Elevated proton motive force is a tetracycline resistance mechanism that leads to the sensitivity to gentamicin in Edwardsiella tarda. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
895901.0000Elevated proton motive force is a tetracycline resistance mechanism that leads to the sensitivity to gentamicin in Edwardsiella tarda. Tetracycline is a commonly used human and veterinary antibiotic that is mostly discharged into environment and thereby tetracycline-resistant bacteria are widely isolated. To combat these resistant bacteria, further understanding for tetracycline resistance mechanisms is needed. Here, GC-MS based untargeted metabolomics with biochemistry and molecular biology techniques was used to explore tetracycline resistance mechanisms of Edwardsiella tarda. Tetracycline-resistant E. tarda (LTB4-R(TET) ) exhibited a globally repressed metabolism against elevated proton motive force (PMF) as the most characteristic feature. The elevated PMF contributed to the resistance, which was supported by the three results: (i) viability was decreased with increasing PMF inhibitor carbonylcyanide-3-chlorophenylhydrazone; (ii) survival is related to PMF regulated by pH; (iii) LTB4-R(TET) were sensitive to gentamicin, an antibiotic that is dependent upon PMF to kill bacteria. Meanwhile, gentamicin-resistant E. tarda with low PMF are sensitive to tetracycline is also demonstrated. These results together indicate that the combination of tetracycline with gentamycin will effectively kill both gentamycin and tetracycline resistant bacteria. Therefore, the present study reveals a PMF-enhanced tetracycline resistance mechanism in LTB4-R(TET) and provides an effective approach to combat resistant bacteria.202438085112
633310.9996Outer Membrane Proteins form Specific Patterns in Antibiotic-Resistant Edwardsiella tarda. Outer membrane proteins of Gram-negative bacteria play key roles in antibiotic resistance. However, it is unknown whether outer membrane proteins that respond to antibiotics behave in a specific manner. The present study specifically investigated the differentially expressed outer membrane proteins of an antibiotic-resistant bacterium, Edwardsiella tarda, a Gram-negative pathogen that can lead to unnecessary mass medication of antimicrobials and consequently resistance development in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. The comparison of a clinically isolated strain to the laboratory derived kanamycin-, tetracycline-, or chloramphenicol-resistant strains identified their respective outer membrane proteins expression patterns, which are distinct to each other. Similarly, the same approach was utilized to profile the patterns in double antibiotic-resistant bacteria. Surprisingly, one pattern is always dominant over the other as to these three antibiotics; the pattern of chloramphenicol is over tetracycline, which is over kanamycin. This type of pattern was also confirmed in clinically relevant multidrug-resistant bacteria. In addition, the presence of plasmid encoding antibiotic-resistant genes also alters the outer membrane protein profile in a similar manner. Our results demonstrate that bacteria adapt the antibiotic stress through the regulation of outer membrane proteins expression. And more importantly, different outer membrane protein profiles were required to cope with different antibiotics. This type of specific pattern provides the rationale for the development of novel strategy to design outer membrane protein arrays to identify diverse multidrug resistance profiles as biomarkers for clinical medication.201728210241
633020.9996Transcriptomic study of ciprofloxacin resistance in Streptomyces coelicolor A3(2). Soil organisms exhibit resistance to a wide range of antibiotics as they either need to protect themselves from endogenous antibiotics or from those present in their soil environment. The soil could serve as a reservoir for resistance mechanisms that have already emerged or have the potential to emerge in clinically important bacteria. Streptomyces coelicolor, a non-pathogenic soil-dwelling organism, is thus used as a model for the study of intrinsic resistance. Preliminary screening of several compounds showed that S. coelicolor had high intrinsic resistance for the fluoroquinolone group of antibiotics. We subjected the bacteria to sub-inhibitory concentrations of ciprofloxacin and studied the transcriptomic response using microarrays. The data were supported with various biochemical and phenotypic assays. Ciprofloxacin treatment leads to differential expression of many genes with enhanced mRNA expression of its target, DNA gyrase gene. High induction of DNA repair pathways was also observed and many transporters were upregulated. Ciprofloxacin was found to induce ROS formation in a dose dependent manner. Reduction of ROS via anti-oxidants increased the effective MIC of the drug in the bacteria. The regulation of antibiotic resistance in S. coelicolor was studied systematically and contribution of different mechanisms in the development of resistance was assessed. Our data suggest that multiple mechanisms work in coordination to facilitate the cell to combat the stress due to ciprofloxacin.201324100886
444030.9996Antibiotic resistance mechanisms of clinically important bacteria. Bacterial resistance to antimicrobial drugs is an increasing health and economic problem. Bacteria may be innate resistant or acquire resistance to one or few classes of antimicrobial agents. Acquired resistance arises from: (i) mutations in cell genes (chromosomal mutation) leading to cross-resistance, (ii) gene transfer from one microorganism to other by plasmids (conjugation or transformation), transposons (conjugation), integrons and bacteriophages (transduction). After a bacterium gains resistance genes to protect itself from various antimicrobial agents, bacteria can use several biochemical types of resistance mechanisms: antibiotic inactivation (interference with cell wall synthesis, e.g., β-lactams and glycopeptide), target modification (inhibition of protein synthesis, e.g., macrolides and tetracyclines; interference with nucleic acid synthesis, e.g., fluoroquinolones and rifampin), altered permeability (changes in outer membrane, e.g., aminoglycosides; new membrane transporters, e.g., chloramphenicol), and "bypass" metabolic pathway (inhibition of metabolic pathway, e.g., trimethoprim-sulfamethoxazole).201121822035
472440.9996Transcriptomic analysis of sub-MIC Eugenol exposition on antibiotic resistance profile in Multidrug Resistant Enterococcus faecalis E9.8. The spread of multidrug-resistant (MDR) bacteria and their resistance genes along the food chain and the environment has become a global threat aggravated by incorrect disinfection strategies. This study analysed the effect of induction by sub-inhibitory concentrations of eugenol - a major ingredient in clove essential oil commonly used in disinfectant agents - on the phenotypic and genotypic response of MDR Enterococcus faecalis E9.8 strain, selected based on the phenotypic response of other enterococci. Eugenol treatment irreversibly reduced several antibiotics' minimum inhibitory concentration (MIC), confirmed by kinetic studies for kanamycin, erythromycin, and tetracycline. Furthermore, transcriptomic analysis indicated the reversion of antibiotic resistance through direct and indirect measures, such as down-regulation of genes coding for proteins involved in antibiotic resistance, toxin resistance and virulence factors. Regarding antibiotic resistance genes (ARGs), ten differentially expressed genes (five down-regulated and five up-regulated genes) were related to the main transporter families, which present key targets in antibiotic resistance reversion. Our study thus highlights the importance of considering indirectly related genes as targets for antibiotic resistance reversion besides ARGs sensu stricto. These results allow us to propose using eugenol as an antibiotic resistance reversing agent to be included in disinfectant solutions as an excellent alternative to limit the spread of MDR bacteria and their ARGs in the food chain and the environment.202539827501
474050.9996Resensitization of Multi Drug-Resistant Aeromonas caviae with Exogenous Hydrogen Sulfide Potentiated Antibiotics. Antimicrobial resistance (AMR) is a growing public health threat caused by the widespread overuse of antibiotics. Bacteria with antibiotic resistance may acquire resistance genes from soil or water. Endogenous hydrogen sulfide (H(2)S) production in bacteria confers antibiotic tolerance in many, suggesting a universal defense mechanism against antibiotics. In this study, we isolated and identified soil-based antibiotic-resistant bacteria collected from contaminated areas. An antibiotic-resistant bacterium was identified as non-endogenous-H(2)S-producing, allowing us to examine the effect of exogenous H(2)S on its resistance mechanism. Therefore, we demonstrated that different classes of antibiotic resistance can be reverted by employing H(2)S with antibiotics like ampicillin and gentamicin. Methods like Kirby-Bauer Disk-Diffusion, Scanning Electron Microscopy, and Flow Cytometer analysis were performed to assess the antibacterial activity of H(2)S with ampicillin and gentamicin. The antioxidative efficiency of H(2)S was evaluated using the DCFH-DA (ROS) test, as well as lipid peroxidation, and LDH activity. These were further confirmed with enzymatic and non-enzymatic (SOD, CAT, GST, and GSH) antioxidant studies. These findings support H(2)S as an antibiotic-potentiator, causing bacterial membrane damage, oxidative stress, and disrupting DNA and proteins. Thus, supplying exogenous H(2)S can be a good agent for the reversal of Antibiotic resistance.202439579197
379760.9996Human intestinal cells modulate conjugational transfer of multidrug resistance plasmids between clinical Escherichia coli isolates. Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co-cultured with human intestinal cells. We show that filtered media from co-cultures contain a factor that reduces conjugation efficiency. Protease treatment of the filtered media eliminates this inhibition of conjugation. This data suggests that a peptide or protein based factor is secreted on the apical side of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut.201424955767
895170.9996Response mechanisms of resistance in L-form bacteria to different target antibiotics: Implications from oxidative stress to metabolism. Due to the specific action on bacterial cell wall, β-lactam antibiotics have gained widespread usage as they exhibit a high degree of specificity in targeting bacteria, but causing minimal toxicity to host cells. Under antibiotic pressure, bacteria may opt to shed their cell walls and transform into L-form state as a means to evade the antibiotic effects. In this study, we explored and identified diverse optimal conditions for both Gram-negative bacteria (E. coli DH5α (CTX)) and Gram-positive bacteria (B. subtilis ATCC6633), which were induced to L-form bacteria using lysozyme (0.5 ppm) and meropenem (64 ppm). Notably, when bacteria transformed into L-form state, both bacterial strains showed varying degrees of increased resistance to antibiotics polymyxin E, meropenem, rifampicin, and tetracycline. E. coli DH5α (CTX) exhibited the most significant enhancement in resistance to tetracycline, with a 128-fold increase, while B. subtilis ATCC6633 showed a 32-fold increase in resistance to tetracycline and polymyxin E. Furthermore, L-form bacteria maintained their normal metabolic activity, combined with enhanced oxidative stress, served as an adaptive strategy promoting the sustained survival of L-form bacteria. This study provided a theoretical basis for comprehending antibiotic resistance mechanisms, developing innovative treatment strategies, and confronting global antibiotic resistance challenges.202438735077
27180.9995Challenging the concept of bacteria subsisting on antibiotics. Antibiotic resistance concerns have been compounded by a report that soil bacteria can catabolise antibiotics, i.e. break down and use them as a sole carbon source. To date this has not been verified or reproduced, therefore in this study soil bacteria were screened to verify and reproduce this hypothesis. Survival in high concentrations of antibiotics was initially observed; however, on further analysis these bacteria either did not degrade the antibiotics or they used an intrinsic resistance mechanism (β-lactamases) to degrade the β-lactams, as demonstrated by high-performance liquid chromatography. These results did not verify or reproduce the hypothesis that bacteria subsist on antibiotics or catabolise antibiotics as previously reported. This study identified that bacteria with a catabolising phenotype did not degrade streptomycin or trimethoprim and therefore could not utilise the antibiotics as a nutrient source. Therefore, we conclude that soil bacteria do not catabolise antibiotics.201323507409
441690.9995Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. Tetracycline-resistant bacteria were first isolated in 1953 from Shigella dysenteriae, a bacterium which causes bacterial dysentery. Since then tetracycline-resistant bacterial have been found in increasing numbers of species and genera. This has resulted in reduced effectiveness of tetracycline therapy over time. Tetracycline resistance is normally due to the acquisition of new genes often associated with either a mobile plasmid or a transposon. These tetracycline resistance determinants are distinguishable both genetically and biochemically. Resistance is primarily due to either energy-dependent efflux of tetracycline or protection of the ribosomes from the action of tetracycline. Gram-negative tetracycline efflux proteins are linked to repressor proteins which in the absence of tetracycline block transcription of the repressor and structural efflux genes. In contrast, expression of the Gram-positive tetracycline efflux genes and some of the ribosomal protection genes appears to be regulated by attenuation of mRNA transcription. Specific tetracycline resistance genes have been identified in 32 Gram-negative and 22 Gram-positive genera. Tetracycline-resistant bacteria are found in pathogens, opportunistic and normal flora species. Tetracycline-resistant bacteria can be isolated from man, animals, food, and the environment. The nonpathogens in each of these ecosystems may play an important role as reservoirs for the antibiotic resistance genes. It is clear that if we are to reverse the trend toward increasingly antibiotic-resistant pathogenic bacteria we will need to change how antibiotics are used in both human and animal health and food production.19968916553
4404100.9995Adaptation to Biocides Cetrimide and Chlorhexidine in Bacteria from Organic Foods: Association with Tolerance to Other Antimicrobials and Physical Stresses. Chlorhexidine (CH) and quaternary ammonium compounds (QAC), such as cetrimide (CE), are widely used as disinfectants because of their broad antimicrobial spectrum. However, their frequent use for disinfection in different settings may promote bacterial drug resistance against both biocides and clinically relevant antibiotics. This study analyzes the effects of stepwise exposure to cetrimide (CE) and chlorhexidine (CH) of bacteria from organic foods and previously classified as biocide-sensitive. Gradual exposure of these strains to biocides resulted in mainly transient decreased antimicrobial susceptibility to other antibiotics and to biocides. Biocide-adapted bacteria also exhibit alterations in physiological characteristics, mainly decreased heat tolerance, or gastric acid tolerance in CE-adapted strains, while bile resistance does not seem to be influenced by biocide adaptation. Results from this study suggest that changes in membrane fluidity may be the main mechanism responsible for the acquisition of stable tolerance to biocides.201728177232
4702110.9995Increased antimicrobial resistance of acid-adapted pathogenic Escherichia coli, and transcriptomic analysis of polymyxin-resistant strain. This study investigated the acid adaptation and antimicrobial resistance of seven pathogenic Escherichia coli strains and one commensal strain under nutrient-rich acidic conditions. After acid adaptation, three pathogenic E. coli survived during 100 h incubation in tryptic soy broth at pH 3.25. Acid-adapted (AA) strains showed increased resistance to antimicrobials including ampicillin, ciprofloxacin and especially polymyxins (colistin and polymyxin B), the last resort antimicrobial for multidrug-resistant Gram-negative bacteria. Enterotoxigenic E. coli strain (NCCP 13717) showed significantly increased resistance to acids and polymyxins. Transcriptome analysis of the AA NCCP 13717 revealed upregulation of genes related to the acid fitness island and the arn operon, which reduces lipopolysaccharide binding affinity at the polymyxin site of action. Genes such as eptA, tolC, and ompCF were also upregulated to alter the structure of the cell membrane, reducing the outer membrane permeability compared to the control, which is likely to be another mechanism for polymyxin resistance. This study highlights the emergence of antimicrobial resistance in AA pathogenic E. coli strains, particularly polymyxin resistance, and the mechanisms behind the increased antimicrobial resistance, providing important insights for the development of risk management strategies to effectively control the antimicrobial resistant foodborne pathogens.202439307200
4704120.9995Genetic Determinants of Salmonella Resistance to the Biofilm-Inhibitory Effects of a Synthetic 4-Oxazolidinone Analog. Biofilms formed by Salmonella enterica are a frequent source of food supply contamination. Since biofilms are inherently resistant to disinfection, new agents capable of preventing biofilm formation are needed. Synthetic analogs of 4-oxazolidinone containing natural products have shown promise as antibiofilm compounds against Gram-positive bacteria. The purpose of our study was 2-fold: to establish the antibiofilm effects and mechanism of action of a synthetic 4-oxazolidinone analog (JJM-ox-3-70) and to establish mechanisms of resistance to this compound in Salmonella enterica serovar Typhimurium (S Typhimurium). JJM-ox-3-70 inhibited biofilm formation but had no effect on cell growth. The antibiofilm effects were linked to disruption of curli fimbriae and flagellar gene expression and alteration in swimming motility, suggesting an effect on multiple cellular processes. Using a 2-step screening approach of defined multigene and single-gene deletion mutant libraries, we identified 3 mutants that produced less biofilm in the presence of JJM-ox-3-70 than the isogenic WT, with phenotypes reversed by complementation in trans Genes responsible for S Typhimurium resistance to the compound included acrB, a component of the major drug efflux pump AcrAB-TolC, and two genes of unknown function (STM0437 and STM1292). The results of this study suggest that JJM-ox-3-70 inhibits biofilm formation by indirect inhibition of extracellular matrix production that may be linked to disruption of flagellar motility. Further work is needed to establish the role of the newly characterized genes as potential mechanisms of biofilm intrinsic antimicrobial resistance.IMPORTANCE Biofilms are resistant to killing by disinfectants and antimicrobials. S. enterica biofilms facilitate long-term host colonization and persistence in food processing environments. Synthetic analogs of 4-oxazolidinone natural products show promise as antibiofilm agents. Here, we show that a synthetic 4-oxazolidinone analog inhibits Salmonella biofilm through effects on both motility and biofilm matrix gene expression. Furthermore, we identify three genes that promote Salmonella resistance to the antibiofilm effects of the compound. This work provides insight into the mechanism of antibiofilm effects of a synthetic 4-oxazolidinone analog in Gram-negative bacteria and demonstrates new mechanisms of intrinsic antimicrobial resistance in Salmonella biofilms.202032769186
8952130.9995Correlation between the development of phage resistance and the original antibiotic resistance of host bacteria under the co-exposure of antibiotic and bacteriophage. Bacteriophages (phages) are viruses capable of regulating the proliferation of antibiotic resistant bacteria (ARB). However, phages that directly cause host lethality may quickly select for phage resistant bacteria, and the co-evolutionary trade-offs under varying environmental conditions, including the presence of antibiotics, remains unclear as to their impact on phage and antibiotic resistance. Here, we report the emergence of phage resistance in three distinct E. coli strains with varying resistance to β-lactam antibiotics, treated with different ampicillin (AMP) concentrations. Hosts exhibiting stronger antibiotic resistance demonstrated a higher propensity to develop and maintain stable phage resistance. When exposed to polyvalent phage KNT-1, the growth of AMP-sensitive E. coli K12 was nearly suppressed within 18 h, while the exponential growth of AMP-resistant E. coli TEM and super-resistant E. coli NDM-1 was delayed by 12 h and 8 h, respectively. The mutation frequency and mutated colony count of E. coli NDM-1 were almost unaffected by co-existing AMP, whereas for E. coli TEM and K12, these metrics significantly decreased with increasing AMP concentration from 8 to 50 μg/mL, becoming unquantifiable at 100 μg/mL. Furthermore, the fitness costs of phage resistance mutation and its impact on initial antibiotic resistance in bacteria were further examined, through analyzing AMP susceptibility, biofilm formation and EPS secretion of the isolated phage resistant mutants. The results indicated that acquiring phage resistance could decrease antibiotic resistance, particularly for hosts lacking strong antibiotic resistance. The ability of mutants to form biofilm contributes to antibiotic resistance, but the correlation is not entirely positive, while the secretion of extracellular polymeric substance (EPS), especially the protein content, plays a crucial role in protecting the bacteria from both antibiotic and phage exposure. This study explores phage resistance development in hosts with different antibiotic resistance and helps to understand the limitations and possible solutions of phage-based technologies.202438631474
6329140.9995Autoinducer-2 influences tetracycline resistance in Streptococcus suis by regulating the tet(M) gene via transposon Tn916. The concern over increasing resistance to tetracyclines (TCs), such as tetracycline and chlortetracycline, necessitates exploration of new approaches to combating infection in antimicrobial therapy. Given that bacteria use the chemical language of autoinducer 2 (AI-2) signaling molecules in order to communicate and regulate group behaviors, we asked whether the AI-2 signaling influence the tetracyclines antibiotics susceptibility in S. suis. Our present work demonstrated that MIC increased when exogenous AI-2 was added, when compared to the wild type strain. When grown in the presence of sub-MIC of antibiotics, it has been shown that exogenous AI-2 increases growth rate and biofilm formation. These results suggest that the TCs resistance in S. suis could involve a signaling mechanism. Base on the above observations, transcriptomic analyses showed significant differences in the expression of tet(M) of tetracyclines resistance genes, as well as differences in Tn916 transposon related genes transcription, as judged by RT-PCR. Our results provide strong evidence that AI-2 signaling molecules is may involve in TCs antibiotic resistance in S. suis by regulating tet(M) gene via Tn916 transposon. This study may suggest that targeting AI-2 signaling in bacteria could represent an alternative approach in antimicrobial therapy.202031837515
4510150.9995Environmental concentrations of antibiotics, biocides, and heavy metals fail to induce phenotypic antimicrobial resistance in Escherichia coli. Most anthropogenically affected environments contain mixtures of pollutants from different sources. The impact of these pollutants is usually the combined effect of the individual polluting constituents. However, how these stressors contribute to the development of antimicrobial resistance in environmental microorganisms is poorly understood. Thus, a 30-day exposure experiment to environmental and sub-inhibitory concentrations of oxytetracycline, amoxicillin, zinc, copper, BAC (benzalkonium chloride) 10 and DADMAC (diallyldimethylammonium chloride) 12, was conducted using fully susceptible E. coli ATCC 25922 to ascertain any development of phenotypic or genotypic resistance. Furthermore, wild-type isolates were collected from the same aquatic environment as the stressors, analysed for phenotypic resistance using the disk diffusion method and genotypically through whole genome sequencing. Exposure to the various concentrations and combinations of the stressors did not trigger phenotypic resistance in the experimental bacteria. Furthermore, genotypic analysis of the WGS on the exposed isolates only found the macrolide resistance mdf(A) gene (also present in the control strain) and the disinfectant resistance gene sitABCD. With further analysis for single nucleotide variants (SNV), mutations were detected for 19 genes that encoded for oxidative stress, DNA repair, membrane proteins efflux systems, growth and persister formations except for the robA, a transcription protein subset of the ArcC/XylS family of proteins, which confer multidrug resistance in E. coli. This indicates that exposure to sub-inhibitory concentrations of antibiotics, heavy metals and biocide residues in the aquatic environmental concentrations of the stressors identified in the current study could not induce phenotypic or genotypic resistance but encoded for genes responsible for the development of persistence and tolerance in bacteria, which could be a precursor to the development of resistance in environmental bacteria.202337482346
6297160.9995Combined effect of bacteriophage and antibiotic on the inhibition of the development of antibiotic resistance in Salmonella typhimurium. This study was designed to evaluate the combined effects of bacteriophage and antibiotic on the reduction of the development of antibiotic-resistance in Salmonella typhimurium LT2. The susceptibilities of S. typhimurium to ciprofloxacin and erythromycin were increased when treated with bacteriophages, showing more than 10% increase in clear zone sizes and greater than twofold decrease in minimum inhibitory concentration values. The growth of S. typhimurium was effectively inhibited by the combination of bacteriophage P22 and ciprofloxacin. The combination treatment effectively reduced the development of antibiotic resistance in S. typhimurium. The relative expression levels of efflux pump-related genes (acrA, acrB, and tolC) and outer membrane-related genes (ompC, ompD, and ompF) were decreased at all treatments. This study provides useful information for designing new antibiotic therapy to control antibiotic-resistant bacteria.201830263855
4708170.9995Proteomic analysis of nalidixic acid resistance in Escherichia coli: identification and functional characterization of OM proteins. The worldwide emergence of antibiotic-resistant bacteria poses a serious threat to human health. To understand the mechanisms of the resistance is extremely important to the control of these bacteria. In the current study, proteomic methodologies were utilized to characterize OM proteome of Escherichia coli with nalidixic acid (NA) resistance. The OM proteins TolC, OmpT, OmpC and OmpW were found to be up-regulated, and FadL was down-regulated in the NA-resistant E. coli strains. The changes at the level of protein expression were validated using Western blotting. Furthermore, the possible roles these altered proteins played in regulation of NA resistance were investigated using genetically modified strains with the deletion of these genes. The results obtained from functional characterization of these genetically modified strains suggest that TolC and OmpC may play more important roles in the control of NA resistance than other OM proteins identified. To gain better understanding of the mechanisms of NA resistance, we also characterized the role of the two-component system EnvZ/OmpR which is responsible for the regulation of OmpC and OmpF expression in response to NA resistance using their genetically modified strains. Our results suggest that OmpF and the EnvZ/OmpR are also important participants of the pathways regulating the NA resistance of E. coli.200818438992
8965180.9995Resistance characterization and transcriptomic analysis of imipenem-induced drug resistance in Escherichia coli. BACKGROUND: Bacteria can develop resistance to various antibiotics under selective pressure, leading to multifaceted changes in resistance mechanisms. Transcriptomic sequencing allows for the observation of transcriptional level alterations in cells under antibiotic stress. Understanding the bacterial response to such stress is essential for deciphering their strategy against drug-resistant antibiotics and identifying potential targets for antibiotic development. METHODS: This study using wild-type (WT) Escherichia coli (E. coli) discovered that continuous in vitro induction screening for imipenem-resistant strains resulted in bacteria with enhanced biofilm-forming ability and mutations in antibiotic target sites. Transcriptomic sequencing of the resistant bacteria revealed significant changes in carbon and amino acid metabolism, nutrient assimilation, substance transport, nucleotide metabolism, protein biosynthesis, and cell wall biosynthesis. The up-regulated drug efflux genes were disrupted using gene knockout technology. Drug sensitivity tests indicated that drug efflux has a minimal effect on imipenem resistance. RESULTS: This suggests a strategy for E. coli drug resistance involving the reduction of unnecessary substance synthesis and metabolism, coupled with an increase in activities that aid in resisting foreign threats.202439624129
4573190.9995High pressure processing, acidic and osmotic stress increased resistance to aminoglycosides and tetracyclines and the frequency of gene transfer among strains from commercial starter and protective cultures. This study analyzed the effect of food-related stresses on the expression of antibiotic resistance of starter and protective strains and resistance gene transfer frequency. After exposure to high-pressure processing, acidic and osmotic stress, the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) and/or tetracyclines (tetM) increased. After cold stress, a decrease in the expression level of all tested genes was observed. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. After acidic and osmotic stresses, a significant increase in the frequency of each gene transfer was observed. To the best of the authors' knowledge, this is the first study focused on changes in antibiotic resistance associated with a stress response among starter and protective strains. The results suggest that the physicochemical factors prevailing during food production and storage may affect the phenotype of antibiotic resistance and the level of expression of antibiotic resistance genes among microorganisms. As a result, they can contribute to the spread of antibiotic resistance. This points to the need to verify strains used in the food industry for their antibiotic resistance to prevent them from becoming a reservoir for antibiotic resistance genes.202235953184