# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9013 | 0 | 1.0000 | Two antimicrobial genes from Aegilops tauschii Cosson identified by the Bacillus subtilis expression system. Antimicrobial genes play an important role as a primary defense mechanism in all multicellular organisms. We chose Bacillus subtilis as a target pathogen indicator and transferred the Aegilops tauschii Cosson cDNA library into B. subtilis cells. Expression of the candidate antimicrobial gene can inhibit B. subtilis cell growth. Using this strategy, we screened six genes that have an internal effect on the indicator bacteria. Then, the secreted proteins were extracted and tested; two genes, AtR100 and AtR472, were found to have strong external antimicrobial activities with broad-spectrum resistance against Xanthomonas oryzae pv. oryzicola, Clavibacter fangii, and Botrytis cinerea. Additionally, thermal stability tests indicated that the antimicrobial activities of both proteins were thermostable. Furthermore, these two proteins exhibited no significant hemolytic activities. To test the feasibility of application at the industrial level, liquid fermentation and spray drying of these two proteins were conducted. Powder dilutions were shown to have significant inhibitory effects on B. cinerea. Fluorescence microscopy and flow cytometry results showed that the purified protein impaired and targeted the cell membranes. This study revealed that these two antimicrobial peptides could potentially be used for replacing antibiotics, which would provide the chance to reduce the emergence of drug resistance. | 2020 | 32770019 |
| 6305 | 1 | 0.9995 | Antimicrobial genes from Allium sativum and Pinellia ternata revealed by a Bacillus subtilis expression system. Antimicrobial genes are found in all classes of life. To efficiently isolate these genes, we used Bacillus subtilis and Escherichia coli as target indicator bacteria and transformed them with cDNA libraries. Among thousands of expressed proteins, candidate proteins played antimicrobial roles from the inside of the indicator bacteria (internal effect), contributing to the sensitivity (much more sensitivity than the external effect from antimicrobial proteins working from outside of the cells) and the high throughput ability of screening. We found that B. subtilis is more efficient and reliable than E. coli. Using the B. subtilis expression system, we identified 19 novel, broad-spectrum antimicrobial genes. Proteins expressed by these genes were extracted and tested, exhibiting strong external antibacterial, antifungal and nematicidal activities. Furthermore, these newly isolated proteins could control plant diseases. Application of these proteins secreted by engineered B. subtilis in soil could inhibit the growth of pathogenic bacteria. These proteins are thermally stable and suitable for clinical medicine, as they exhibited no haemolytic activity. Based on our findings, we speculated that plant, animal and human pathogenic bacteria, fungi or even cancer cells might be taken as the indicator target cells for screening specific resistance genes. | 2018 | 30266995 |
| 6303 | 2 | 0.9994 | Induction of AmpC-Mediated β-Lactam Resistance Requires a Single Lytic Transglycosylase in Agrobacterium tumefaciens. The remarkable ability of Agrobacterium tumefaciens to transfer DNA to plant cells has allowed the generation of important transgenic crops. One challenge of A. tumefaciens-mediated transformation is eliminating the bacteria after plant transformation to prevent detrimental effects to plants and the release of engineered bacteria to the environment. Here, we use a reverse-genetics approach to identify genes involved in ampicillin resistance, with the goal of utilizing these antibiotic-sensitive strains for plant transformations. We show that treating A. tumefaciens C58 with ampicillin led to increased β-lactamase production, a response dependent on the broad-spectrum β-lactamase AmpC and its transcription factor, AmpR. Loss of the putative ampD orthologue atu2113 led to constitutive production of AmpC-dependent β-lactamase activity and ampicillin resistance. Finally, one cell wall remodeling enzyme, MltB3, was necessary for the AmpC-dependent β-lactamase activity, and its loss elicited ampicillin and carbenicillin sensitivity in the A. tumefaciens C58 and GV3101 strains. Furthermore, GV3101 ΔmltB3 transforms plants with efficiency comparable to that of the wild type but can be cleared with sublethal concentrations of ampicillin. The functional characterization of the genes involved in the inducible ampicillin resistance pathway of A. tumefaciens constitutes a major step forward in efforts to reduce the intrinsic antibiotic resistance of this bacterium. IMPORTANCE Agrobacterium tumefaciens, a significant biotechnological tool for production of transgenic plant lines, is highly resistant to a wide variety of antibiotics, posing challenges for various applications. One challenge is the efficient elimination of A. tumefaciens from transformed plant tissue without using levels of antibiotics that are toxic to the plants. Here, we present the functional characterization of genes involved in β-lactam resistance in A. tumefaciens. Knowledge about proteins that promote or inhibit β-lactam resistance will enable the development of strains to improve the efficiency of Agrobacterium-mediated plant genetic transformations. Effective removal of Agrobacterium from transformed plant tissue has the potential to maximize crop yield and food production, improving the outlook for global food security. | 2022 | 35638841 |
| 158 | 3 | 0.9993 | Homology- and cross-resistance of Lactobacillus plantarum to acid and osmotic stress and the influence of induction conditions on its proliferation by RNA-Seq. In this study, homology- and cross-resistance of Lactobacillus plantarum L1 and Lactobacillus plantarum L2 to acid and osmotic stress were investigated. Meanwhile, its proliferation mechanism was demonstrated by transcriptomic analysis using RNA sequencing. We found that the homologous-resistance and cross-resistance of L. plantarum L1 and L. plantarum L2 increased after acid and osmotic induction treatment by lactic acid and sodium lactate solution in advance, and the survival rate of live bacteria was improved. In addition, the count of viable bacteria of L. plantarum L2 significantly increased cultivated at a pH 5.0 with a 15% sodium lactate sublethal treatment, compared with the control group. Further study revealed that genes related to membrane transport, amino acid metabolism, nucleotide metabolism, and cell growth were significantly upregulated. These findings will contribute to promote high-density cell culture of starter cultures production in the fermented food industry. | 2021 | 33945164 |
| 8965 | 4 | 0.9993 | Resistance characterization and transcriptomic analysis of imipenem-induced drug resistance in Escherichia coli. BACKGROUND: Bacteria can develop resistance to various antibiotics under selective pressure, leading to multifaceted changes in resistance mechanisms. Transcriptomic sequencing allows for the observation of transcriptional level alterations in cells under antibiotic stress. Understanding the bacterial response to such stress is essential for deciphering their strategy against drug-resistant antibiotics and identifying potential targets for antibiotic development. METHODS: This study using wild-type (WT) Escherichia coli (E. coli) discovered that continuous in vitro induction screening for imipenem-resistant strains resulted in bacteria with enhanced biofilm-forming ability and mutations in antibiotic target sites. Transcriptomic sequencing of the resistant bacteria revealed significant changes in carbon and amino acid metabolism, nutrient assimilation, substance transport, nucleotide metabolism, protein biosynthesis, and cell wall biosynthesis. The up-regulated drug efflux genes were disrupted using gene knockout technology. Drug sensitivity tests indicated that drug efflux has a minimal effect on imipenem resistance. RESULTS: This suggests a strategy for E. coli drug resistance involving the reduction of unnecessary substance synthesis and metabolism, coupled with an increase in activities that aid in resisting foreign threats. | 2024 | 39624129 |
| 8882 | 5 | 0.9993 | Transcriptome Profiling of Wild-Type and pga-Knockout Mutant Strains Reveal the Role of Exopolysaccharide in Aggregatibacter actinomycetemcomitans. Exopolysaccharides have a diverse set of functions in most bacteria including a mechanistic role in protecting bacteria against environmental stresses. Among the many functions attributed to the exopolysaccharides, biofilm formation, antibiotic resistance, immune evasion and colonization have been studied most extensively. The exopolysaccharide produced by many Gram positive as well as Gram negative bacteria including the oral pathogen Aggregatibacter actinomycetemcomitans is the homopolymer of β(1,6)-linked N-acetylglucosamine. Recently, we reported that the PGA-deficient mutant of A. actinomycetemcomitans failed to colonize or induce bone resorption in a rat model of periodontal disease, and the colonization genes, apiA and aae, were significantly down regulated in the mutant strain. To understand the role of exopolysaccharide and the pga locus in the global expression of A. actinomycetemcomitans, we have used comparative transcriptome profiling to identify differentially expressed genes in the wild-type strain in relation to the PGA-deficient strain. Transcriptome analysis revealed that about 50% of the genes are differently expressed (P < 0.05 and fold change >1.5). Our study demonstrated that the absence of the pga locus affects the genes involved in peptidoglycan recycling, glycogen storage, and virulence. Further, using confocal microscopy and plating assays, we show that the viability of pga mutant strain is significantly reduced during biofilm growth. Thus, this study highlights the importance of pga genes and the exopolysaccharide in the virulence of A. actinomycetemcomitans. | 2015 | 26221956 |
| 8146 | 6 | 0.9993 | The Influence of Chitosan Derivatives in Combination with Bacillus subtilis Bacteria on the Development of Systemic Resistance in Potato Plants with Viral Infection and Drought. Viral diseases of potatoes are among the main problems causing deterioration in the quality of tubers and loss of yield. The growth and development of potato plants largely depend on soil moisture. Prevention strategies require comprehensive protection against pathogens and abiotic stresses, including modeling the beneficial microbiome of agroecosystems combining microorganisms and immunostimulants. Chitosan and its derivatives have great potential for use in agricultural engineering due to their ability to induce plant immune responses. The effect of chitosan conjugate with caffeic acid (ChCA) in combination with Bacillus subtilis 47 on the transcriptional activity of PR protein genes and changes in the proteome of potato plants during potato virus Y (PVY) infection and drought was studied. The mechanisms of increasing the resistance of potato plants to PVY and lack of moisture are associated with the activation of transcription of genes encoding PR proteins: the main protective protein (PR-1), chitinase (PR-3), thaumatin-like protein (PR-5), protease inhibitor (PR-6), peroxidase (PR-9), and ribonuclease (PR-10), as well as qualitative and quantitative changes in the plant proteome. The revealed activation of the expression of marker genes of systemic acquired resistance and induced systemic resistance under the influence of combined treatment with B. subtilis and chitosan conjugate indicate that, in potato plants, the formation of resistance to viral infection in drought conditions proceeds synergistically. By two-dimensional electrophoresis of S. tuberosum leaf proteins followed by MALDI-TOF analysis, 10 proteins were identified, the content and composition of which differed depending on the experiment variant. In infected plants treated with ChCA, the synthesis of proteinaceous RNase P 1 and oxygen-evolving enhancer protein 2 was enhanced in conditions of normal humidity, and 20 kDa chaperonin and TMV resistance protein N-like was enhanced in conditions of lack of moisture. The virus coat proteins were detected, which intensively accumulated in the leaves of plants infected with potato Y-virus. ChCA treatment reduced the content of these proteins in the leaves, and in plants treated with ChCA in combination with Bacillus subtilis, viral proteins were not detected at all, both in conditions of normal humidity and lack of moisture, which suggests the promising use of chitosan derivatives in combination with B. subtilis bacteria in the regulation of plant resistance. | 2024 | 39204646 |
| 8891 | 7 | 0.9993 | Analysis of Shigella flexneri Resistance, Biofilm Formation, and Transcriptional Profile in Response to Bile Salts. The Shigella species cause millions of cases of watery or bloody diarrhea each year, mostly in children in developing countries. While many aspects of Shigella colonic cell invasion are known, crucial gaps in knowledge regarding how the bacteria survive, transit, and regulate gene expression prior to infection remain. In this study, we define mechanisms of resistance to bile salts and build on previous research highlighting induced virulence in Shigella flexneri strain 2457T following exposure to bile salts. Typical growth patterns were observed within the physiological range of bile salts; however, growth was inhibited at higher concentrations. Interestingly, extended periods of exposure to bile salts led to biofilm formation, a conserved phenotype that we observed among members of the Enterobacteriaceae Characterization of S. flexneri 2457T biofilms determined that both bile salts and glucose were required for formation, dispersion was dependent upon bile salts depletion, and recovered bacteria displayed induced adherence to HT-29 cells. RNA-sequencing analysis verified an important bile salt transcriptional profile in S. flexneri 2457T, including induced drug resistance and virulence gene expression. Finally, functional mutagenesis identified the importance of the AcrAB efflux pump and lipopolysaccharide O-antigen synthesis for bile salt resistance. Our data demonstrate that S. flexneri 2457T employs multiple mechanisms to survive exposure to bile salts, which may have important implications for multidrug resistance. Furthermore, our work confirms that bile salts are important physiological signals to activate S. flexneri 2457T virulence. This work provides insights into how exposure to bile likely regulates Shigella survival and virulence during host transit and subsequent colonic infection. | 2017 | 28348056 |
| 8971 | 8 | 0.9992 | Bacteriophage induces modifications in outer membrane protein expression and antibiotic susceptibility in Acinetobacter baumannii. Bacteriophages, the most abundant biological agents targeting bacteria, offer a promising alternative to antibiotics for combating multi-drug resistant pathogens like Acinetobacter baumannii. However, the rapid development of bacteriophage resistance poses a significant challenge. This study highlights the contribution of outer membrane proteins (OMPs) in the emergence of bacteriophage resistance in A. baumannii. The bacteriophage-sensitive and resistant isolates were studied for their native OMP profiles. Bacteriophage-tolerant A. baumannii were generated by infecting bacteria with bacteriophages and sub-culturing the survivors, and their expression of OMP and virulence was further characterized. These tolerant strains had significantly downregulated omp genes and under-expressed OMPs. Phenotypic changes like reduced adsorption to phages, deviant growth rates, biofilm-forming capacities, higher survival in limiting conditions, higher motility, and higher alkaline protease production were observed in the phage-tolerant strains equipped with better survival and virulent properties. The tolerant strains were re-sensitized to antibiotics they previously resisted. The significantly under-expressed OMPs in phage-tolerant strains were identified as OmpA and other OMPs similar to OmpA. This study could identify certain OMPs significantly under-expressed on bacteriophage exposure. The tolerant bacteria had altered phenotypic properties in addition to the development of phage resistance and the re-sensitisation to antibiotics, which paved the way for the future of phage therapeutics. | 2025 | 39800016 |
| 6339 | 9 | 0.9992 | Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment. Microorganisms that thrive in acidic environments are endowed with specialized molecular mechanisms to survive under this extremely harsh condition. In this work, we performed functional screening of six metagenomic libraries from planktonic and rhizosphere microbial communities of the Tinto River, an extremely acidic environment, to identify genes involved in acid resistance. This approach has revealed 15 different genes conferring acid resistance to Escherichia coli, most of which encoding putative proteins of unknown function or previously described proteins not known to be related to acid resistance. Moreover, we were able to assign function to one unknown and three hypothetical proteins. Among the recovered genes were the ClpXP protease, the transcriptional repressor LexA and nucleic acid-binding proteins such as an RNA-binding protein, HU and Dps. Furthermore, nine of the retrieved genes were cloned and expressed in Pseudomonas putida and Bacillus subtilis and, remarkably, most of them were able to expand the capability of these bacteria to survive under severe acid stress. From this set of genes, four presented a broad-host range as they enhance the acid resistance of the three different organisms tested. These results expand our knowledge about the different strategies used by microorganisms to survive under extremely acid conditions. | 2013 | 23145860 |
| 6329 | 10 | 0.9992 | Autoinducer-2 influences tetracycline resistance in Streptococcus suis by regulating the tet(M) gene via transposon Tn916. The concern over increasing resistance to tetracyclines (TCs), such as tetracycline and chlortetracycline, necessitates exploration of new approaches to combating infection in antimicrobial therapy. Given that bacteria use the chemical language of autoinducer 2 (AI-2) signaling molecules in order to communicate and regulate group behaviors, we asked whether the AI-2 signaling influence the tetracyclines antibiotics susceptibility in S. suis. Our present work demonstrated that MIC increased when exogenous AI-2 was added, when compared to the wild type strain. When grown in the presence of sub-MIC of antibiotics, it has been shown that exogenous AI-2 increases growth rate and biofilm formation. These results suggest that the TCs resistance in S. suis could involve a signaling mechanism. Base on the above observations, transcriptomic analyses showed significant differences in the expression of tet(M) of tetracyclines resistance genes, as well as differences in Tn916 transposon related genes transcription, as judged by RT-PCR. Our results provide strong evidence that AI-2 signaling molecules is may involve in TCs antibiotic resistance in S. suis by regulating tet(M) gene via Tn916 transposon. This study may suggest that targeting AI-2 signaling in bacteria could represent an alternative approach in antimicrobial therapy. | 2020 | 31837515 |
| 6293 | 11 | 0.9992 | Gentamicin resistance to Escherichia coli related to fatty acid metabolism based on transcriptome analysis. Antibiotic overuse and misuse have promoted the emergence and spread of antibiotic-resistant bacteria. Increasing bacterial resistance to antibiotics is a major healthcare problem, necessitating elucidation of antibiotic resistance mechanisms. In this study, we explored the mechanism of gentamicin resistance by comparing the transcriptomes of antibiotic-sensitive and -resistant Escherichia coli. A total of 410 differentially expressed genes were identified, of which 233 (56.83%) were up-regulated and 177 (43.17%) were down-regulated in the resistant strain compared with the sensitive strain. Gene Ontology (GO) analysis classifies differential gene expression into three main categories: biological processes, cellular components, and molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the up-regulated genes were enriched in eight metabolic pathways, including fatty acid metabolism, which suggests that fatty acid metabolism may be involved in the development of gentamicin resistance in E. coli. This was demonstrated by measuring the acetyl-CoA carboxylase activity, plays a fundamental role in fatty acid metabolism, was increased in gentamicin-resistant E. coli. Treatment of fatty acid synthesis inhibitor, triclosan, promoted gentamicin-mediated killing efficacy to antibiotic-resistant bacteria. We also found that exogenous addition of oleic acid, which involved in fatty acid metabolism, reduced E. coli sensitivity to gentamicin. Overall, our results provide insight into the molecular mechanism of gentamicin resistance development in E. coli. | 2023 | 37224563 |
| 8323 | 12 | 0.9992 | The impact of environmental stress on Listeria monocytogenes virulence. Listeria monocytogenes, a significant food-borne pathogen, must defy a variety of conditions encountered in the food environment and during the infection process. In reaction to adverse conditions, the bacteria significantly change their metabolism, inducing a stress response which is mediated by a range of alternative sigma factors. The extent of the response to stress was shown to vary in the L. monocytogenes population. According to recent evidence a major L. monocytogenes alternative sigma factor, designated sigma B (sigma B), regulates some virulence genes in response to stress, which supports an older hypothesis that stress-resistant strains should be more pathogenic. The induction of sigma B-dependent genes may also be important from the point of view of food hygiene. It seems that stress response activation can paradoxically enhance resistance to agents used in food preservation. Therefore, monitoring the expression of sigma B-dependent genes can serve as a useful marker to assess the innate resistance of L. monocytogenes strains. This knowledge will allow the design of new methods with sequential preservation steps that could inactivate the bacteria without inducing their stress response. | 2009 | 20169937 |
| 8922 | 13 | 0.9992 | Transitioning from Soil to Host: Comparative Transcriptome Analysis Reveals the Burkholderia pseudomallei Response to Different Niches. Burkholderia pseudomallei, a soil and water saprophyte, is responsible for the tropical human disease melioidosis. A hundred years since its discovery, there is still much to learn about B. pseudomallei proteins that are essential for the bacterium's survival in and interaction with the infected host, as well as their roles within the bacterium's natural soil habitat. To address this gap, bacteria grown under conditions mimicking the soil environment were subjected to transcriptome sequencing (RNA-seq) analysis. A dual RNA-seq approach was used on total RNA from spleens isolated from a B. pseudomallei mouse infection model at 5 days postinfection. Under these conditions, a total of 1,434 bacterial genes were induced, with 959 induced in the soil environment and 475 induced in bacteria residing within the host. Genes encoding metabolism and transporter proteins were induced when the bacteria were present in soil, while virulence factors, metabolism, and bacterial defense mechanisms were upregulated during active infection of mice. On the other hand, capsular polysaccharide and quorum-sensing pathways were inhibited during infection. In addition to virulence factors, reactive oxygen species, heat shock proteins, siderophores, and secondary metabolites were also induced to assist bacterial adaptation and survival in the host. Overall, this study provides crucial insights into the transcriptome-level adaptations which facilitate infection by soil-dwelling B. pseudomallei. Targeting novel therapeutics toward B. pseudomallei proteins required for adaptation provides an alternative treatment strategy given its intrinsic antimicrobial resistance and the absence of a vaccine. IMPORTANCE Burkholderia pseudomallei, a soil-dwelling bacterium, is the causative agent of melioidosis, a fatal infectious disease of humans and animals. The bacterium has a large genome consisting of two chromosomes carrying genes that encode proteins with important roles for survival in diverse environments as well as in the infected host. While a general mechanism of pathogenesis has been proposed, it is not clear which proteins have major roles when the bacteria are in the soil and whether the same proteins are key to successful infection and spread. To address this question, we grew the bacteria in soil medium and then in infected mice. At 5 days postinfection, bacteria were recovered from infected mouse organs and their gene expression was compared against that of bacteria grown in soil medium. The analysis revealed a list of genes expressed under soil growth conditions and a different set of genes encoding proteins which may be important for survival, replication, and dissemination in an infected host. These proteins are a potential resource for understanding the full adaptation mechanism of this pathogen. In the absence of a vaccine for melioidosis and with treatment being reliant on combinatorial antibiotic therapy, these proteins may be ideal targets for designing antimicrobials to treat melioidosis. | 2023 | 36856434 |
| 446 | 14 | 0.9992 | Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Lactobacilli are common inhabitants of the gastrointestinal tracts of mammals and have received considerable attention due to their putative health-promoting properties. Little is known about the traits that enhance the ability of these bacteria to inhabit the gastrointestinal tract. In this paper we describe the development and application of a strategy based on in vivo expression technology (IVET) that enables detection of Lactobacillus reuteri genes specifically induced in the murine gut. A plasmid-based system was constructed containing 'ermGT (which confers lincomycin resistance) as the primary reporter gene for selection of promoters active in the gastrointestinal tract of mice treated with lincomycin. A second reporter gene, 'bglM (beta-glucanase), allowed differentiation between constitutive and in vivo inducible promoters. The system was successfully tested in vitro and in vivo by using a constitutive promoter. Application of the IVET system with chromosomal DNA of L. reuteri 100-23 and reconstituted lactobacillus-free mice revealed three genes induced specifically during colonization. Two of the sequences showed homology to genes encoding xylose isomerase (xylA) and peptide methionine sulfoxide reductase (msrB), which are involved in nutrient acquisition and stress responses, respectively. The third locus showed homology to the gene encoding a protein whose function is not known. Our IVET system has the potential to identify genes of lactobacilli that have not previously been functionally characterized but which may be essential for growth of these bacteria in the gastrointestinal ecosystem. | 2003 | 12676681 |
| 6291 | 15 | 0.9992 | Adaptive Resistance of Staphylococcus aureus to Cefquinome Sulfate in an In Vitro Pharmacokinetic Model with Transcriptomic Insights. Cefquinome sulfate has a strong killing effect against Staphylococcus aureus (S. aureus), but bacterial resistance has become increasingly widespread. Experiments were conducted to investigate the pattern of adaptive resistance of S. aureus to cefquinome sulfate under different dosage regimens by using pharmacokinetic-pharmacodynamics (PK-PD) modeling, and the adaptive-resistant bacteria in different states were screened and subjected to transcriptomic sequencing. The results showed that the minimum inhibitory concentration of Staphylococcus aureus under the action of cefquinome sulfate was 0.5 μg/mL, the anti-mutation concentration was 1.6 μg/mL, and the mutation selection window range was 0.5~1.6 μg/mL. In the in vitro pharmacokinetic model to simulate different dosing regimens in the animal body, there are certain rules for the emergence of adaptive drug-resistant bacteria: the intensity of bacterial resistance gradually increased with culture time, and the order of emergence was tolerant bacteria (TO) followed by persistent bacteria (PE) and finally resistant bacteria (RE). The sequence reflected the evolution of adaptive drug resistance. Transcriptome Gene Ontology (GO) analysis revealed that differentially expressed genes were involved in cellular respiration, energy derivation by oxidation of organic compounds, and oxidation-reduction processes. The differentially expressed genes identified functioned in the synthesis of cell membranes, cytoplasm, and intracellular parts. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found that 65 genes were differentially expressed after cefquinome sulfate treatment, of which 35 genes were significantly upregulated and 30 genes were significantly downregulated. Five genes, sdhB, sdhA, pdhA, lpdA, and sucC, may be involved in network regulation. This study revealed the cross-regulation of multiple metabolic pathway networks and the targets of network regulation of S. aureus to produce adaptive drug resistance. The results will provide guidance for clinical drug use in animals infected with S. aureus. | 2025 | 40005696 |
| 8320 | 16 | 0.9992 | Immuno-physiological adaptations confer wax moth Galleria mellonella resistance to Bacillus thuringiensis. Microevolutionary mechanisms of resistance to a bacterial pathogen were explored in a population of the Greater wax moth, Galleria mellonella, selected for an 8.8-fold increased resistance against the entomopathogenic bacterium Bacillus thuringiensis (Bt) compared with a non-selected (suspectible) line. Defense strategies of the resistant and susceptible insect lines were compared to uncover mechanisms underpinning resistance, and the possible cost of those survival strategies. In the uninfected state, resistant insects exhibited enhanced basal expression of genes related to regeneration and amelioration of Bt toxin activity in the midgut. In addition, these insects also exhibited elevated activity of genes linked to inflammation/stress management and immune defense in the fat body. Following oral infection with Bt, the expression of these genes was further elevated in the fat body and midgut of both lines and to a greater extent some of them in resistant line than the susceptible line. This gene expression analysis reveals a pattern of resistance mechanisms targeted to sites damaged by Bt with the insect placing greater emphasis on tissue repair as revealed by elevated expression of these genes in both the fat body and midgut epithelium. Unlike the susceptible insects, Bt infection significantly reduced the diversity and richness (abundance) of the gut microbiota in the resistant insects. These observations suggest that the resistant line not only has a more intact midgut but is secreting antimicrobial factors into the gut lumen which not only mitigate Bt activity but also affects the viability of other gut bacteria. Remarkably the resistant line employs multifactorial adaptations for resistance to Bt without any detected negative trade off since the insects exhibited higher fecundity. | 2016 | 27029421 |
| 8967 | 17 | 0.9992 | Distinct transcriptomic response of S. coelicolor to ciprofloxacin in a nutrient-rich environment. With the rising threat of anti-microbial resistance (AMR), there is an urgent need to enhance efficacy of existing antibiotics. Understanding the myriad mechanisms through which bacteria evade these drugs would be of immense value to designing novel strategies against them. Streptomyces coelicolor A3(2) M145 belongs to the actinomyctes species that are responsible for more than two-thirds of antibiotics. This group of bacteria therefore encodes for various mechanisms that can resist both endogenous and non-endogenous antibiotics. In an earlier study, we had studied the transcriptomic response of these bacteria to ciprofloxacin, when cultured in a minimal media. In this work, we investigate why the minimum inhibitory concentration of the drug increases by fourfold when the bacteria are grown in a nutrient-rich media. Through transcriptomic, biochemical, and microscopic studies, we show that S. coelicolor responds to ciprofloxacin in a concentration-dependent manner. While, sub-inhibitory concentration of the drug primarily causes oxidative stress, the inhibitory concentration of ciprofloxacin evokes a more severe genome-wide response in the cell, which ranges from the familiar upregulation of the SOS response and DNA repair pathways to the widespread alterations in the central metabolism pathway to accommodate the increased needs of nucleotides and other precursors. Further, the upregulation of peptidoglycan synthesis genes, along with microscopy images, suggest alterations in the cell morphology to increase fitness of the bacteria during the antibiotic stress. The data also points to the enhanced efflux activity in cells cultured in rich media that contributes significantly towards reducing intracellular drug concentration and thus promotes survival. | 2018 | 30327831 |
| 8966 | 18 | 0.9992 | Gene expression profile of Campylobacter jejuni in response to macrolide antibiotics. Campylobacter jejuni is a foodborne pathogen that causes gastroenteritis in humans and has developed resistance to various antibiotics. The primary objective of this research was to examine the network of antibiotic resistance in C. jejuni. The study involved the wild and antibiotic-resistant strains placed in the presence and absence of antibiotics to review their gene expression profiles in response to ciprofloxacin via microarray. Differentially expressed genes (DEGs) analysis and Protein-Protein Interaction (PPI) Network studies were performed for these genes. The results showed that the resistance network of C. jejuni is modular, with different genes involved in bacterial motility, capsule synthesis, efflux, and amino acid and sugar synthesis. Antibiotic treatment resulted in the down-regulation of cluster genes related to translation, flagellum formation, and chemotaxis. In contrast, cluster genes involved in homeostasis, capsule formation, and cation efflux were up-regulated. The study also found that macrolide antibiotics inhibit the progression of C. jejuni infection by inactivating topoisomerase enzymes and increasing the activity of epimerase enzymes, trying to compensate for the effect of DNA twisting. Then, the bacterium limits the movement to conserve energy. Identifying the antibiotic resistance network in C. jejuni can aid in developing drugs to combat these bacteria. Genes involved in cell division, capsule formation, and substance transport may be potential targets for inhibitory drugs. Future research must be directed toward comprehending the underlying mechanisms contributing to the modularity of antibiotic resistance and developing strategies to disrupt and mitigate the growing threat of antibiotic resistance effectively. | 2024 | 38393387 |
| 8949 | 19 | 0.9992 | Potential Risk of Spreading Resistance Genes within Extracellular-DNA-Dependent Biofilms of Streptococcus mutans in Response to Cell Envelope Stress Induced by Sub-MICs of Bacitracin. Antibiotics are used to treat or prevent some types of bacterial infection. The inappropriate use of antibiotics unnecessarily promotes antibiotic resistance and increases resistant bacteria, and controlling these bacteria is difficult. While the emergence of drug-resistant bacteria is a serious problem, the behavior of drug-resistant bacteria is not fully understood. In this study, we investigated the behavior of Streptococcus mutans, a major etiological agent of dental caries that is resistant to bacitracin, which is a cell wall-targeting antibiotic, and focused on biofilm formation in the presence of bacitracin. S. mutans UA159 most strongly induced extracellular DNA (eDNA)-dependent biofilm formation in the presence of bacitracin at 1/8× MIC. The ΔmbrC and ΔmbrD mutant strains, which lack bacitracin resistance, also formed biofilms in the presence of bacitracin at 1/2× MIC. This difference between the wild type and the mutants was caused by the induction of atlA expression in the mid-log phase. We also revealed that certain rgp genes involved in the synthesis of rhamnose-glucose polysaccharide related to cell wall synthesis were downregulated by bacitracin. In addition, glucosyltransferase-I was also involved in eDNA-dependent biofilm formation. The biofilm led to increased transformation efficiencies and promoted horizontal gene transfer. Biofilms were also induced by ampicillin and vancomycin, antibiotics targeting cell wall synthesis, suggesting that cell envelope stress triggers biofilm formation. Therefore, the expression of the atlA and rgp genes is regulated by S. mutans, which forms eDNA-dependent biofilms, promoting horizontal gene transfer in response to cell envelope stress induced by sub-MICs of antibiotics.IMPORTANCE Antibiotics have been reported to induce biofilm formation in many bacteria at subinhibitory concentrations. Accordingly, it is conceivable that the MIC against drug-sensitive bacteria may promote biofilm formation of resistant bacteria. Since drug-resistant bacteria have spread, it is important to understand the behavior of resistant bacteria. Streptococcus mutans is bacitracin resistant, and the 1/8× MIC of bacitracin, which is a cell wall-targeted antibiotic, induced eDNA-dependent biofilm formation. The ΔmbrC and ΔmbrD strains, which are not resistant to bacitracin, also formed biofilms in the presence of bacitracin at 1/2× MIC, and biofilms of both the wild type and mutants promoted horizontal gene transfer. Another cell wall-targeted antibiotic, vancomycin, showed effects on biofilms and gene transfer similar to those of bacitracin. Thus, treatment with cell wall-targeted antibiotics may promote the spread of drug-resistant genes in biofilms. Therefore, the behavior of resistant bacteria in the presence of antibiotics at sub-MICs should be investigated when using antibiotics. | 2020 | 32532873 |