Chlorine disinfectants promote microbial resistance in Pseudomonas sp. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
898301.0000Chlorine disinfectants promote microbial resistance in Pseudomonas sp. The substantial use of disinfectants has increased antibiotic resistance, thereby mediating serious ecological safety issues worldwide. Accumulating studies have reported the role of chlorine disinfectants in promoting disinfectant resistance. The present study sought to investigate the role of chlorine disinfectants in developing multiple resistance in Pseudomonas sp. isolated from the river through antioxidant enzyme measurement, global transcriptional analyses, Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results demonstrated that 100 mg/L sodium hypochlorite could increase disinfectant resistance and antibiotic resistance. The SOS response (a conserved response to DNA damage) triggered by oxidative stress makes bacteria resistant to chlorine. An increase in antibiotic resistance could be attributed to a decreased membrane permeability, increased expression of MuxABC-OpmB efflux pump, beta-lactamase, and antioxidant enzymes. Additionally, KEGG enrichment analysis suggested that the differentially expressed genes were highly enriched in the metabolic pathways. In summary, the study results revealed the impact of chlorine disinfectants in promoting microbial disinfectant resistance and antibiotic resistance. This study will provide insight into disinfectant resistance mechanisms.202134010624
898110.9998Response mechanisms of different antibiotic-resistant bacteria with different resistance action targets to the stress from photocatalytic oxidation. The stress response of antibiotic-resistant bacteria (ARB) and the spread of antibiotic resistance genes (ARGs) pose a serious threat to the aquatic environment and human beings. This study mainly explored the effect of the heterogeneous photocatalytic oxidation (UVA-TiO(2) system) on the stress response mechanism of ARB with different antibiotic resistance action targets, including the cell wall, proteins, DNA, RNA, folate and the cell membrane. Results indicate that the stress response mechanism of tetracycline- and sulfamethoxazole-resistant E. coli DH5α, which targets the synthesis of protein and folate, could rapidly induce global regulators by the overexpression of relative antibiotic resistance action target genes. Different stress response systems were mediated via cross-protection mechanism, causing stronger tolerance to an adverse environment than other ARB. Moreover, the photocatalytic inactivation mechanism of bacterial cells and a graded response of cellular stress mechanism caused differences in the intensity of the stress mechanism of antibiotic resistance action targets. E. coli DH5α resistant to cefotaxime and polymyxin, targeting synthesis of the cell wall and cell membrane, respectively, could confer greater advantages to bacterial survival and higher conjugative transfer frequency than E. coli DH5α resistant to nalidixic acid and rifampicin, which target the synthesis of DNA and RNA, respectively. This new perspective provides detailed information on the practical application of photocatalytic oxidation for inactivating ARB and hampering the spreading of ARGs in the aquatic environment.202235453030
677320.9997Regulation of intracellular process by two-component systems: Exploring the mechanism of plasmid-mediated conjugative transfer. Plasmid-mediated conjugative transfer facilitates the dissemination of antibiotic resistance, yet the comprehensive regulatory mechanisms governing this process remain elusive. Herein, we established pure bacteria and activated sludge conjugation system to investigate the regulatory mechanisms of conjugative transfer, leveraging metformin as an exogenous agent. Transcriptomic analysis unveiled that substantial upregulation of genes associated with the two-component system (e.g., AcrB/AcrA, EnvZ/Omp, and CpxA/CpxR) upon exposure to metformin. Furthermore, downstream regulators of the two-component system, including reactive oxygen species (ROS), cytoplasmic membrane permeability, and adenosine triphosphate (ATP) production, were enhanced by 1.7, 1.4 and 1.1 times, respectively, compared to the control group under 0.1 mg/L metformin exposure. Moreover, flow sorting and high-throughput sequencing revealed increased microbial community diversity among transconjugants in activated sludge systems. Notably, the antibacterial potential of human pathogenic bacteria (e.g., Bacteroides, Escherichia-Shigella, and Lactobacillus) was augmented, posing a potential threat to human health. Our findings shed light on the spread of antibiotic resistance bacteria and assess the ecological risks associated with plasmid-mediated conjugative transfer in wastewater treatment systems.202438838482
674530.9997Decreased Antibiotic Susceptibility in Pseudomonas aeruginosa Surviving UV Irradition. Given its excellent performance against the pathogens, UV disinfection has been applied broadly in different fields. However, only limited studies have comprehensively investigated the response of bacteria surviving UV irradiation to the environmental antibiotic stress. Here, we investigated the antibiotic susceptibility of Pseudomonas aeruginosa suffering from the UV irradiation. Our results revealed that UV exposure may decrease the susceptibility to tetracycline, ciprofloxacin, and polymyxin B in the survival P. aeruginosa. Mechanistically, UV exposure causes oxidative stress in P. aeruginosa and consequently induces dysregulation of genes contributed to the related antibiotic resistance genes. These results revealed that the insufficient ultraviolet radiation dose may result in the decreased antibiotic susceptibility in the pathogens, thus posing potential threats to the environment and human health.202133613479
898440.9997Environmental peracetic acid increases antibiotic resistance in Streptococcus Suis. Disinfectants in the environment have important impacts on the occurrence of antibiotic resistant bacteria, posing a new threat to public health. Streptococcus suis (S. suis) can survive in the environment for three months and carries antibiotic resistance genes. However, it remains unclear whether disinfectants directly induce antibiotic resistance in S. suis. Here, we conducted induction experiments on the S. suis standard strain (CVCC609) with eight disinfectants at different concentrations and investigated their effects on the antibiotic resistance mechanism of S. suis. The results showed that only 64 mg L(-1) peracetic acid (PAA) led to an increase (8-fold) in S. suis resistance to tiamulin (TIA) with genetic stability. The treatment also induced significant changes in the morphology and capsule of the mutant strains, as well as triggered an increase in reactive oxygen species and biofilms in bacterial cells, resulting in an emergency response. Moreover, PAA significantly decreased the cell membrane permeability and led to slight changes in the adenosine triphosphate level. The key differentially expressed genes are closely related to these resistance mechanisms. These results reveal the co-selection mechanism of S. suis resistance to PAA and TIA, and highlight the importance of standardized application of disinfectants in livestock and poultry farming.202540286665
677250.9997Disinfectants facilitate the transformation of exogenous antibiotic resistance genes via multiple pathways. The prevalence and spread of multidrug-resistant (MDR) bacteria pose a global challenge to public health. Natural transformation is one of the essential ways for horizontal transfer of antibiotic resistance genes (ARGs). Although disinfectants are frequently used during COVID-19, little is known about whether these disinfectants are associated with the transformation of plasmid-borne ARGs. In our study, we assessed the effect of some disinfectants on bacterial transformation using resistance plasmids as extracellular DNA and E. coli DH5α as the recipient bacteria. The results showed that these disinfectants at environmentally relevant concentrations, including benzalkonium bromide (BB), benzalkonium chloride (BC) and polyhexamethylene guanidine hydrochloride (PHMG), significantly enhanced the transformation of plasmid-encoded ARGs. Furthermore, we investigated the mechanisms underlying the promotive effect of disinfectants on transformation. We revealed that the addition of disinfectants significantly increased the membrane permeability and promoted membrane-related genes expression. Moreover, disinfectants led to the boosted bacterial respiration, ATP production and flagellum motility, as well as increased expression of bacterial secretion system-related genes. Together, our findings shed insights into the spread of ARGs through bacterial transformation and indicate potential risks associated with the widespread use of disinfectants.202336857920
674660.9997Environmental concentration of the quaternary ammonium disinfectant benzalkonium chloride strongly induces resistance gene profiles in fish. Disinfectants are non-antibiotic biocides that have been used extensively in daily life, particularly since the onset of the COVID-19 pandemic. However, their effect on drug resistance has not received sufficient attention. Here, marine medaka were subjected to an environmental concentration (10 μg/L) of benzalkonium chloride (BAC), sulfamethazine (SMZ), and their combination, aiming to elucidate their contributions to antibiotic resistance. Overall, 10 μg/L BAC exhibited a stronger induction potential for multiple antibiotic resistance genes (ARGs) relative to a similar level of SMZ. Specifically, tetracycline resistance genes were readily induced, regardless of exposure to BAC, SMZ, or their combination. BAC exhibited a more pronounced induction of ARGs than SMZ and showed a stronger potential to stimulate multidrug resistance. SMZ and BAC induced distinct virulence factors. Bacteria increased pathogenicity primarily through biofilm formation and enhanced community sensing under SMZ exposure, whereas iron acquisition and the production of reactive oxygen species appeared to be the main mechanisms by which bacteria evaded host defenses under BAC exposure. A greater number of ARGs demonstrated a significant positive correlation with virulence factors following BAC exposure compared to both the SMZ exposure group and the co-exposure group, which further confirmed the strong ability of BAC to induce multidrug resistance. In summary, owing to the typically unregulated and low-dose use of disinfectants in daily life and their pseudo-persistence in the environment, their potential to induce resistance may exceed that of antibiotics. Therefore, increased attention and preventive measures are required to address their resistance-inducing effects.202540073566
898270.9997Ampicillin Exposure and Glutathione Deficiency Synergistically Promote Conjugative Transfer of Plasmid-Borne Antibiotic Resistance Genes. Plasmid-mediated conjugation is an important pathway for the spread of antibiotic resistance genes (ARGs), posing a significant risk to global public health. It has been reported that the conjugative transfer of ARGs could be enhanced by oxidative stress. Whether endogenous glutathione (GSH), a major non-protein thiol compound involved in cellular redox homeostasis, influences conjugative transfer is unknown. In this study, we show that the deletion of the GSH biosynthesis gene gshA and ampicillin exposure synergistically promoted the conjugative transfer of plasmid RP4 bearing multiple ARGs from the soil bacterium Enterobacter sp. CZ-1 to Escherichia coli S17-1λπ in co-culture experiments and to diverse soil bacteria belonging to eight phyla, including some potential human pathogens, in a soil incubation experiment. The deletion of gshA increased ROS generation and cell membrane permeability, and upregulated the expression of the genes involved in intracellular oxidative stress regulation, membrane permeability, plasmid replication, and the SOS response process, especially under ampicillin exposure. These results suggest that endogenous GSH is an important factor affecting the spread of plasmid-borne ARGs. Exposure to antibiotics and environmental stresses that cause a depletion of endogenous GSH in vivo are likely to increase the risk of ARG dissemination in the environment.202540346915
963480.9997New perspectives on bacterial chlorine resistance: Phages encoding chlorine resistance genes improve bacterial adaptation. Bacterial resistance to chlorine disinfectant reduces its effectiveness in killing pathogenic bacteria and poses a severe threat to environmental and health safety. The interaction between bacteria and phages is the most frequent biological activity in Earth's biosphere, but little is known about what role and mechanism phages play in the resistance of bacterial communities to chlorine disinfectants. Here, we investigated the changes in the abundance, activity and function of the bacterial-phage community under the effect of chlorine disinfectants in a 92-day running anaerobic-anoxic-oxic system, using metagenomics and metatranscriptomics sequencing. We found that transcriptional activities of both bacteria and phage are highly sensitive to chlorine disinfectants, although their relative abundance was not obviously altered. The increase in both phage diversity and the ratio of temperate to lytic phages' average activity indicated phages, especially temperate, could play a crucial role in the response to chlorine disinfectants. Interestingly, the phages that carry chlorine resistance genes (CRGs) were the drivers of the phage and microbial community when chlorine disinfectants were present, but they followed the dynamics of community in the absence of chlorine disinfectants. Based on the association bipartite network, we further found that phages directly mediated the horizontal transfer of CRGs among bacteria, facilitating the spread of CRGs in the bacterial community. Moreover, the 4 CRGs related to cell wall repair, redox balance regulation, and efflux pumps that were carried by the phages but lacking in the hosts suggest the potential compensatory effects of the phage for the chlorine resistance of their hosts. Our findings reveal the important role of phages in improving the resistance of bacterial communities to chlorine disinfectants, providing a new perspective on the co-evolution of phages and bacteria to adapt to environments.202540245807
851490.9997Graphene oxide influences transfer of plasmid-mediated antibiotic resistance genes into plants. As an emerging contaminant, antibiotic resistance genes (ARGs) are raising concerns about its significant threat to public health. Meanwhile, graphene oxide (GO), which also has a potential ecological damage with increasingly entering the environment, has a great influence on the transfer of ARGs. However, little is known about the effects mechanisms of GO on the migration of antibiotic resistance genes (ARGs) from bacteria into plants. In this study, we investigated the influence of GO on the transfer of ARGs carried by RP4 plasmids from Bacillus subtilis into rice plants. Our results showed that the presence of GO at concentrations ranging from 0 to 400 mg L(-1) significantly reduced the transfer of ARGs into rice roots by 13-71 %. Moreover, the migration of RP4 from the roots to aboveground parts was significantly impaired by GO. These effects may be attributed to several factors. First, higher GO concentrations led to low pH in the culture solution, resulting in a substantial decrease in the number of antibiotic-resistant bacteria. Second, GO induced oxidative stress in rice, as indicated by enhanced Evans blue dye staining, and elevated levels of malondialdehyde, nitric oxide, and phenylalanine ammonia-lyase activity. The oxidative stress negatively affected plant growth, as demonstrated by the reduced fresh weight and altered lignin content in the rice. Microscopic observations confirmed the entry of GO into root cells but not leaf mesophyll cells. Furthermore, potential recipients of RP4 plasmid strains in rice after co-cultivation experiments were identified, including Bacillus subtilis, Bacillus amyloliquefaciens, and Bacillus cereus. These findings clarify the influence of GO on ARGs in the bacteria-plant system and emphasize the need to consider its potential ecological risks.202437979849
8961100.9997Effect and mechanism of quorum sensing on horizontal transfer of multidrug plasmid RP4 in BAC biofilm. The widespread emergence of antibiotic resistance genes (ARGs) in drinking water systems endangers human health, and may be exacerbated by their horizontal gene transfer (HGT) among microbiota. In our previous study, Quorum sensing (QS) molecules produced by bacteria from biological activated carbon (BAC) biofilms were demonstrated to influence the transfer efficiency of a model conjugative plasmid, here RP4. In this study, we further explored the effect and mechanism of QS on conjugation transfer. The results revealed that Acyl-homoserine lactones producing (AHL-producing) bacteria isolated from BAC biofilm play a role in the propagation of ARGs. We selected several quorum sensing inhibitors (QSIs) to study their effects on AHL-producing bacteria, including the formation of biofilm and the regulating effect on conjugation transfer. In addition, the possible molecular mechanisms for AHLs that promote conjugative transfer were attributable to enhancing the mRNA expression, which involved altered expressions of conjugation-related genes. We also found that QSIs could inhibit conjugative transfer by downregulating the conjugation-relevant genes. We believe that this is the first insightful exploration of the mechanism by which AHLs will facilitate and QSIs will inhibit the conjugative transfer of ARGs. These results provide creative insight into ARG pollution control that involves blocking QS during BAC treatment in drinking water systems.202031493577
6751110.9997Assessment of chlorine and hydrogen peroxide on airborne bacteria: Disinfection efficiency and induction of antibiotic resistance. Airborne pathogens severely threaten public health worldwide. Air disinfection is essential to ensure public health. However, excessive use of disinfectants may endanger environmental and ecological security due to the residual disinfectants and their by-products. This study systematically evaluated disinfection efficiency, induction of multidrug resistance, and the underlying mechanisms of disinfectants (NaClO and H(2)O(2)) on airborne bacteria. The results showed that airborne bacteria were effectively inactivated by atomized NaClO (>160 μg/L) and H(2)O(2) (>320 μg/L) after 15 min. However, some bacteria still survived after disinfection by atomized NaClO (0-80 μg/L) and H(2)O(2) (0-160 μg/L), and they exhibited significant increases in antibiotic resistance. The whole-genome sequencing of the resistant bacteria revealed distinct mutations that were responsible for both antibiotic resistance and virulence. This study also provided evidences and insights into possible mechanisms underlying the induction of antibiotic resistance by air disinfection, which involved intracellular reactive oxygen species formation, oxidative stress responses, alterations in bacterial membranes, activation of efflux pumps, and the thickening of biofilms. The present results also shed light on the role of air disinfection in inducing antibiotic resistance, which could be a crucial factor contributing to the global spread of antibiotic resistance through the air.202438823102
6738120.9997Combined effects of microplastics and antibiotic-resistant bacteria on Daphnia magna growth and expression of functional genes. Microplastics could act as vectors for the transport of harmful bacteria, such as pathogens and antibiotic resistance bacteria (ARB), but their combined effects have not been reported yet. Here, ARB Shigella flexneri with sulfonamides resistance and micro-polystyrene (micro-PS) were used to investigate their possible combined effects on the growth and expression of functional genes in Daphnia magna. Results showed that micro-PS colonized with S. flexneri were ingested by D. magna and blocked in their intestine after 24 h exposure. Changes were observed in the life history and morphology of D. magna, as well as the expression of functional genes in all treatments, but with no difference in the survival rate. We also determined the expression of six functional genes involved in energy and metabolism (arginine kinase, AK) and oxidative stress response (thioredoxin reductase, TRxR, catalase, CAT, and glutathione S-transferases, GSTs), as well as in growth, development and reproduction (vitellogenin, Vtg1 and ecdysone receptor, EcR). AK and Vtg1 did not show significant differences, however, EcR was down-regulated and the other three genes (TRxR, CAT, GSTs) were up-regulated in the combined-treated group. Antibiotic resistance gene (ARGs) sul1 was detected when exposed to micro-PS colonized with S. flexneri., suggesting that D. magna could acquire resistance genes through microplastic biofilms. These results indicated that MPs could act as a carrier of ARB to transfer ARGs into D. magna, and affect the life history, morphology, and the expression of related functional genes of D. magna, to adapt to the stress caused by MPs and ARB.202337709097
6775130.9997Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. The spread of antibiotic resistance has become a major concern for public health. As emerging contaminants, various metallic nanoparticles (NPs) and ionic heavy metals have been ubiquitously detected in various environments. Although previous studies have indicated NPs and ionic heavy metals could exhibit co-selection effects for antibiotic resistance, little is known about whether and how they could promote antibiotic resistance spread via horizontal gene transfer across bacterial genera. This study, we report both CuO NPs and copper ions (Cu(2+)) could stimulate the conjugative transfer of multiple-drug resistance genes. When exposing bacteria to CuO NPs or Cu(2+) at environmental-relevant and sub-inhibitory concentrations (e.g., 1-100 μmol/L), conjugation frequencies of plasmid-encoded antibiotic resistance genes across genera (i.e., from Escherichia coli to Pseudomonas putida) were significantly enhanced (p < 0.05). The over-production of reactive oxygen species played a crucial role in promoting conjugative transfer. Genome-wide RNA and protein sequencing suggested expressional levels of genes and proteins related to oxidative stress, cell membrane permeability, and pilus generation were significantly up-regulated under CuO NPs and Cu(2+) exposure (p < 0.05). This study provides insights in the contributions of NPs and heavy metals on the spread of antibiotic resistance.201931158594
8980140.9997Omics analyses indicate sdhC/D act as hubs of early response of E. coli to antibiotics. In recent years, the phenomenon of microbial resistance has become increasingly serious. The generation of reactive oxygen species (ROS) during the bactericidal process of antibiotics has attracted great interest, but little research has been done on the generation of ROS in the early stage of antibiotic action. We confirmed the rapid production of ROS by flow cytometry and transmission electron microscopy (TEM). GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis indicated that the oxidative phosphorylation pathway is the key pathway of ROS production. Protein-protein interaction (PPI) network results indicate that sdhC/D are key genes in the oxidative phosphorylation pathway. The overexpression of sdhC/D resulted in a lower survival rate than the control strain after antibiotic treatments, which might be due to excess ROS induced by sdhC/D overexpression. The production of superoxide anion in the overexpress strain was significantly higher than that in the control strain, which further verified the importance of sdhC/D in the ROS release of bacteria. Current results showed that bacteria produce large amounts of ROS in the early stage of gentamicin and ampicillin action, and the regulation patterns of genes in the key pathway were consistent. sdhC/D are key genes in the early ROS release process of bacteria. Our study provides a basis for the search of ROS-related enhancers of antimicrobial action.202235933647
8345150.9997Antibiotic Resistance via Bacterial Cell Shape-Shifting. Bacteria have evolved to develop multiple strategies for antibiotic resistance by effectively reducing intracellular antibiotic concentrations or antibiotic binding affinities, but the role of cell morphology in antibiotic resistance remains poorly understood. By analyzing cell morphological data for different bacterial species under antibiotic stress, we find that bacteria increase or decrease the cell surface-to-volume ratio depending on the antibiotic target. Using quantitative modeling, we show that by reducing the surface-to-volume ratio, bacteria can effectively reduce the intracellular antibiotic concentration by decreasing antibiotic influx. The model further predicts that bacteria can increase the surface-to-volume ratio to induce the dilution of membrane-targeting antibiotics, in agreement with experimental data. Using a whole-cell model for the regulation of cell shape and growth by antibiotics, we predict shape transformations that bacteria can utilize to increase their fitness in the presence of antibiotics. We conclude by discussing additional pathways for antibiotic resistance that may act in synergy with shape-induced resistance.202235616332
6742160.9997Influence of epiphytic bacteria on arsenic metabolism in Hydrilla verticillata. Microbial assemblages such as biofilms around aquatic plants play a major role in arsenic (As) cycling, which has often been overlooked in previous studies. In this study, arsenite (As(III))-oxidizing, arsenate (As(V))-reducing and As(III)-methylating bacteria were found to coexist in the phyllosphere of Hydrilla verticillata, and their relative activities were shown to determine As speciation, accumulation and efflux. When exposed to As(III), As(III) oxidation was not observed in treatment H(III)-B, whereas treatment H(III)+B showed a significant As(III) oxidation ability, thereby indicating that epiphytic bacteria displayed a substantial As(III) oxidation ability. When exposed to As(V), the medium only contained 5.89% As(III) after 48 h of treatment H(V)-B, while an As(III) content of 86.72% was observed after treatment H(V)+B, thereby indicating that the elevated As(III) in the medium probably originated from As(V) reduction by epiphytic bacteria. Our data also indicated that oxidizing bacteria decreased the As accumulation (by approximately 64.44% compared with that of treatment H(III)-B) in plants, while reducing bacteria played a critical role in increasing As accumulation (by approximately 3.31-fold compared with that of treatment H(V)-B) in plants. Regardless of whether As(III) or As(V) was supplied, As(III) was dominant in the plant tissue (over 75%). Furthermore, the presence of epiphytic bacteria enhanced As efflux by approximately 9-fold. Metagenomic analysis revealed highly diverse As metabolism genes in epiphytic bacterial community, particularly those related to energetic metabolism (aioAB), and As resistance (arsABCR, acr3, arsM). Phylogenetic analysis of As metabolism genes revealed evidence of both vertical inheritance and horizontal gene transfer, which might have contributed to the evolution of the As metabolism genes. Taken together, our research suggested that the diversity of As metabolism genes in epiphytic bacterial community is associated with aquatic submerged macrophytes which may play an important role in As biogeochemistry in aquatic environments.202032114122
6783170.9997Mechanism of earthworm coelomic fluid inhibits multidrug-resistant bacteria and blocks resistance transmission. Antibiotic resistance is a growing global health crisis, especially the spread of multi-drug resistance. In this study, the inhibitory effects of earthworm coelomic fluid (ECF) on multidrug-resistant bacteria (MRB) were investigated during employing vermicomposting to treat excess sludge generated from wastewater treatment. The results demonstrated that the ECF was able to inhibit, even completely decompose the MRB. Notably, when the ECF concentration reached 1.0 mg/mL, the intracellular reactive oxygen species (ROS) level increased by 46.7 %, while cell viability decreased by 55.2 % compared to the control, demonstrating that ECF exerts strong antibacterial activity by inducing oxidative stress and disrupting cellular homeostasis. Furthermore, ECF effectively degraded the DNA of MRB, with removal rates of aphA, KanR, and tetA reaching 51.8 %, 42.3 %, and 35.0 %, respectively, indicating its ability to eliminate resistance genes and hinder their potential transfer. Additionally, the upregulation of genes involved in signaling, DNA replication and repair, and energy metabolism pathways suggests a systemic stress response in MRB, further supporting the broad-spectrum inhibitory effects of ECF on bacterial viability and resistance maintenance. Taken together, these findings may open a door to naturally and ecologically combat antibiotic resistance in pollutants control in wastewater treatment.202540706790
8956180.9997Biofilm characteristics and transcriptomic profiling of Acinetobacter johnsonii defines signatures for planktonic and biofilm cells. Most bacteria in the natural environment have a biofilm mode of life, which is intrinsically tolerant to antibiotics. While until now, the knowledge of biofilm formation by Acinetobacter johnsonii is not well understood. In this study, the characteristics and the effect of a sub-inhibitory concentration of antibiotic on A. johnsonii biofilm and planktonic cells were determined. We discovered a positive relationship between biofilm formation and tetracycline resistance, and biofilms rapidly evolve resistance to tetracycline they are treated with. Persister cells commonly exist in both planktonic and biofilm cells, with a higher frequency in the latter. Further transcriptomic analysis speculates that the overexpression of multidrug resistance genes and stress genes were mainly answered to sub lethal concentration of tetracycline in planktonic cells, and the lower metabolic levels after biofilm formation result in high resistance level of biofilm cells to tetracycline. Altogether, these data suggest that A. johnsonii can adjust its phenotype when grown as biofilm and change its metabolism under antibiotic stress, and provide implications for subsequent biofilm control.202235718162
8953190.9997Evolution of antibiotic resistance impacts optimal temperature and growth rate in Escherichia coli and Staphylococcus epidermidis. AIMS: Bacterial response to temperature changes can influence their pathogenicity to plants and humans. Changes in temperature can affect cellular and physiological responses in bacteria that can in turn affect the evolution and prevalence of antibiotic-resistance genes. Yet, how antibiotic-resistance genes influence microbial temperature response is poorly understood. METHODS AND RESULTS: We examined growth rates and physiological responses to temperature in two species-E. coli and Staph. epidermidis-after evolved resistance to 13 antibiotics. We found that evolved resistance results in species-, strain- and antibiotic-specific shifts in optimal temperature. When E. coli evolves resistance to nucleic acid and cell wall inhibitors, their optimal growth temperature decreases, and when Staph. epidermidis and E. coli evolve resistance to protein synthesis and their optimal temperature increases. Intriguingly, when Staph. epidermidis evolves resistance to Teicoplanin, fitness also increases in drug-free environments, independent of temperature response. CONCLUSION: Our results highlight how the complexity of antibiotic resistance is amplified when considering physiological responses to temperature. SIGNIFICANCE: Bacteria continuously respond to changing temperatures-whether through increased body temperature during fever, climate change or other factors. It is crucial to understand the interactions between antibiotic resistance and temperature.202236070219