Enhanced myco-synthesis of selenium and zinc oxide nanoparticles and evaluating their anticancer activities and role against antibiotic resistance genes in certain bacterial strains. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
897301.0000Enhanced myco-synthesis of selenium and zinc oxide nanoparticles and evaluating their anticancer activities and role against antibiotic resistance genes in certain bacterial strains. BACKGROUND: In an array to check microbial resistance against generally used antibiotics, it is essential to create innovative and efficient antimicrobial agents. Therefore, nanoparticles (NPs) with their antimicrobial activities describe an effective solution. In this study, we synthesized Selenium nanoparticles (Se-NPs) and zinc oxide nanoparticles (ZnO-NPs) using Alternaria alternata fungus, then their characterization were evaluated using several techniques. RESULTS: We explored the potential of antimicrobial impact of Se-NPs and ZnO-NPs against negative and positive grams antibiotic resistance bacterial strains in combination with penicillin, Ceftriaxone and Cefipime. Moreover, antibiotic resistance gene expression was assessed after those treatments. The results demonstrated that Se-NPs and ZnO-NPs displayed antibacterial properties, while the expression of antibiotic resistance genes decreased when exposed to a combination of NPs and antibiotics. This suggests the presence of both synergistic and additive effects in these treatments. Furthermore, the cytotoxic effects of Se-NPs and ZnO-NPs were assessed, revealing their potent anticancer properties against MCF-7, A549, and HepG2 cancer cells and lower cytotoxic values for HFB-4 standard cell line. Ultimately, the production efficiency of both NPs was enhanced through gamma irradiation. CONCLUSIONS: According to the results, it seems that the green synthesis of Se-NPs and ZnO-NPs promotes environmental sustainability and cost-effective approach. This study provides insights into the development of new antibacterial and anticancer agents . The eco-friendly production of nanoparticles suggests also a sustainable approach to combating bacteria resistant to antibiotics.202541046259
897410.9997Escherichia coli Bacteria Develop Adaptive Resistance to Antibacterial ZnO Nanoparticles. Antibacterial agents based on nanoparticles (NPs) have many important applications, e.g., for the textile industry, surface disinfection, wound dressing, water treatment, and food preservation. Because of their prevalent use it is important to understand whether bacteria could develop resistance to such antibacterial NPs similarly to the resistance that bacteria are known to develop to antibiotics. Here, it is reported that Escherichia coli (E. coli) develops adaptive resistance to antibacterial ZnO NPs after several days' exposure to the NPs. But, in contrast to antibiotics-resistance, the observed resistance to ZnO NPs is not stable-after several days without exposure to the NPs, the bacteria regain their sensitivity to the NPs' antibacterial properties. Based on the analyses it is suggested that the observed resistance is caused by changes in the shape of the bacteria and the expressions of membrane proteins. The findings provide insights into the response of bacteria to antibacterial NPs, which is important to elucidate for designing and evaluating the risk of applications based on antibacterial NPs.201833103858
897520.9997Targeting bacterial biofilm-related genes with nanoparticle-based strategies. Persistent infection caused by biofilm is an urgent in medicine that should be tackled by new alternative strategies. Low efficiency of classical treatments and antibiotic resistance are the main concerns of the persistent infection due to biofilm formation which increases the risk of morbidity and mortality. The gene expression patterns in biofilm cells differed from those in planktonic cells. One of the promising approaches against biofilms is nanoparticle (NP)-based therapy in which NPs with multiple mechanisms hinder the resistance of bacterial cells in planktonic or biofilm forms. For instance, NPs such as silver (Ag), zinc oxide (ZnO), titanium dioxide (TiO(2)), copper oxide (Cu), and iron oxide (Fe(3)O(4)) through the different strategies interfere with gene expression of bacteria associated with biofilm. The NPs can penetrate into the biofilm structure and affect the expression of efflux pump, quorum-sensing, and adhesion-related genes, which lead to inhibit the biofilm formation or development. Therefore, understanding and targeting of the genes and molecular basis of bacterial biofilm by NPs point to therapeutic targets that make possible control of biofilm infections. In parallel, the possible impact of NPs on the environment and their cytotoxicity should be avoided through controlled exposure and safety assessments. This study focuses on the biofilm-related genes that are potential targets for the inhibition of bacterial biofilms with highly effective NPs, especially metal or metal oxide NPs.202438841057
897830.9996Revealing the antibacterial power of hydrogen-releasing PdH nanohydride against drug resistant Staphylococcus aureus: an in-depth mechanism study. Currently, multidrug resistant (MDR) bacterial infections are a great threat to public health, and the development of novel strategies for high efficiency combatting of MDR bacteria is in urgent demand. Hydrogen (H(2)) is a small gas with a high reducing ability, and plenty of recent studies have demonstrated its therapeutic effect on many diseases. However, the antibacterial effectiveness and mechanism of H(2) against MDR bacteria are still unknown. In the present work, using PdH nanohydride with a temperature responsive H(2)-releasing property as the H(2) source, we demonstrated that H(2) was not only able to inhibit the growth of normal Staphylococcus aureus (S. aureus), but could also effectively eliminate single drug resistant S. aureus (CRSA) and multidrug resistant S. aureus (MRSA), as well as the biofilms formed by those bacteria. Moreover, an in-depth mechanism regarding the anti-antibiotic-resistance activity of H(2) was elucidated by us, in which H(2) exerted its antibacterial effect by firstly causing severe membrane damage, followed by boosting generation of intracellular ROS, which subsequently triggered DNA damage and finally led to bacterial death. The proposed mechanism was further verified by genomic analysis, where a cluster of genes related to bacterial membrane integrity, biofilm formation, metabolism and DNA functions was significantly perturbed by the released H(2). In particular, H(2) boosted intracellular ROS generation by destroying the redox homeostasis of bacterial metabolism. More importantly, we revealed that H(2) was able to alleviate the antibiotic resistance of CRSA and MRSA by significantly down-regulating the expression of many drug-resistant genes, e.g. the norG gene of CRSA, and fmtA, gpsB, sarA and marR genes of MRSA, as well as reducing the minimal inhibitory concentration (MIC) of ciprofloxacin/ampicillin against CRSA/MRSA. The findings in our work suggested that H(2) therapy is a promising tool for combating antibiotic-resistant bacteria.202336655922
674540.9996Decreased Antibiotic Susceptibility in Pseudomonas aeruginosa Surviving UV Irradition. Given its excellent performance against the pathogens, UV disinfection has been applied broadly in different fields. However, only limited studies have comprehensively investigated the response of bacteria surviving UV irradiation to the environmental antibiotic stress. Here, we investigated the antibiotic susceptibility of Pseudomonas aeruginosa suffering from the UV irradiation. Our results revealed that UV exposure may decrease the susceptibility to tetracycline, ciprofloxacin, and polymyxin B in the survival P. aeruginosa. Mechanistically, UV exposure causes oxidative stress in P. aeruginosa and consequently induces dysregulation of genes contributed to the related antibiotic resistance genes. These results revealed that the insufficient ultraviolet radiation dose may result in the decreased antibiotic susceptibility in the pathogens, thus posing potential threats to the environment and human health.202133613479
895150.9996Response mechanisms of resistance in L-form bacteria to different target antibiotics: Implications from oxidative stress to metabolism. Due to the specific action on bacterial cell wall, β-lactam antibiotics have gained widespread usage as they exhibit a high degree of specificity in targeting bacteria, but causing minimal toxicity to host cells. Under antibiotic pressure, bacteria may opt to shed their cell walls and transform into L-form state as a means to evade the antibiotic effects. In this study, we explored and identified diverse optimal conditions for both Gram-negative bacteria (E. coli DH5α (CTX)) and Gram-positive bacteria (B. subtilis ATCC6633), which were induced to L-form bacteria using lysozyme (0.5 ppm) and meropenem (64 ppm). Notably, when bacteria transformed into L-form state, both bacterial strains showed varying degrees of increased resistance to antibiotics polymyxin E, meropenem, rifampicin, and tetracycline. E. coli DH5α (CTX) exhibited the most significant enhancement in resistance to tetracycline, with a 128-fold increase, while B. subtilis ATCC6633 showed a 32-fold increase in resistance to tetracycline and polymyxin E. Furthermore, L-form bacteria maintained their normal metabolic activity, combined with enhanced oxidative stress, served as an adaptive strategy promoting the sustained survival of L-form bacteria. This study provided a theoretical basis for comprehending antibiotic resistance mechanisms, developing innovative treatment strategies, and confronting global antibiotic resistance challenges.202438735077
678360.9995Mechanism of earthworm coelomic fluid inhibits multidrug-resistant bacteria and blocks resistance transmission. Antibiotic resistance is a growing global health crisis, especially the spread of multi-drug resistance. In this study, the inhibitory effects of earthworm coelomic fluid (ECF) on multidrug-resistant bacteria (MRB) were investigated during employing vermicomposting to treat excess sludge generated from wastewater treatment. The results demonstrated that the ECF was able to inhibit, even completely decompose the MRB. Notably, when the ECF concentration reached 1.0 mg/mL, the intracellular reactive oxygen species (ROS) level increased by 46.7 %, while cell viability decreased by 55.2 % compared to the control, demonstrating that ECF exerts strong antibacterial activity by inducing oxidative stress and disrupting cellular homeostasis. Furthermore, ECF effectively degraded the DNA of MRB, with removal rates of aphA, KanR, and tetA reaching 51.8 %, 42.3 %, and 35.0 %, respectively, indicating its ability to eliminate resistance genes and hinder their potential transfer. Additionally, the upregulation of genes involved in signaling, DNA replication and repair, and energy metabolism pathways suggests a systemic stress response in MRB, further supporting the broad-spectrum inhibitory effects of ECF on bacterial viability and resistance maintenance. Taken together, these findings may open a door to naturally and ecologically combat antibiotic resistance in pollutants control in wastewater treatment.202540706790
897770.9995Novel Lignin-Capped Silver Nanoparticles against Multidrug-Resistant Bacteria. The emergence of bacteria resistant to antibiotics and the resulting infections are increasingly becoming a public health issue. Multidrug-resistant (MDR) bacteria are responsible for infections leading to increased morbidity and mortality in hospitals, prolonged time of hospitalization, and additional burden to financial costs. Therefore, there is an urgent need for novel antibacterial agents that will both treat MDR infections and outsmart the bacterial evolutionary mechanisms, preventing further resistance development. In this study, a green synthesis employing nontoxic lignin as both reducing and capping agents was adopted to formulate stable and biocompatible silver-lignin nanoparticles (NPs) exhibiting antibacterial activity. The resulting silver-lignin NPs were approximately 20 nm in diameter and did not agglomerate after one year of storage at 4 °C. They were able to inhibit the growth of a panel of MDR clinical isolates, including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii, at concentrations that did not affect the viability of a monocyte-derived THP-1 human cell line. Furthermore, the exposure of silver-lignin NPs to the THP-1 cells led to a significant increase in the secretion of the anti-inflammatory cytokine IL-10, demonstrating the potential of these particles to act as an antimicrobial and anti-inflammatory agent simultaneously. P. aeruginosa genes linked with efflux, heavy metal resistance, capsular biosynthesis, and quorum sensing were investigated for changes in gene expression upon sublethal exposure to the silver-lignin NPs. Genes encoding for membrane proteins with an efflux function were upregulated. However, all other genes were membrane proteins that did not efflux metals and were downregulated.202133945683
898180.9995Response mechanisms of different antibiotic-resistant bacteria with different resistance action targets to the stress from photocatalytic oxidation. The stress response of antibiotic-resistant bacteria (ARB) and the spread of antibiotic resistance genes (ARGs) pose a serious threat to the aquatic environment and human beings. This study mainly explored the effect of the heterogeneous photocatalytic oxidation (UVA-TiO(2) system) on the stress response mechanism of ARB with different antibiotic resistance action targets, including the cell wall, proteins, DNA, RNA, folate and the cell membrane. Results indicate that the stress response mechanism of tetracycline- and sulfamethoxazole-resistant E. coli DH5α, which targets the synthesis of protein and folate, could rapidly induce global regulators by the overexpression of relative antibiotic resistance action target genes. Different stress response systems were mediated via cross-protection mechanism, causing stronger tolerance to an adverse environment than other ARB. Moreover, the photocatalytic inactivation mechanism of bacterial cells and a graded response of cellular stress mechanism caused differences in the intensity of the stress mechanism of antibiotic resistance action targets. E. coli DH5α resistant to cefotaxime and polymyxin, targeting synthesis of the cell wall and cell membrane, respectively, could confer greater advantages to bacterial survival and higher conjugative transfer frequency than E. coli DH5α resistant to nalidixic acid and rifampicin, which target the synthesis of DNA and RNA, respectively. This new perspective provides detailed information on the practical application of photocatalytic oxidation for inactivating ARB and hampering the spreading of ARGs in the aquatic environment.202235453030
884890.9995Harnessing the effect of iron deprivation to attenuate the growth of opportunistic pathogen Acinetobacter baumannii. Acinetobacter baumannii is an opportunistic pathogen having high infectivity among immunocompromised patients. The bacteria are resistant to major first-line antibiotics and have become a serious concern in the aspect of nosocomial and community-acquired infections. To overcome this dire situation, the necessity of introducing new approaches is undeniable, which can bypass the need for conventional antibiotic therapy. In this article, we have pinpointed the importance of iron in A. baumannii. Iron is an essential micronutrient in all bacteria. Loss of iron acquisition leads to membrane destabilization, and change in the expression of iron-transporting or -metabolizing genes causes death of the bacteria. Iron scavenging was primarily mediated by different chelators, and β-thujaplicin showed the best antibacterial efficacy with respect to time killing assay and CFU analysis. When iron (Fe(2+)) was supplemented after initial deficiency, the growth of the bacteria was seen to be restored. Iron deprivation also disintegrates the biofilm matrix, a major cause of bacterial resistance against different types of antibiotics. Moreover, iron scavenging promotes inhibition of biofilm sessile persister cells, the root cause of recalcitrant and chronic infection. As a part of antimicrobial therapy, β-thujaplicin was treated alongside colistin and chloramphenicol at an amount significantly lower than its MIC value. Our results indicated that β-thujaplicin nicely complemented those antibiotics to potentiate their antimicrobial action. In a nutshell, iron chelating agents are potential alternative therapeutics that can be used alongside different antibiotics to circumvent the resistance of different nosocomial pathogens.202540202344
6748100.9995Time-dependent effects of ZnO nanoparticles on bacteria in an estuarine aquatic environment. Many studies have examined the acute toxicity of nanoparticles (NPs) towards model bacteria. In this study, we report the time-dependent effects of ZnO NPs on native, selected Zn-resistant and dominant bacteria in estuarine waters. An initial inhibition of bacterial growth followed by a recovery at 24 h was observed, and this rebound phenomenon was particularly notable when the raw water samples were treated with relatively high ZnO NP concentrations (1 and 10 mg/L).By comparing the groups treated with Zn(2+), Zn(2+) was shown to largely explain the acute cytotoxic effect of ZnO NPs on bacteria in raw waters. Furthermore, similar to the native bacteria, especially the dominant bacteria, the viability of Escherichia coli (E. coli) decreased with the increasing treatments time and the concentrations of ZnO NPs in water with different salinities. Moreover, the expression of Zn-resistance genes including zntA and zntR in E. coli suggested that the Zn-resistance system in E. coli can be activated to defend against the stress of Zn(2+) released from ZnO NPs, and salinity may promote this process in estuarine aquatic systems. Thus, the effect of ZnO NPs on bacteria in estuarine water bodies is likely determined by the synergistic effect of environmental salinity and dissolved Zn ions. As such, our findings are of high relevance and importance for understanding the ecological disturbances caused by anthropogenic NPs in estuarine environments.202031505343
8345110.9995Antibiotic Resistance via Bacterial Cell Shape-Shifting. Bacteria have evolved to develop multiple strategies for antibiotic resistance by effectively reducing intracellular antibiotic concentrations or antibiotic binding affinities, but the role of cell morphology in antibiotic resistance remains poorly understood. By analyzing cell morphological data for different bacterial species under antibiotic stress, we find that bacteria increase or decrease the cell surface-to-volume ratio depending on the antibiotic target. Using quantitative modeling, we show that by reducing the surface-to-volume ratio, bacteria can effectively reduce the intracellular antibiotic concentration by decreasing antibiotic influx. The model further predicts that bacteria can increase the surface-to-volume ratio to induce the dilution of membrane-targeting antibiotics, in agreement with experimental data. Using a whole-cell model for the regulation of cell shape and growth by antibiotics, we predict shape transformations that bacteria can utilize to increase their fitness in the presence of antibiotics. We conclude by discussing additional pathways for antibiotic resistance that may act in synergy with shape-induced resistance.202235616332
6747120.9994Tetracycline accumulation in biofilms enhances the selection pressure on Escherichia coli for expression of antibiotic resistance. Microorganisms are present as either biofilm or planktonic species in natural and engineered environments. Little is known about the selection pressure emanating from exposure to sub-minimal inhibitory concentration of antibiotics on planktonic vs. biofilm bacteria. In this study, an E. coli bioreporter was used to develop biofilms on glass and high-density polyethylene (HDPE) surfaces, and compared with the corresponding planktonic bacteria in antibiotic resistance expression when exposed to a range of μg/L levels of tetracycline. The antibiotic resistance-associated fluorescence emissions from biofilm E. coli reached up to 1.6 times more than those from planktonic bacteria. The intensively developed biofilms on glass surfaces caused the embedded bacteria to experience higher selection pressure and express more antibiotic resistance than those on HDPE surfaces. The temporal pattern of fluorescence emissions from biofilm E. coli was consistent with the biofilm-developing processes during the experimental period. The increased expression of antibiotic resistance from biofilm bacteria could be attributed to the high affinity of tetracycline with extracellular polymeric substances (EPS). The enhanced accumulation of tetracycline in biofilms could exert higher selection pressure on the embedded bacteria. These results suggest that in many natural and engineered systems the higher antibiotic resistance in biofilm bacteria could be attributed partially to the retention antibiotics by the EPS in biofilms.202336252660
8950130.9994Live/Dead Staining for Quantifying Viable but Not Culturable Cells in Manuka Honey-Treated Wound-Causing Bacteria. Antibiotic resistance and tolerance among bacteria pose a significant threat to global health. Mechanisms contributing to antibiotic resistance and tolerance include genetic mutations and, acquisition of resistance genes, and transition to Viable But Not Culturable (VBNC) and other dormancy states, respectively. Although genetically identical to their non-antibiotic-tolerant counterparts, VBNC cells evade antibiotic effects by remaining metabolically inactive. Antibiotics are effective only when their target processes, such as DNA replication or transcription, are active. Since environmental stressors, particularly antibiotics, can drive bacteria into dormancy, alternative antimicrobials are needed to minimize or prevent this response. The antimicrobial Manuka Honey (MH) is effective against many bacteria, with rare development of resistance. Its multifaceted antimicrobial mechanisms make it a valuable agent for treating bacterial infections. This research investigated MH recalcitrance to antibiotic resistance development by testing the hypothesis that MH induces fewer VBNC cells than conventional antibiotics. To investigate this, a protocol was developed to treat the wound-causing bacteria Staphylococcus aureus and Pseudomonas aeruginosa with minimum inhibitory concentrations of MH or the conventional antibiotics tobramycin or meropenem, that then used the viable plate count to identify metabolically active culturable cells and live/dead staining to identify all viable cells. The number of VBNC cells equaled the viable cell number minus the culturable cell number. In some experiments, the culturable cell number was higher than the viable cell number, giving a negative number of VBNC cells; thus, VBNC cell numbers were not directly compared. Instead, culturable and viable cell numbers were compared for each treatment. Only P. aeruginosa treated with tobramycin had significantly fewer culturable cells than viable cells, indicating a higher number of VBNC cells. This protocol is quick and easy and can be used to evaluate MH induction of VBNC cells in other pathogenic bacteria.202540354286
8952140.9994Correlation between the development of phage resistance and the original antibiotic resistance of host bacteria under the co-exposure of antibiotic and bacteriophage. Bacteriophages (phages) are viruses capable of regulating the proliferation of antibiotic resistant bacteria (ARB). However, phages that directly cause host lethality may quickly select for phage resistant bacteria, and the co-evolutionary trade-offs under varying environmental conditions, including the presence of antibiotics, remains unclear as to their impact on phage and antibiotic resistance. Here, we report the emergence of phage resistance in three distinct E. coli strains with varying resistance to β-lactam antibiotics, treated with different ampicillin (AMP) concentrations. Hosts exhibiting stronger antibiotic resistance demonstrated a higher propensity to develop and maintain stable phage resistance. When exposed to polyvalent phage KNT-1, the growth of AMP-sensitive E. coli K12 was nearly suppressed within 18 h, while the exponential growth of AMP-resistant E. coli TEM and super-resistant E. coli NDM-1 was delayed by 12 h and 8 h, respectively. The mutation frequency and mutated colony count of E. coli NDM-1 were almost unaffected by co-existing AMP, whereas for E. coli TEM and K12, these metrics significantly decreased with increasing AMP concentration from 8 to 50 μg/mL, becoming unquantifiable at 100 μg/mL. Furthermore, the fitness costs of phage resistance mutation and its impact on initial antibiotic resistance in bacteria were further examined, through analyzing AMP susceptibility, biofilm formation and EPS secretion of the isolated phage resistant mutants. The results indicated that acquiring phage resistance could decrease antibiotic resistance, particularly for hosts lacking strong antibiotic resistance. The ability of mutants to form biofilm contributes to antibiotic resistance, but the correlation is not entirely positive, while the secretion of extracellular polymeric substance (EPS), especially the protein content, plays a crucial role in protecting the bacteria from both antibiotic and phage exposure. This study explores phage resistance development in hosts with different antibiotic resistance and helps to understand the limitations and possible solutions of phage-based technologies.202438631474
8962150.9994A Dietary Source of High Level of Fluoroquinolone Tolerance in mcr-Carrying Gram-Negative Bacteria. The emergence of antibiotic tolerance, characterized by the prolonged survival of bacteria following antibiotic exposure, in natural bacterial populations, especially in pathogens carrying antibiotic resistance genes, has been an increasing threat to public health. However, the major causes contributing to the formation of antibiotic tolerance and underlying molecular mechanisms are yet poorly understood. Herein, we show that potassium sorbate (PS), a widely used food additive, triggers a high level of fluoroquinolone tolerance in bacteria carrying mobile colistin resistance gene mcr. Mechanistic studies demonstrate that PS treatment results in the accumulation of intracellular fumarate, which activates bacterial two-component system and decreases the expression level of outer membrane protein OmpF, thereby reducing the uptake of ciprofloxacin. In addition, the supplementation of PS inhibits aerobic respiration, reduces reactive oxygen species production and alleviates DNA damage caused by bactericidal antibiotics. Furthermore, we demonstrate that succinate, an intermediate product of the tricarboxylic acid cycle, overcomes PS-mediated ciprofloxacin tolerance. In multiple animal models, ciprofloxacin treatment displays failure outcomes in PS preadministrated animals, including comparable survival and bacterial loads with the vehicle group. Taken together, our works offer novel mechanistic insights into the development of antibiotic tolerance and uncover potential risks associated with PS use.202337808177
8983160.9994Chlorine disinfectants promote microbial resistance in Pseudomonas sp. The substantial use of disinfectants has increased antibiotic resistance, thereby mediating serious ecological safety issues worldwide. Accumulating studies have reported the role of chlorine disinfectants in promoting disinfectant resistance. The present study sought to investigate the role of chlorine disinfectants in developing multiple resistance in Pseudomonas sp. isolated from the river through antioxidant enzyme measurement, global transcriptional analyses, Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results demonstrated that 100 mg/L sodium hypochlorite could increase disinfectant resistance and antibiotic resistance. The SOS response (a conserved response to DNA damage) triggered by oxidative stress makes bacteria resistant to chlorine. An increase in antibiotic resistance could be attributed to a decreased membrane permeability, increased expression of MuxABC-OpmB efflux pump, beta-lactamase, and antioxidant enzymes. Additionally, KEGG enrichment analysis suggested that the differentially expressed genes were highly enriched in the metabolic pathways. In summary, the study results revealed the impact of chlorine disinfectants in promoting microbial disinfectant resistance and antibiotic resistance. This study will provide insight into disinfectant resistance mechanisms.202134010624
6784170.9994Resistance of multidrug resistant Escherichia coli to environmental nanoscale TiO(2) and ZnO. Excessive production and utilization of nanoparticles (NPs) at industrial and household levels releases substantial quantities of NPs into the environment. These can be harmful to different types of organisms and cause adverse effects on ecosystems. Purchased TiO(2) and ZnO NPs were characterized via XRD, XPS, FESEM, and Zeta potential. This study elucidates how multidrug resistant Escherichia coli LM13, which was recovered from livestock manure, counteracts the antibacterial activities of TiO(2) and ZnO NPs to survive in the environment. E. coli ATCC25922, which is susceptible to antibiotics, was used as control. A dose-response experiment showed that the antibacterial activity of TiO(2) was lower than that of ZnO NPs and, LM13 was more resistant to NPs than ATCC25922. An AcrAB-TolC efflux pump along with its regulation genes helped LM13 to minimize NP toxicity. Flow cytometry findings also indicated that the intensity of the side-scatter light parameter increased with TiO(2) and ZnO NPs in a dose dependent manner, suggesting NP uptake by the both strains. The generation of reactive oxygen species in LM13 was several-fold lower than in ATCC25922, suggesting that reactive oxygen species mainly contribute to the toxicity mechanism. These results illustrate the necessity to evaluate the impacts of NPs on the survival capacity of bacteria and on the resistance genes in bacteria with higher NP resistance than NP susceptible bacteria.202133360128
8955180.9994Increasing resistance of planktonic and biofilm cultures of Burkholderia cepacia to ciprofloxacin and ceftazidime during exponential growth. The change in resistance of Burkholderia cepacia to ceftazidime and to ciprofloxacin during the exponential phase and up to the onset of stationary phase was assessed along the growth curve in batch culture. B. cepacia was grown in planktonic culture and in a biofilm on a membrane support. Resistance increased progressively during the exponential phase, being increased by ten-fold about every four generations. Bacteria grown in a biofilm were about 15 times more resistant than equivalent planktonic-grown bacteria. The growth rate was not the key factor for the development of resistance. The growth phase and the mode of growth have a fundamental impact on the susceptibility of B. cepacia towards antimicrobial agents. Bacteria growing at the same rate may differ greatly in their resistance to antimicrobial agents.19989738832
9540190.9994Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.201122029522