levels of C. sakazakii induced by five distinct antibiotics, while concurrently conducting transcriptomic analyses. Compared to the susceptible strains prior to induction, the drug-resistant strains exhibited differential gene expression, resulting in modifications in the activity of relevant enzymes and biofilm secretion. Transcriptomic studies have shown that the expression of glutathione S-transferase and other genes were significantly upregulated after induction, leading to a notable enhancement in biofilm formation ability, alongside the existence of antibiotic resistance mechanisms associated with efflux pumps, cationic antimicrobial peptides, and biofilm formation pathways. These alterations significantly influence the strain's resistance profile. | 2024 | 39272551 |
| 8960 | 13 | 0.9990 | Pyraclostrobin induces multi-antibiotic resistance in Escherichia coli via quorum sensing: A new perspective. Antibiotic resistance seriously threatens to global public health, and non-antibiotic chemicals like pesticides can contribute to its development. Quorum sensing (QS) is an intercellular communication system that regulates group behavior and can potentially become a pathway for the development of antibiotic resistance. This study firstly discovered that exposure to pyraclostrobin at 0.5 mg/L activated QS, resulting in antibiotic resistance in Escherichia coli, with minimum inhibitory concentrations (MICs) increasing by up to 128-fold against tested antibiotics. Mechanistically, the high expression of the luxS gene induced by pyraclostrobin stress increased the level of the QS signal molecule (AI-2), leading to enhanced QS in antibiotic-resistant bacteria (ARB), thereby upregulating the expression of multidrug efflux pump genes (acrB and marA) and downregulating the expression of outer membrane porin genes (ompC and ompF). Meanwhile, using a QS inhibitor also increased the strains' antibiotic sensitivity. Additionally, pyraclostrobin exposure damaged cell membranes, induced oxidative stress, and caused gene mutations, further promoting multidrug resistance. Overall, the findings demonstrate that pyraclostrobin exposure can stimulate antibiotic resistance in Escherichia coli by activating QS and inducing gene mutations. Therefore, the rigorous application of fungicides is essential to retard the development of antibiotic resistance. | 2025 | 40544772 |
| 8966 | 14 | 0.9990 | Gene expression profile of Campylobacter jejuni in response to macrolide antibiotics. Campylobacter jejuni is a foodborne pathogen that causes gastroenteritis in humans and has developed resistance to various antibiotics. The primary objective of this research was to examine the network of antibiotic resistance in C. jejuni. The study involved the wild and antibiotic-resistant strains placed in the presence and absence of antibiotics to review their gene expression profiles in response to ciprofloxacin via microarray. Differentially expressed genes (DEGs) analysis and Protein-Protein Interaction (PPI) Network studies were performed for these genes. The results showed that the resistance network of C. jejuni is modular, with different genes involved in bacterial motility, capsule synthesis, efflux, and amino acid and sugar synthesis. Antibiotic treatment resulted in the down-regulation of cluster genes related to translation, flagellum formation, and chemotaxis. In contrast, cluster genes involved in homeostasis, capsule formation, and cation efflux were up-regulated. The study also found that macrolide antibiotics inhibit the progression of C. jejuni infection by inactivating topoisomerase enzymes and increasing the activity of epimerase enzymes, trying to compensate for the effect of DNA twisting. Then, the bacterium limits the movement to conserve energy. Identifying the antibiotic resistance network in C. jejuni can aid in developing drugs to combat these bacteria. Genes involved in cell division, capsule formation, and substance transport may be potential targets for inhibitory drugs. Future research must be directed toward comprehending the underlying mechanisms contributing to the modularity of antibiotic resistance and developing strategies to disrupt and mitigate the growing threat of antibiotic resistance effectively. | 2024 | 38393387 |
| 9016 | 15 | 0.9990 | Hfq Regulates Efflux Pump Expression and Purine Metabolic Pathway to Increase Trimethoprim Resistance in Aeromonas veronii. Aeromonas veronii (A. veronii) is a zoonotic pathogen. It causes clinically a variety of diseases such as dysentery, bacteremia, and meningitis, and brings huge losses to aquaculture. A. veronii has been documented as a multiple antibiotic resistant bacterium. Hfq (host factor for RNA bacteriophage Qβ replication) participates in the regulations of the virulence, adhesion, and nitrogen fixation, effecting on the growth, metabolism synthesis and stress resistance in bacteria. The deletion of hfq gene in A. veronii showed more sensitivity to trimethoprim, accompanying by the upregulations of purine metabolic genes and downregulations of efflux pump genes by transcriptomic data analysis. Coherently, the complementation of efflux pump-related genes acrA and acrB recovered the trimethoprim resistance in Δhfq. Besides, the accumulations of adenosine and guanosine were increased in Δhfq in metabonomic data. The strain Δhfq conferred more sensitive to trimethoprim after appending 1 mM guanosine to M9 medium, while wild type was not altered. These results demonstrated that Hfq mediated trimethoprim resistance by elevating efflux pump expression and degrading adenosine, and guanosine metabolites. Collectively, Hfq is a potential target to tackle trimethoprim resistance in A. veronii infection. | 2021 | 34899630 |
| 6329 | 16 | 0.9990 | Autoinducer-2 influences tetracycline resistance in Streptococcus suis by regulating the tet(M) gene via transposon Tn916. The concern over increasing resistance to tetracyclines (TCs), such as tetracycline and chlortetracycline, necessitates exploration of new approaches to combating infection in antimicrobial therapy. Given that bacteria use the chemical language of autoinducer 2 (AI-2) signaling molecules in order to communicate and regulate group behaviors, we asked whether the AI-2 signaling influence the tetracyclines antibiotics susceptibility in S. suis. Our present work demonstrated that MIC increased when exogenous AI-2 was added, when compared to the wild type strain. When grown in the presence of sub-MIC of antibiotics, it has been shown that exogenous AI-2 increases growth rate and biofilm formation. These results suggest that the TCs resistance in S. suis could involve a signaling mechanism. Base on the above observations, transcriptomic analyses showed significant differences in the expression of tet(M) of tetracyclines resistance genes, as well as differences in Tn916 transposon related genes transcription, as judged by RT-PCR. Our results provide strong evidence that AI-2 signaling molecules is may involve in TCs antibiotic resistance in S. suis by regulating tet(M) gene via Tn916 transposon. This study may suggest that targeting AI-2 signaling in bacteria could represent an alternative approach in antimicrobial therapy. | 2020 | 31837515 |
| 8939 | 17 | 0.9990 | YmdB-mediated down-regulation of sucA inhibits biofilm formation and induces apramycin susceptibility in Escherichia coli. Antibiotic resistance associated with biofilm formation is a major concern when treating bacterial infections with drugs. The genes and pathways involved in biofilm formation have been extensively studied and are also involved in antibiotic resistance. Recent studies show that overexpression of Escherichia coli (E. coli) YmdB protein alters gene expression profiles and inhibits biofilm formation. Therefore, it is expected that YmdB and its regulated genes play a key role in development of biofilm and antibiotic resistance phenotypes. The present study screened antibiotics to identify those whose susceptibility profiles were regulated by YmdB levels. This protocol identified apramycin. Additional screening for genes negatively regulated by inactivation of RNase III activity via YmdB overexpression revealed that a gene associated with the tricarboxylic acid cycle gene, sucA, was necessary for the YmdB-like phenotype. Taken together, these data suggest that regulation of RNase III activity by trans-acting factors may be the key to identifying genes or pathways connecting biofilm and antibiotic resistance phenotypes. This information could be used to reduce the emergence of biofilm-associated multidrug-resistant bacteria. | 2017 | 28034758 |
| 6291 | 18 | 0.9990 | Adaptive Resistance of Staphylococcus aureus to Cefquinome Sulfate in an In Vitro Pharmacokinetic Model with Transcriptomic Insights. Cefquinome sulfate has a strong killing effect against Staphylococcus aureus (S. aureus), but bacterial resistance has become increasingly widespread. Experiments were conducted to investigate the pattern of adaptive resistance of S. aureus to cefquinome sulfate under different dosage regimens by using pharmacokinetic-pharmacodynamics (PK-PD) modeling, and the adaptive-resistant bacteria in different states were screened and subjected to transcriptomic sequencing. The results showed that the minimum inhibitory concentration of Staphylococcus aureus under the action of cefquinome sulfate was 0.5 μg/mL, the anti-mutation concentration was 1.6 μg/mL, and the mutation selection window range was 0.5~1.6 μg/mL. In the in vitro pharmacokinetic model to simulate different dosing regimens in the animal body, there are certain rules for the emergence of adaptive drug-resistant bacteria: the intensity of bacterial resistance gradually increased with culture time, and the order of emergence was tolerant bacteria (TO) followed by persistent bacteria (PE) and finally resistant bacteria (RE). The sequence reflected the evolution of adaptive drug resistance. Transcriptome Gene Ontology (GO) analysis revealed that differentially expressed genes were involved in cellular respiration, energy derivation by oxidation of organic compounds, and oxidation-reduction processes. The differentially expressed genes identified functioned in the synthesis of cell membranes, cytoplasm, and intracellular parts. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found that 65 genes were differentially expressed after cefquinome sulfate treatment, of which 35 genes were significantly upregulated and 30 genes were significantly downregulated. Five genes, sdhB, sdhA, pdhA, lpdA, and sucC, may be involved in network regulation. This study revealed the cross-regulation of multiple metabolic pathway networks and the targets of network regulation of S. aureus to produce adaptive drug resistance. The results will provide guidance for clinical drug use in animals infected with S. aureus. | 2025 | 40005696 |
| 8967 | 19 | 0.9990 | Distinct transcriptomic response of S. coelicolor to ciprofloxacin in a nutrient-rich environment. With the rising threat of anti-microbial resistance (AMR), there is an urgent need to enhance efficacy of existing antibiotics. Understanding the myriad mechanisms through which bacteria evade these drugs would be of immense value to designing novel strategies against them. Streptomyces coelicolor A3(2) M145 belongs to the actinomyctes species that are responsible for more than two-thirds of antibiotics. This group of bacteria therefore encodes for various mechanisms that can resist both endogenous and non-endogenous antibiotics. In an earlier study, we had studied the transcriptomic response of these bacteria to ciprofloxacin, when cultured in a minimal media. In this work, we investigate why the minimum inhibitory concentration of the drug increases by fourfold when the bacteria are grown in a nutrient-rich media. Through transcriptomic, biochemical, and microscopic studies, we show that S. coelicolor responds to ciprofloxacin in a concentration-dependent manner. While, sub-inhibitory concentration of the drug primarily causes oxidative stress, the inhibitory concentration of ciprofloxacin evokes a more severe genome-wide response in the cell, which ranges from the familiar upregulation of the SOS response and DNA repair pathways to the widespread alterations in the central metabolism pathway to accommodate the increased needs of nucleotides and other precursors. Further, the upregulation of peptidoglycan synthesis genes, along with microscopy images, suggest alterations in the cell morphology to increase fitness of the bacteria during the antibiotic stress. The data also points to the enhanced efflux activity in cells cultured in rich media that contributes significantly towards reducing intracellular drug concentration and thus promotes survival. | 2018 | 30327831 |