# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 897 | 0 | 1.0000 | Prevalence of class 1 integrons and plasmid-mediated qnr-genes among Enterobacter isolates obtained from hospitalized patients in Ahvaz, Iran. Quinolones are frequently used classes of antimicrobials in hospitals, crucial for the treatment of infections caused by Gram-negative bacteria. The inappropriate use of quinolones and other antimicrobial agents for the treatment of bacterial infections leads to a significant increase of resistant isolates. The acquisition of antimicrobial resistance may be related to achievement of resistance determinant genes mediated by plasmids, transposons and gene cassettes in integrons. The objective of this cross-sectional study, conducted from December 2015 to July 2016 at two teaching hospitals in Ahvaz, southern Iran, was to screen for the presence of class 1 integrons and quinolone resistance genes in clinical isolates of Enterobacter spp. In all, 152 non-duplicated Enterobacter isolates were collected from clinical specimens and identified as Enterobacter spp. using standard microbiological methods. Antimicrobial susceptibility test was determined using the disc diffusion method according to the CLSI recommendation. Determination of class 1 integrons and PMQR genes was assessed by PCR. Analysis of antibiotic susceptibility tests showed that the highest antibiotic resistance was toward ciprofloxacin (55.3%), while the lowest level was observed against meropenem (34.9%). Moreover, 47.4% (72/152) and 29% (44/152) of isolates were positive for class 1 integron and quinolone resistance genes, respectively. The relative frequencies of antibiotic resistance were significantly higher among class 1 integron-positive isolates. In summary, our results highlight the importance of PMQR genes in the emergence of quinolone-resistant Enterobacter isolates. Moreover, it seems that class 1 integrons have a widespread distribution among Enterobacter isolates and have clinical relevance to multiple-drug-resistant isolates. | 2017 | 29286015 |
| 2150 | 1 | 0.9999 | Analysis of drug resistance genes of integrons in clinical isolates of Escherichia coli from elderly bloodstream infections. This experiment was carried out to provide a basis for the treatment of clinical bloodstream infections by analyzing the drug resistance characteristics and integrated gene distribution of Escherichia coli in bloodstream infections in elderly patients. For this aim, E. coli were collected for bacterial identification and drug sensitivity testing from bloodstream infections in elderly patients in the hospital from January 2016 to December 2019. ESBLs positive strains were assayed for genotypes and their integron carriage rates by PCR amplification. The characteristics and differences of various genotype rates were compared and analyzed. Results showed that a total of 230 E. coli strains were isolated. The detection rate of ESBLs-producing bacteria was 37.39 %. ESBLs-producing E. coli showed a high rate of resistance to cefepime, levofloxacin, cotrimoxazole, and ticarcillin/clavulanic acid (>40%). The resistance rate of 230 strains of E. coli to meropenem, minocycline, amikacin, gentamicin and cefoxitin was less than 20%. Among the ESBLs-producing E. coli in bloodstream infections in elderly patients, CTX-M-9 accounted for 27.91%, CTX-M-2 for 17.44%, and SHV for 13.95%. The detection rate of type I integrated genes was 41.30%, and type II and III integrated genes were not detected. ESBLs-producing genotyping-positive bacteria were detected with more than 50% of type I integrated genes. It was concluded that type I integrated genes in ESBLs-producing E. coli isolated from elderly patients carried resistance genes such as CTX-M-9 and CTX-M-2 aggravating multi-drug resistance in bacteria. | 2022 | 36227675 |
| 2973 | 2 | 0.9999 | An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: cross-sectional study. BACKGROUND: Uropathogenic Escherichia coli (UPEC) are one of the main bacteria causing urinary tract infections (UTIs). The rates of UPEC with high resistance towards antibiotics and multidrug-resistant bacteria have increased dramatically in recent years and could difficult the treatment. METHODS: The aim of the study was to determine multidrug-resistant bacteria, antibiotic resistance profile, virulence traits, and genetic background of 110 E. coli isolated from community (79 isolates) and hospital-acquired (31 isolates) urinary tract infections. The plasmid-mediated quinolone resistance genes presence was also investigated. A subset of 18 isolates with a quinolone-resistance phenotype was examined for common virulence genes encoded in diarrheagenic and extra-intestinal pathogenic E. coli by a specific E. coli microarray. RESULTS: Female children were the group most affected by UTIs, which were mainly community-acquired. Resistance to trimethoprim-sulfamethoxazole, ampicillin, and ampicillin-sulbactam was most prevalent. A frequent occurrence of resistance toward ciprofloxacin (47.3%), levofloxacin (43.6%) and cephalosporins (27.6%) was observed. In addition, 63% of the strains were multidrug-resistant (MDR). Almost all the fluoroquinolone (FQ)-resistant strains showed MDR-phenotype. Isolates from male patients were associated to FQ-resistant and MDR-phenotype. Moreover, hospital-acquired infections were correlated to third generation cephalosporin and nitrofurantoin resistance and the presence of kpsMTII gene. Overall, fimH (71.8%) and fyuA (68.2%), had the highest prevalence as virulence genes among isolates. However, the profile of virulence genes displayed a great diversity, which included the presence of genes related to diarrheagenic E. coli. Out of 110 isolates, 25 isolates (22.7%) were positive to qnrA, 23 (20.9%) to qnrB, 7 (6.4%) to qnrS1, 7 (6.4%) to aac(6')lb-cr, 5 (4.5%) to qnrD, and 1 (0.9%) to qnrC genes. A total of 12.7% of the isolates harbored bla(CTX-M) genes, with bla(CTX-M-15) being the most prevalent. CONCLUSIONS: Urinary tract infection due to E. coli may be difficult to treat empirically due to high resistance to commonly used antibiotics. Continuous surveillance of multidrug resistant organisms and patterns of drug resistance are needed in order to prevent treatment failure and reduce selective pressure. These findings may help choosing more suitable treatments of UTI patients in this region of Mexico. | 2018 | 30041652 |
| 896 | 3 | 0.9999 | Retrospective Screening and Analysis of mcr-1 and bla (NDM) in Gram-Negative Bacteria in China, 2010-2019. Currently, Gram-negative bacteria have developed multidrug and broad-spectrum drug resistance, and the numbers of species and strains carrying mcr or bla (NDM) genes are increasing. In this study, mcr-1 and bla (NDM) distribution of 12,858 Gram-negative bacteria isolated from wildlife, patients, livestock, poultry and environment in 14 provinces of China from 2010 to 2019 and the antibiotics resistance in regard to polymyxins (polymyxin B and colistin) and carbapenems of positive strains were investigated. A total of 70 strains of 10 species carried the mcr-1 gene, positive rates of patients, livestock and poultry, and environmental strains were 0.62% (36/5,828), 4.07% (29/712), 5.43% (5/92), respectively. Six strains of 3 species carrying the bla (NDM) gene all came from patients 0.10% (6/5,828). Two new mcr-1 gene variants (GenBank: MK965883, MK965884) were identified, one of which contains premature stop codon. The drug susceptibility results showed that all mcr-1 carriers were sensitive to carbapenems, among which, 66 strains were resistant and 4 were sensitive to polymyxins. The strains with the bla (NDM) gene had different degrees of resistance to carbapenems and were sensitive to polymyxins. The findings that species carrying mcr-1 or bla (NDM) genes were limited and mostly normal flora of opportunistic or low pathogenic organisms indicated that transfer of mcr-1 and bla (NDM) genes between bacteria was relatively limited in China. The none detection among wildlife compared with other sources supports the speculation that the emergence of and increase in polymyxins and carbapenem-resistant strains was mainly related to the selective pressure of antibiotics. | 2020 | 32117144 |
| 1033 | 4 | 0.9999 | Antimicrobial Resistance and β-Lactamase Production in Clinically Significant Gram-Negative Bacteria Isolated from Hospital and Municipal Wastewater. Hospital and municipal wastewater contribute to the spread of antibiotic-resistant bacteria and genes in the environment. This study aimed to examine the antibiotic resistance and β-lactamase production in clinically significant Gram-negative bacteria isolated from hospital and municipal wastewater. The susceptibility of bacteria to antibiotics was tested using the disk diffusion method, and the presence of extended-spectrum β-lactamases (ESBL) and carbapenemases was determined using an enzyme inhibitor and standard multiplex PCR. Analysis of antimicrobial resistance of total bacterial strains (n = 23) revealed that most of them were resistant to cefotaxime (69.56%), imipenem (43.47%), meropenem (47.82%) and amoxicillin-clavulanate (43.47%), gentamicin (39.13%), cefepime and ciprofloxacin (34.78%), trimethoprim-sulfamethoxazole (30.43%). A total of 8 of 11 phenotypically confirmed isolates were found to have ESBL genes. The bla(TEM) gene was present in 2 of the isolates, while the bla(SHV) gene was found in 2 of the isolates. Furthermore, the bla(CTX-M) gene was found in 3 of the isolates. In one isolate, both the bla(TEM) and bla(SHV) genes were identified. Furthermore, of the 9 isolates that have been phenotypically confirmed to have carbapenemase, 3 were confirmed by PCR. Specifically, 2 isolates have the bla(OXA-48) type gene and 1 have the bla(NDM-1) gene. In conclusion, our investigation shows that there is a significant rate of bacteria that produce ESBL and carbapenemase, which can promote the spread of bacterial resistance. Identifying ESBL and carbapenemase production genes in wastewater samples and their resistance patterns can provide valuable data and guide the development of pathogen management strategies that could potentially help reduce the occurrence of multidrug resistance. | 2023 | 37107015 |
| 863 | 5 | 0.9999 | Colistin-resistance genes in Escherichia coli isolated from patients with urinary tract infections. BACKGROUND: The incidence of antimicrobial resistance is alarmingly high because it occurs in humans, environment, and animal sectors from a "One Health" viewpoint. The emergence of plasmid-carried mobile colistin-resistance (MCR) genes limits the efficacy of colistin, which is the last-line treatment for multidrug resistance (MDR) against gram-negative infections. OBJECTIVES: The current study aimed to investigate emergence of colistin-resistance (MCR 1-5) genes in E. coli isolated from patients with urinary tract infections (UTIs) in Jordan. METHODS: E. coli (n = 132) were collected from urine specimens. The E. coli isolated from human UTI patients were examined the resistance to colistin based on the presence of MCR (1-5). All isolates were tested against 20 antimicrobials using the standard disk diffusion method. The broth microdilution technique was used to analyze colistin resistance. In addition, the MCR (1-5) genes were detected using multiplex PCR. RESULTS: Out of the 132 isolates, 1 isolate was colistin-resistant, having a minimum inhibitory concentration of 8 μg/mL and possessing MCR-1. All the E. coli isolates showed high resistance to penicillin (100%), amoxicillin (79.55%), cephalexin (75.76%), nalidixic acid (62.88%), tetracycline (58.33%), or cefepime (53.79). CONCLUSION: To our knowledge, this is the first report on the presence of plasmid-coded MCR-1 in E. coli from a patient with UTIs in Jordan. This is a problematic finding because colistin is the last-line drug for the treatment of infections caused by MDR gram-negative bacteria. There is a crucial need to robustly utilize antibiotics to control and prevent the emergence and prevalence of colistin-resistance genes. | 2024 | 38865304 |
| 1034 | 6 | 0.9999 | Detection of metallo-beta-lactamase-producing genes bla(SPM) and bla(NDM) in Pseudomonas aeruginosa isolated from wastewater in Southern Brazil. Pseudomonas aeruginosa is commonly associated with the ability to acquire antimicrobial resistance. The surveillance of resistance genes in various environmental matrices has gained prominence in recent years, being seen as a potential threat to public health. The objective of this study was to investigate genes encoding metallo-beta-lactamases (MBLs), which confer resistance to carbapenems, in wastewater. Fifteen isolates of P. aeruginosa were collected for five months from samples obtained from a municipal wastewater treatment plant in Rio Grande do Sul. These isolates were subjected to disk diffusion testing using 10 different antimicrobials. Phenotypic enzymatic tests for MBLs were conducted, and positive isolates underwent DNA extraction and gene detection using the polymerase chain reaction. The resistance rate to ceftazidime was 100%, cefepime 73.3%, piperacillin-tazobactam 66.67%, imipenem 53.30%, levofloxacin 46.67%, tobramycin 40%, and ciprofloxacin and amikacin 13.33%. Both meropenem and aztreonam resistances were rare accounting for 6.60% of the tested isolates. Among these isolates, 20% were classified as multidrug-resistant and were found to carry the bla(NDM) and bla(SPM) genes. The results suggest that evaluating resistance genes in bacteria from urban raw sewage can provide data that assist in surveillance, as this environment can stimulate increased bacterial resistance. | 2024 | 38678422 |
| 870 | 7 | 0.9999 | Dissemination of multiple carbapenem-resistant clones of Acinetobacter baumannii in the Eastern District of Saudi Arabia. It has previously been shown that carbapenem-resistant Acinetobacter baumannii are frequently detected in Saudi Arabia. The present study aimed to identify the epidemiology and distribution of antibiotic resistance determinants in these bacteria. A total of 83 A. baumannii isolates were typed by pulsed-field gel electrophoresis (PFGE), and screened by PCR for carbapenemase genes and insertion sequences. Antibiotic sensitivity to imipenem, meropenem, tigecycline, and colistin were determined. Eight different PFGE groups were identified, and were spread across multiple hospitals. Many of the PFGE groups contained isolates belonging to World-wide clone 2. Carbapenem resistance or intermediate resistance was detected in 69% of isolates. The bla VIM gene was detected in 94% of isolates, while bla OXA-23-like genes were detected in 58%. The data demonstrate the co-existence and wide distribution of a number of clones of carbapenem-resistant A. baumannii carrying multiple carbapenem-resistance determinants within hospitals in the Eastern Region of Saudi Arabia. | 2015 | 26191044 |
| 968 | 8 | 0.9999 | Molecular analysis of antimicrobial resistance in gram-negative bacteria isolated from fish farms in Egypt. As little is known about antimicrobial resistance genes in fish farms, this study was conducted to monitor the incidence and prevalence of a wide range of antimicrobial resistance genes in Gram-negative bacteria isolated from water samples taken from fish farms in the northern part of Egypt. Ninety-one out of two hundred seventy-four (33.2%) non-repetitive isolates of Gram-negative bacteria showed multidrug resistance phenotypes and harbored at least one antimicrobial resistance gene. PCR and DNA sequencing results showed that 72 (26.3%) isolates contain tetracycline resistance genes and 19 (6.9%) isolates were positive for class 1 integrons with 12 different gene cassettes. The beta-lactamase-encoding genes were identified in 14 (5.1%) isolates. The plasmid-mediated quinolone resistance genes, qnr and aac(6')-Ib-cr, were identified in 16 (5.8%) and 3 (1.1%) isolates, respectively. Finally, the florphenicol resistance gene, floR, was identified in four (1.5%) isolates. To the best of our knowledge, this is the first report for molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from fish farms in Africa. | 2010 | 20145377 |
| 895 | 9 | 0.9999 | The determination of gyrA and parC mutations and the prevalence of plasmid-mediated quinolone resistance genes in carbapenem resistant Klebsiella pneumonia ST11 and ST76 strains isolated from patients in Heilongjiang Province, China. BACKGROUND: There is increasing resistance to carbapenems among Klebsiella pneumoniae,and fluoroquinolones (FQ) are increasingly used to treat infections from extended-spectrum β- lactamase(ESBLs) and carbapenemase-producing Klebsiella pneumoniae. However, the acquisition of plasmid-mediated quinolone resistance (PMQR) or the spontaneous mutation of the quinolone resistance-determining regions (QRDR) of the gyrA and parC genes can severely affect the therapeutic effect of quinolones. The goal of this study was to investigate the molecular determinants of FQ resistance(FQ-R) in carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates from Heilongjiang Province,China. MATERIALS AND METHODS: We isolated 40 strains of CRKP from a treatment center in the eastern part of Heilongjiang Province from January 2016 to December 2018. The VITEK2 Compact analyzer was used to identify and detect drug sensitivity. Different types of drug resistance genes were detected by polymerase chain reaction (PCR). PCR and DNA sequencing were used to assess the presence of qnrA, qnrB, qnrS,qepA and acc(6') Ib-cr genes,which are plasmid-encode genes that can contribute to resistance. The sequences of gyrA and parC genes were sequenced and compared with the sequences of standard strains to determine if mutations were present.Multi-site sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were performed on the strains to assess homology. RESULTS: The isolated CRKP strains showed rates of resistance to fluoroquinolones of 22.5% to 42.5%. The resistance rate of ciprofloxacin was significantly higher than that of levofloxacin.Nine CRKP strains (22.5%) showed co-resistance to ciprofloxacin and levofloxacin.The quinolone resistant strains were screened for plasmid-encoded genes that can contribute to resistance (PMQR genes).Among the 17 quinolone resistant strains,one strain contained no PMQR genes,twelve strains contained two PMQR genes,and four strains contained four PMQR genes.Acc (6') Ib-cr was the most frequently detected PMQR gene, detected in 95% of strains tested (38 of 40) and in 94.1% of the quinolone-resistant strains (16 of 17). The qepA gene encoding an efflux pump was not detected in any strains.No isolate carried five different PMQRs simultaneously.Changes of S83I and D87G changes in gyrA, and the S80I change in parC,which were mediated by QRDR,were identified in two isolates,which showed resistance to both ciprofloxacin and levofloxacin.Most of the FQ-R strains(58.8%,10/17) belong to ST(sequence type) 76, which is dominant in the local area, while all the mutant strains (100%,2/2),that differ in at least one site from standard bacteria, belong to the ST11 group. The strains were isolated from a hospital where there had been a recent outbreak of ST76 type CRKP in the neurosurgery ward and intensive care unit. CONCLUSION: CRKP strains were identified that were insensitive or even resistant to quinolones,and this resistance is common in Heilongjiang Province of eastern China;fluoroquinolone-resistance in these clinical CRKP strains is a complex interplay between PMQR determinants and mutations in gyrA and parC.The resistance level caused by QRDR mutation is higher than that caused by PMQR, however, the high frequency of PMQR genes in the isolated CRKP strains suggests the potential for impact of these genes.PMQR determinants are often found in carbapenemase-producing or ESBLs-producing Klebsiella pneumoniae,and some resistance genes,such as:SHV,TEM, CTX-M-15,and OXA-1 are closely associated with FQ-R. Finally, geographical factors can affect the emergence and spread of PMQR and QRDR.Some genetic lineages have higher potential risks, and continuous close monitoring is required. | 2020 | 32278145 |
| 1145 | 10 | 0.9999 | Abundance of Mobilized Colistin Resistance Gene (mcr-1) in Commensal Escherichia coli from Diverse Sources. Aims: Antimicrobial resistance (AMR) spreads not only by pathogenic but also by commensal bacteria, and the latter can become a reservoir for resistance genes. This study was aimed to investigate the AMR patterns along with the presence of mobilized colistin resistance (mcr) genes in commensal Escherichia coli circulating in chickens, farm environments, street foods, and human patients. Materials and Methods: By a cross-sectional survey, isolates obtained from 530 samples were tested for their AMR profiles against 9 antimicrobials. Minimum inhibitory concentration (MIC) of the phenotypically colistin-resistant isolates was determined and screened for a set of mcr genes followed by sequencing of mcr-1 gene in the multidrug-resistant (MDR) isolates. Results: A total of 313 E. coli strains were isolated and confirmed by polymerase chain reaction. Antimicrobial susceptibility testing revealed that about 98% (confidence interval [95% CI] 95-99) of the isolates were MDR, and 58% (95% CI 52-63) isolates exhibited resistance to colistin. MIC values of colistin against the isolates ranged from 4 to 64 mg/L. Except for human patients, 20.4% colistin-resistant isolates from other sources of isolation had mcr-1 gene. Conclusions: There is abundance of commensal MDR E. coli strains with the acquisition of mcr-1 gene circulating in chickens and farm environments in Bangladesh. | 2021 | 33909471 |
| 2149 | 11 | 0.9999 | Cross-Resistance and the Mechanisms of Cephalosporin-Resistant Bacteria in Urinary Tract Infections Isolated in Indonesia. Urinary tract infection (UTI) by antibiotic-resistant strains has become increasingly problematic, with trends that differ from country to country. This study examined cross-resistance and the mechanisms of cephalosporin resistance in UTI-causative bacteria isolated in Indonesia. Antibiotic susceptibility tests based on Clinical Laboratory Standards Institute (CLSI) standards were done for UTI-causative strains (n = 50) isolated from patients in Indonesia in 2015-2016 and showed resistance against the third-generation cephalosporin. Mechanistic studies were carried out to confirm the presence of extended-spectrum β-lactamase (ESBL) genes, carbapenemase-related genes, the fosA3 gene related to fosfomycin resistance, and mutations of quinolone-resistance-related genes. Isolated UTI-causative bacteria included Escherichia coli (64.0%), Pseudomonas aeruginosa (16.0%), Klebsiella pneumoniae (10.0%), and others (10.0%). These strains showed 96.0% susceptibility to amikacin, 76.0% to fosfomycin, 90.0% to imipenem, 28.0% to levofloxacin, 92.0% to meropenem, and 74.0% to tazobactam/piperacillin. ESBL was produced by 68.0% of these strains. Mechanistic studies found no strains with carbapenemase genes but 6.0% of strains had the fosA3 gene. Seventy-two % of the strains had mutations in the gyrA gene and 74.0% in the parC gene. Most E. coli strains (87.5%) had Ser-83 → Leu and Asp-87 → Asn in gyrA and 93.8% of E. coli had Ser-80 → Ile in parC. There were significant correlations among mutations in gyrA and parC, and fosA3 gene detection (P < 0.05), respectively. To our knowledge, this is the first mechanistic study of antibiotic-cross-resistant UTI-causative bacteria in Indonesia. Further studies with a longer period of observation are necessary, especially for changes in carbapenem resistance without carbapenemase-related genes. | 2021 | 33713209 |
| 923 | 12 | 0.9999 | Prevalence of Oxacillinase Genes in Clinical Multidrug-Resistant Gram-Negative Bacteria. BACKGROUND: The emergence of OXA-type beta-lactamases has become a significant threat to public healthcare systems and may lead to prolonged hospital stays and increased mortality rates among affected patients. This study aimed to determine the prevalence of oxacillinase resistance (OXA) genes in multidrug-resistant (MDR) Gram-negative bacteria. METHODS: One hundred and six clinical isolates were collected from a stock of Gram-negative isolates and were identified and tested for antibiotic susceptibility and presence of OXA genes using polymerase chain reaction (PCR). RESULTS: The most common detected isolate was Klebsiella pneumoniae (36.8%), followed by Escherichia coli (33%), Pseudomonas aeruginosa (16%), and Acinetobacter baumannii (14.2%). Out of these isolates, 97.4%, 87.2%, 84.6%, and 79.5% were resistant to ampicillin/sulbactam, cefotaxime, ceftazidime, and aztreonam, respectively. PCR results confirmed the presence of one or more OXA genes in 34% of the samples studied. The blaOXA-1 and blaOXA-10 genes were the most highly detected genes, followed by blaOXA-4 and blaOXA-51. The total number of Pseudomonas aeruginosa isolates was confirmed to carry at least one OXA gene (70.6%), whereas Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were confirmed to carry at least one OXA gene (53.3, 28.2, and 22.9%, respectively). There was a significant association (p < 0.05) between the resistance genes and the type of isolate. CONCLUSIONS: Pseudomonas aeruginosa and Acinetobacter baumannii are the most common MDR Gram-negative strains carrying OXA-type beta-lactamase genes. Monitoring of MDR pathogens in Gram-negative bacteria must be continuously undertaken to implement effective measures for infection control and prevention. | 2025 | 40066541 |
| 1012 | 13 | 0.9999 | Antimicrobial resistance profile and prevalence of extended-spectrum beta-lactamases (ESBL), AmpC beta-lactamases and colistin resistance (mcr) genes in Escherichia coli from swine between 1999 and 2018. The frequent usage of antibiotics in livestock has led to the spread of resistant bacteria within animals and their products, with a global warning in public health and veterinarians to monitor such resistances. This study aimed to determine antibiotic resistance patterns and genes in pig farms from Spain during the last twenty years. Susceptibility to six antibiotics commonly used in pig production was tested by qualitative (disk diffusion) and quantitative (minimum inhibitory concentration, MIC) methods in 200 strains of Escherichia coli which had been isolated between 1999 and 2018 from clinical cases of diarrhoea in neonatal and post-weaned piglets. Results showed resistance around 100% for amoxicillin and tetracycline since 1999, and a progressive increase in ceftiofur resistance throughout the studied period. For colistin, it was detected a resistance peak (17.5% of the strains) in the 2011-2014 period. Concerning gentamicin, 11 of 30 strains with intermediate susceptibility by the disk diffusion method were resistant by MIC. Besides, the most frequent antimicrobial resistance genes were the extended-spectrum beta-lactamase (ESBL) bla (CTX-M) (13.5% of strains, being CTX-M-14, CTX-M-1 and CTX-M-32 the most prevalent genomes, followed by CTX-M-27, CTX-M-9 and CTX-M-3), AmpC-type beta-lactamase (AmpC) bla (CMY-2) (3%) and colistin resistance genes mcr-4 (13%), mcr-1 (7%) and in less proportion mcr-5 (3%). Interestingly, these mcr genes were already detected in strains isolated in 2000, more than a decade before their first description. However, poor concordance between the genotypic mcr profile and the phenotypical testing by MIC was found in this study. These results indicate that although being a current concern, resistance genes and therefore antimicrobial resistant phenotypes were already present in pig farms at the beginning of the century. | 2020 | 32266079 |
| 2142 | 14 | 0.9999 | Resistance to β-lactams and distribution of β-lactam resistance genes in subgingival microbiota from Spanish patients with periodontitis. OBJECTIVES: The aim of this study was to analyze the distribution of β-lactamase genes and the multidrug resistance profiles in β-lactam-resistant subgingival bacteria from patients with periodontitis. MATERIALS AND METHODS: Subgingival samples were obtained from 130 Spanish patients with generalized periodontitis stage III or IV. Samples were grown on agar plates with amoxicillin or cefotaxime and incubated in anaerobic and microaerophilic conditions. Isolates were identified to the species level by the sequencing of their 16S rRNA gene. A screening for the following β-lactamase genes was performed by the polymerase chain reaction (PCR) technique: bla(TEM), bla(SHV), bla(CTX-M), bla(CfxA), bla(CepA), bla(CblA), and bla(ampC). Additionally, multidrug resistance to tetracycline, chloramphenicol, streptomycin, erythromycin, and kanamycin was assessed, growing the isolates on agar plates with breakpoint concentrations of each antimicrobial. RESULTS: β-lactam-resistant isolates were found in 83% of the patients. Seven hundred and thirty-seven isolates from 35 different genera were obtained, with Prevotella and Streptococcus being the most identified genera. bla(CfxA) was the gene most detected, being observed in 24.8% of the isolates, followed by bla(TEM) (12.9%). Most of the isolates (81.3%) were multidrug-resistant. CONCLUSIONS: This study shows that β-lactam resistance is widespread among Spanish patients with periodontitis. Furthermore, it suggests that the subgingival commensal microbiota might be a reservoir of multidrug resistance and β-lactamase genes. CLINICAL RELEVANCE: Most of the samples yielded β-lactam-resistant isolates, and 4 different groups of bla genes were detected among the isolates. Most of the isolates were also multidrug-resistant. The results show that, although β-lactams may still be effective, their future might be hindered by the presence of β-lactam-resistant bacteria and the presence of transferable bla genes. | 2020 | 32495224 |
| 862 | 15 | 0.9999 | Emergence of plasmid-mediated mcr genes from Gram-negative bacteria at the human-animal interface. BACKGROUND: The global emergence of plasmid-mediated colistin resistance (Col-R) conferred by mcr genes in gram-negative rods (GNRs) has jeopardized the last treatment option for multidrug-resistant bacterial infections in humans. This study aimed to assess the emergence of mcr gene-mediated Col-R in GNRs isolated from humans and animals in Pakistan. METHODS: Animal and clinical specimens collected from various sources were prospectively analysed using standard microbiological procedures. Pathogens were identified using the API 20E and API 20NE systems (bioMerieux). Minimum inhibitory concentration (MIC) against colistin was determined using the MIC detection methods, and multiplex polymerase chain reaction (PCR) was used to amplify the mcr-1 to mcr-5 genes. RESULTS: We isolated 126 (88.1%) animal and 17 (11.9%) human Col-R phenotypes, among which there was a significant association (P < 0.01) of Escherichia coli and Proteus mirabilis with animals and of Acinetobacter baumannii with humans. Animal strains exhibited statistically significant (P < 0.05) resistance to co-trimoxazole, chloramphenicol, and moxifloxacin, and the human pathogens exhibited statistically significant (P < 0.05) antibiotic resistance to cephalosporins, carbapenems, and piperacillin-tazobactam. For Col-R strains, MIC(50) values were > 6 µg/mL and > 12 µg/mL for human and animal isolates, respectively. mcr genes were detected in 110 (76.9%) bacterial strains, of which 108 (98.2%) were mcr-1 and 2 (1.8%) were mcr-2. CONCLUSIONS: The detection of a considerable number of mcr-1 and mcr-2 genes in animals is worrisome, as they are now being detected in clinical pathogens. The acquisition of mcr genes by colistin-susceptible bacteria could leave us in a post-antibiotic era. | 2020 | 33292525 |
| 2158 | 16 | 0.9999 | Relationship of OqxAB efflux pump to antibiotic resistance, mainly fluoroquinolones in Klebsiella pneumoniae, isolated from hospitalized patients. OBJECTIVES: This research was designed to study the prevalence of OqxAB efflux pump genes and also to investigate the relationship between efflux pump and resistance to antibiotics, especially to fluoroquinolones, evaluate the expression levels of OqxAB genes, and molecular typing of Klebsiella pneumoniae isolated from hospitalized patients in Hamadan hospitals, west of Iran. MATERIALS AND METHODS: In a cross-sectional study, 100 clinical strains of K. pneumoniae were isolated from hospitalized patients in three major teaching hospitals from January to June 2021. The antibiotic susceptibility of isolates was evaluated by the disk-diffusion agar method. The frequency of genes encoding oqxA and oqxB of efflux pump genes was investigated by PCR, and the expression of the oqxA efflux pump gene was investigated by the Real-time PCR method. The genetic relationship of K. pneumoniae isolates was analyzed by the Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR technique. RESULTS: According to our results, the multi-drug resistance phenotype (MDR) in 65% and high prevalence resistance to ciprofloxacin in 89% of K. pneumoniae isolates was detected. The higher prevalence of oqxA (95%) and oqxB (98%) was also detected. There was a significant relationship between ciprofloxacin resistance and the oqxB gene as well as between ceftriaxone and chloramphenicol resistance and the oqxA gene. The expression of the oqxA gene was higher in ciprofloxacin-resistant isolates. CONCLUSION: The results of this study suggest a potential reservoir for the spread of OqxAB genes among hospital-acquired bacteria. Infection control strategies should be used prudently to reduce the spread of resistant strains of K. pneumoniae in hospitals. | 2023 | 36594055 |
| 1036 | 17 | 0.9999 | Detection of carbapenem resistance genes and cephalosporin, and quinolone resistance genes along with oqxAB gene in Escherichia coli in hospital wastewater: a matter of concern. AIMS: This study was performed to detect the presence of Escherichia coli resistant to cephalosporins, carbapenems and quinolones in hospital wastewater. METHODS AND RESULTS: Wastewaters from a rural (H1) and an urban (H2) hospital were tested for E. coli resistant to cephalosporins, carbapenem and quinolones. Genes coding for chromosomal and plasmid-mediated resistance and phylogenetic grouping was detected by multiplex polymerase chain reaction (PCR) and for genetic relatedness by rep-PCR. Of 190 (H1 = 94; H2 = 96) E. coli examined, 44% were resistant to both cephalosporins and quinolones and 3% to imipenem. ESBLs were detected phenotypically in 96% of the isolates, the gene blaCTX-M coding for 87% and blaTEM for 63%. Quinolone resistance was due to mutations in gyrA and parC genes in 97% and plasmid-coded aac-(6')-Ib-cr in 89% of isolates. Only in one carbapenem-resistant E. coli, NDM-1 was detected. Nearly 67% of the isolates belonged to phylogenetic group B2. There was no genetic relatedness among the isolates. CONCLUSIONS: Hospital wastewater contains genetically diverse multidrug-resistant E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: This study stresses the need for efficient water treatment plants in healthcare settings as a public health measure to minimize spread of multidrug-resistant bacteria into the environment. | 2014 | 24975198 |
| 1142 | 18 | 0.9999 | Virulence Determinants and Plasmid-Mediated Colistin Resistance mcr Genes in Gram-Negative Bacteria Isolated From Bovine Milk. A major increase of bacterial resistance to colistin, a last-resort treatment for severe infections, was observed globally. Using colistin in livestock rearing is believed to be the ground of mobilized colistin resistance (mcr) gene circulation and is of crucial concern to public health. This study aimed to determine the frequency and virulence characteristics of colistin-resistant Gram-negative bacteria from the milk of mastitic cows and raw unpasteurized milk in Egypt. One hundred and seventeen strains belonging to Enterobacteriaceae (n = 90), Pseudomonas aeruginosa (n = 10), and Aeromonas hydrophila (n = 17) were screened for colistin resistance by antimicrobial susceptibility testing. The genetic characteristics of colistin-resistant strains were investigated for mcr-1-9 genes, phylogenetic groups, and virulence genes. Moreover, we evaluated four commonly used biocides in dairy farms for teat disinfection toward colistin-resistant strains. Multidrug-resistant (MDR) and extensive drug-resistant (XDR) phenotypes were detected in 82.91% (97/117) and 3.42% (4/117) of the isolates, respectively. Of the 117 tested isolates, 61 (52.14%) were colistin resistant (MIC >2 mg/L), distributed as 24/70 (34.29%) from clinical mastitis, 10/11 (90.91%) from subclinical mastitis, and 27/36 (75%) from raw milk. Of these 61 colistin-resistant isolates, 47 (19 from clinical mastitis, 8 from subclinical mastitis, and 20 from raw milk) harbored plasmid-borne mcr genes. The mcr-1 gene was identified in 31.91%, mcr-2 in 29.79%, mcr-3 in 34.04%, and each of mcr-4 and mcr-7 in 2.13% of the colistin-resistant isolates. Among these isolates, 42.55% (20/47) were E. coli, 21.28% (10/47) A. hydrophila, 19.12% (9/47) K. pneumoniae, and 17.02% (8/47) P. aeruginosa. This is the first report of mcr-3 and mcr-7 in P. aeruginosa. Conjugation experiments using the broth-mating technique showed successful transfer of colistin resistance to E. coli J53-recipient strain. Different combinations of virulence genes were observed among colistin-resistant isolates with almost all isolates harboring genes. Hydrogen peroxide has the best efficiency against all bacterial isolates even at a low concentration (10%). In conclusion, the dissemination of mobile colistin resistance mcr gene and its variants between MDR- and XDR-virulent Gram-negative isolates from dairy cattle confirms the spread of mcr genes at all levels; animals, humans, and environmental, and heralds the penetration of the last-resort antimicrobial against MDR bacteria. Consequently, a decision to ban colistin in food animals is urgently required to fight XDR and MDR bacteria. | 2021 | 34888259 |
| 1058 | 19 | 0.9999 | First Detection of FOX-1 AmpC β-lactamase Gene Expression Among Escherichia coli Isolated from Abattoir Samples in Abakaliki, Nigeria. OBJECTIVES: Gram-negative bacteria represent the most relevant reservoir of resistance to antibiotics in the environment. The natural selection of resistant clones of bacteria in the environment by antimicrobial selective pressure is a relevant mechanism for spreading antibiotic resistance traits in both the community and hospital environment. This is in scenarios where antimicrobials are used irrationally, and even in the propagation of livestock, poultry birds, and for other veterinary purposes. This study sought to detect the prevalence of FOX-1 AmpC β-lactamase genes from abattoir samples. METHODS: The isolation of Escherichia coli, antimicrobial susceptibility testing, and β-lactamase characterization was carried out using standard microbiology techniques. The production of AmpC β-lactamase was phenotypically carried out using the cefoxitin-cloxacillin double-disk synergy test (CC-DDST), and FOX-1 AmpC genes was detected in the E. coli isolates using multiplex polymerase chain reaction. RESULTS: Forty-eight E. coli isolates were recovered from the anal swabs of cows and 35 (72.9%) isolates were positive for the production of β-lactamase. Notably, high percentages of resistance to cefoxitin (91.7%), ceftriaxone (83.3%), imipenem (85.4%), ceftazidime (87.5%), ofloxacin (81.3%), and gentamicin (85.4%) were found. FOX-1 genes were detected in three (6.3%) of the 48 E. coli isolates phenotypically screened for AmpC enzyme production. CONCLUSIONS: Abattoirs could represent a major reservoir of resistance genes especially AmpC β-lactamase, and this could serve as a route for the dissemination of multidrug-resistant bacteria in the community. Thus, the molecular identification of drug-resistant genes is vital for a reliable epidemiological investigation and the forestalling of the emergence and spread of these organisms through the food chain in this region. | 2018 | 29896333 |