# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8918 | 0 | 1.0000 | Antibiotic resistance alters the ability of Pseudomonas aeruginosa to invade bacteria from the respiratory microbiome. The emergence and spread of antibiotic resistance in bacterial pathogens is a global health threat. One important unanswered question is how antibiotic resistance influences the ability of a pathogen to invade the host-associated microbiome. Here we investigate how antibiotic resistance impacts the ability of a bacterial pathogen to invade bacteria from the microbiome, using the opportunistic bacterial pathogen Pseudomonas aeruginosa and the respiratory microbiome as our model system. We measure the ability of P. aeruginosa spontaneous antibiotic-resistant mutants to invade pre-established cultures of commensal respiratory microbes in an assay that allows us to link specific resistance mutations with changes in invasion ability. While commensal respiratory microbes tend to provide some degree of resistance to P. aeruginosa invasion, antibiotic resistance is a double-edged sword that can either help or hinder the ability of P. aeruginosa to invade. The directionality of this help or hindrance depends on both P. aeruginosa genotype and respiratory microbe identity. Specific resistance mutations in genes involved in multidrug efflux pump regulation are shown to facilitate the invasion of P. aeruginosa into Staphylococcus lugdunensis, yet impair invasion into Rothia mucilaginosa and Staphylococcus epidermidis. Streptococcus species provide the strongest resistance to P. aeruginosa invasion, and this is maintained regardless of antibiotic resistance genotype. Our study demonstrates how the cost of mutations that provide enhanced antibiotic resistance in P. aeruginosa can crucially depend on community context. We suggest that attempts to manipulate the microbiome should focus on promoting the growth of commensals that can increase the fitness costs associated with antibiotic resistance and provide robust inhibition of both wildtype and antibiotic-resistant pathogen strains. | 2024 | 39328287 |
| 8919 | 1 | 0.9999 | Gene expression in Pseudomonas aeruginosa biofilms. Bacteria often adopt a sessile biofilm lifestyle that is resistant to antimicrobial treatment. Opportunistic pathogenic bacteria like Pseudomonas aeruginosa can develop persistent infections. To gain insights into the differences between free-living P. aeruginosa cells and those in biofilms, and into the mechanisms underlying the resistance of biofilms to antibiotics, we used DNA microarrays. Here we show that, despite the striking differences in lifestyles, only about 1% of genes showed differential expression in the two growth modes; about 0.5% of genes were activated and about 0.5% were repressed in biofilms. Some of the regulated genes are known to affect antibiotic sensitivity of free-living P. aeruginosa. Exposure of biofilms to high levels of the antibiotic tobramycin caused differential expression of 20 genes. We propose that this response is critical for the development of biofilm resistance to tobramycin. Our results show that gene expression in biofilm cells is similar to that in free-living cells but there are a small number of significant differences. Our identification of biofilm-regulated genes points to mechanisms of biofilm resistance to antibiotics. | 2001 | 11677611 |
| 8920 | 2 | 0.9999 | A systems biology approach to drug targets in Pseudomonas aeruginosa biofilm. Antibiotic resistance is an increasing problem in the health care system and we are in a constant race with evolving bacteria. Biofilm-associated growth is thought to play a key role in bacterial adaptability and antibiotic resistance. We employed a systems biology approach to identify candidate drug targets for biofilm-associated bacteria by imitating specific microenvironments found in microbial communities associated with biofilm formation. A previously reconstructed metabolic model of Pseudomonas aeruginosa (PA) was used to study the effect of gene deletion on bacterial growth in planktonic and biofilm-like environmental conditions. A set of 26 genes essential in both conditions was identified. Moreover, these genes have no homology with any human gene. While none of these genes were essential in only one of the conditions, we found condition-dependent genes, which could be used to slow growth specifically in biofilm-associated PA. Furthermore, we performed a double gene deletion study and obtained 17 combinations consisting of 21 different genes, which were conditionally essential. While most of the difference in double essential gene sets could be explained by different medium composition found in biofilm-like and planktonic conditions, we observed a clear effect of changes in oxygen availability on the growth performance. Eight gene pairs were found to be synthetic lethal in oxygen-limited conditions. These gene sets may serve as novel metabolic drug targets to combat particularly biofilm-associated PA. Taken together, this study demonstrates that metabolic modeling of human pathogens can be used to identify oxygen-sensitive drug targets and thus, that this systems biology approach represents a powerful tool to identify novel candidate antibiotic targets. | 2012 | 22523548 |
| 4262 | 3 | 0.9998 | Fitness cost of antibiotic susceptibility during bacterial infection. Advances in high-throughput DNA sequencing allow for a comprehensive analysis of bacterial genes that contribute to virulence in a specific infectious setting. Such information can yield new insights that affect decisions on how to best manage major public health issues such as the threat posed by increasing antimicrobial drug resistance. Much of the focus has been on the consequences of the selective advantage conferred on drug-resistant strains during antibiotic therapy. It is thought that the genetic and phenotypic changes that confer resistance also result in concomitant reductions in in vivo fitness, virulence, and transmission. However, experimental validation of this accepted paradigm is modest. Using a saturated transposon library of Pseudomonas aeruginosa, we identified genes across many functional categories and operons that contributed to maximal in vivo fitness during lung infections in animal models. Genes that bestowed both intrinsic and acquired antibiotic resistance provided a positive in vivo fitness advantage to P. aeruginosa during infection. We confirmed these findings in the pathogenic bacteria Acinetobacter baumannii and Vibrio cholerae using murine and rabbit infection models, respectively. Our results show that efforts to confront the worldwide increase in antibiotic resistance might be exacerbated by fitness advantages that enhance virulence in drug-resistant microbes. | 2015 | 26203082 |
| 4405 | 4 | 0.9998 | Copper Resistance of the Emerging Pathogen Acinetobacter baumannii. Acinetobacter baumannii is an important emerging pathogen that is capable of causing many types of severe infection, especially in immunocompromised hosts. Since A. baumannii can rapidly acquire antibiotic resistance genes, many infections are on the verge of being untreatable, and novel therapies are desperately needed. To investigate the potential utility of copper-based antibacterial strategies against Acinetobacter infections, we characterized copper resistance in a panel of recent clinical A. baumannii isolates. Exposure to increasing concentrations of copper in liquid culture and on solid surfaces resulted in dose-dependent and strain-dependent effects; levels of copper resistance varied broadly across isolates, possibly resulting from identified genotypic variation among strains. Examination of the growth-phase-dependent effect of copper on A. baumannii revealed that resistance to copper increased dramatically in stationary phase. Moreover, A. baumannii biofilms were more resistant to copper than planktonic cells but were still susceptible to copper toxicity. Exposure of bacteria to subinhibitory concentrations of copper allowed them to better adapt to and grow in high concentrations of copper; this copper tolerance response is likely achieved via increased expression of copper resistance mechanisms. Indeed, genomic analysis revealed numerous putative copper resistance proteins that share amino acid homology to known proteins in Escherichia coli and Pseudomonas aeruginosa Transcriptional analysis revealed significant upregulation of these putative copper resistance genes following brief copper exposure. Future characterization of copper resistance mechanisms may aid in the search for novel antibiotics against Acinetobacter and other highly antibiotic-resistant pathogens. IMPORTANCE: Acinetobacter baumannii causes many types of severe nosocomial infections; unfortunately, some isolates have acquired resistance to almost every available antibiotic, and treatment options are incredibly limited. Copper is an essential nutrient but becomes toxic at high concentrations. The inherent antimicrobial properties of copper give it potential for use in novel therapeutics against drug-resistant pathogens. We show that A. baumannii clinical isolates are sensitive to copper in vitro, both in liquid and on solid metal surfaces. Since bacterial resistance to copper is mediated though mechanisms of efflux and detoxification, we identified genes encoding putative copper-related proteins in A. baumannii and showed that expression of some of these genes is regulated by the copper concentration. We propose that the antimicrobial effects of copper may be beneficial in the development of future therapeutics that target multidrug-resistant bacteria. | 2016 | 27520808 |
| 8956 | 5 | 0.9998 | Biofilm characteristics and transcriptomic profiling of Acinetobacter johnsonii defines signatures for planktonic and biofilm cells. Most bacteria in the natural environment have a biofilm mode of life, which is intrinsically tolerant to antibiotics. While until now, the knowledge of biofilm formation by Acinetobacter johnsonii is not well understood. In this study, the characteristics and the effect of a sub-inhibitory concentration of antibiotic on A. johnsonii biofilm and planktonic cells were determined. We discovered a positive relationship between biofilm formation and tetracycline resistance, and biofilms rapidly evolve resistance to tetracycline they are treated with. Persister cells commonly exist in both planktonic and biofilm cells, with a higher frequency in the latter. Further transcriptomic analysis speculates that the overexpression of multidrug resistance genes and stress genes were mainly answered to sub lethal concentration of tetracycline in planktonic cells, and the lower metabolic levels after biofilm formation result in high resistance level of biofilm cells to tetracycline. Altogether, these data suggest that A. johnsonii can adjust its phenotype when grown as biofilm and change its metabolism under antibiotic stress, and provide implications for subsequent biofilm control. | 2022 | 35718162 |
| 8921 | 6 | 0.9998 | Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilm-specific proteome. Biofilm bacteria are widely held to exhibit a unique phenotype, typified by their increased resistance to antimicrobial agents. Numerous studies have been devoted to the identification of biofilm-specific genes, but surprisingly few have been reported to date. We compared the whole cell proteomes of 24 h old Bacillus cereus biofilms and the associated suspended population to exponential, transient and stationary phase planktonic cultures using the unbiased approach of principal component analysis, comparing the quantity variations of the 823 detected spots. The analyses support the hypothesis that biofilms of Gram positive bacteria have a unique pattern of gene expression. The data provides proteomic evidence for a new biofilm and surface influenced planktonic population which is distinct to both planktonic and biofilm cells. | 2006 | 16889414 |
| 3801 | 7 | 0.9998 | Macrophage Cell Lines and Murine Infection by Salmonella enterica Serovar Typhi L-Form Bacteria. Antibiotic resistance of pathogenic bacteria has emerged as a major threat to public health worldwide. While stable resistance due to the acquisition of genomic mutations or plasmids carrying antibiotic resistance genes is well established, much less is known about the temporary and reversible resistance induced by antibiotic treatment, such as that due to treatment with bacterial cell wall-inhibiting antibiotics such as ampicillin. Typically, ampicillin concentration in the blood and other tissues gradually increases over time after initiation of the treatment. As a result, the bacterial population is exposed to a concentration gradient of ampicillin during the treatment of infectious diseases. This is different from in vitro drug testing, where the organism is exposed to fixed drug concentrations from the beginning until the end. To mimic the mode of antibiotic exposure of microorganisms within host tissues, we cultured the wild-type, ampicillin-sensitive Salmonella enterica serovar Typhi Ty2 strain (S. Typhi Ty2) in the presence of increasing concentrations of ampicillin over a period of 14 days. This resulted in the development of a strain that displayed several features of the so-called L-form of bacteria, including the absence of the cell wall, altered shape, and lower growth rate compared with the parental form. Studies of the pathogenesis of S. Typhi L-form showed efficient infection of the murine and human macrophage cell lines. More importantly, S. Typhi L-form was also able to establish infection in a mouse model to the extent comparable to its parental form. These results suggested that L-form generation following the initiation of treatment with antibiotics could lead to drug escape of S. Typhi and cell to cell (macrophages) spread of the bacteria, which sustain the infection. Oral infection by the L-form bacteria underscores the potential of rapid disease transmission through the fecal-oral route, highlighting the need for new approaches to decrease the reservoir of infection. | 2022 | 35587200 |
| 8990 | 8 | 0.9998 | Enhanced virulence of Salmonella enterica serovar typhimurium after passage through mice. The interaction between Salmonella enterica and the host immune system is complex. The outcome of an infection is the result of a balance between the in vivo environment where the bacteria survive and grow and the regulation of fitness genes at a level sufficient for the bacteria to retain their characteristic rate of growth in a given host. Using bacteriological counts from tissue homogenates and fluorescence microscopy to determine the spread, localization, and distribution of S. enterica in the tissues, we show that, during a systemic infection, S. enterica adapts to the in vivo environment. The adaptation becomes a measurable phenotype when bacteria that have resided in a donor animal are introduced into a recipient naïve animal. This adaptation does not confer increased resistance to early host killing mechanisms but can be detected as an enhancement in the bacterial net growth rate later in the infection. The enhanced growth rate is lost upon a single passage in vitro, and it is therefore transient and not due to selection of mutants. The adapted bacteria on average reach higher intracellular numbers in individual infected cells and therefore have patterns of organ spread different from those of nonadapted bacteria. These experiments help in developing an understanding of the influence of passage in a host on the fitness and virulence of S. enterica. | 2011 | 21098099 |
| 9611 | 9 | 0.9998 | Parallel evolution of Pseudomonas aeruginosa phage resistance and virulence loss in response to phage treatment in vivo and in vitro. With rising antibiotic resistance, there has been increasing interest in treating pathogenic bacteria with bacteriophages (phage therapy). One limitation of phage therapy is the ease at which bacteria can evolve resistance. Negative effects of resistance may be mitigated when resistance results in reduced bacterial growth and virulence, or when phage coevolves to overcome resistance. Resistance evolution and its consequences are contingent on the bacteria-phage combination and their environmental context, making therapeutic outcomes hard to predict. One solution might be to conduct 'in vitro evolutionary simulations' using bacteria-phage combinations from the therapeutic context. Overall, our aim was to investigate parallels between in vitro experiments and in vivo dynamics in a human participant. Evolutionary dynamics were similar, with high levels of resistance evolving quickly with limited evidence of phage evolution. Resistant bacteria-evolved in vitro and in vivo-had lower virulence. In vivo, this was linked to lower growth rates of resistant isolates, whereas in vitro phage resistant isolates evolved greater biofilm production. Population sequencing suggests resistance resulted from selection on de novo mutations rather than sorting of existing variants. These results highlight the speed at which phage resistance can evolve in vivo, and how in vitro experiments may give useful insights for clinical evolutionary outcomes. | 2022 | 35188102 |
| 9615 | 10 | 0.9998 | Persistence and resistance as complementary bacterial adaptations to antibiotics. Bacterial persistence represents a simple of phenotypic heterogeneity, whereby a proportion of cells in an isogenic bacterial population can survive exposure to lethal stresses such as antibiotics. In contrast, genetically based antibiotic resistance allows for continued growth in the presence of antibiotics. It is unclear, however, whether resistance and persistence are complementary or alternative evolutionary adaptations to antibiotics. Here, we investigate the co-evolution of resistance and persistence across the genus Pseudomonas using comparative methods that correct for phylogenetic nonindependence. We find that strains of Pseudomonas vary extensively in both their intrinsic resistance to antibiotics (ciprofloxacin and rifampicin) and persistence following exposure to these antibiotics. Crucially, we find that persistence correlates positively to antibiotic resistance across strains. However, we find that different genes control resistance and persistence implying that they are independent traits. Specifically, we find that the number of type II toxin-antitoxin systems (TAs) in the genome of a strain is correlated to persistence, but not resistance. Our study shows that persistence and antibiotic resistance are complementary, but independent, evolutionary adaptations to stress and it highlights the key role played by TAs in the evolution of persistence. | 2016 | 26999656 |
| 9436 | 11 | 0.9998 | Phenotypic Resistance to Antibiotics. The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented. | 2013 | 27029301 |
| 9381 | 12 | 0.9998 | Cross-resistance is modular in bacteria-phage interactions. Phages shape the structure of natural bacterial communities and can be effective therapeutic agents. Bacterial resistance to phage infection, however, limits the usefulness of phage therapies and could destabilise community structures, especially if individual resistance mutations provide cross-resistance against multiple phages. We currently understand very little about the evolution of cross-resistance in bacteria-phage interactions. Here we show that the network structure of cross-resistance among spontaneous resistance mutants of Pseudomonas aeruginosa evolved against each of 27 phages is highly modular. The cross-resistance network contained both symmetric (reciprocal) and asymmetric (nonreciprocal) cross-resistance, forming two cross-resistance modules defined by high within- but low between-module cross-resistance. Mutations conferring cross-resistance within modules targeted either lipopolysaccharide or type IV pilus biosynthesis, suggesting that the modularity of cross-resistance was structured by distinct phage receptors. In contrast, between-module cross-resistance was provided by mutations affecting the alternative sigma factor, RpoN, which controls many lifestyle-associated functions, including motility, biofilm formation, and quorum sensing. Broader cross-resistance range was not associated with higher fitness costs or weaker resistance against the focal phage used to select resistance. However, mutations in rpoN, providing between-module cross-resistance, were associated with higher fitness costs than mutations associated with within-module cross-resistance, i.e., in genes encoding either lipopolysaccharide or type IV pilus biosynthesis. The observed structure of cross-resistance predicted both the frequency of resistance mutations and the ability of phage combinations to suppress bacterial growth. These findings suggest that the evolution of cross-resistance is common, is likely to play an important role in the dynamic structure of bacteria-phage communities, and could inform the design principles for phage therapy treatments. | 2018 | 30281587 |
| 4264 | 13 | 0.9998 | Mutational Evolution of Pseudomonas aeruginosa Resistance to Ribosome-Targeting Antibiotics. The present work examines the evolutionary trajectories of replicate Pseudomonas aeruginosa cultures in presence of the ribosome-targeting antibiotics tobramycin and tigecycline. It is known that large number of mutations across different genes - and therefore a large number of potential pathways - may be involved in resistance to any single antibiotic. Thus, evolution toward resistance might, to a large degree, rely on stochasticity, which might preclude the use of predictive strategies for fighting antibiotic resistance. However, the present results show that P. aeruginosa populations evolving in parallel in the presence of antibiotics (either tobramycin or tigecycline) follow a set of trajectories that present common elements. In addition, the pattern of resistance mutations involved include common elements for these two ribosome-targeting antimicrobials. This indicates that mutational evolution toward resistance (and perhaps other properties) is to a certain degree deterministic and, consequently, predictable. These findings are of interest, not just for P. aeruginosa, but in understanding the general rules involved in the evolution of antibiotic resistance also. In addition, the results indicate that bacteria can evolve toward higher levels of resistance to antibiotics against which they are considered to be intrinsically resistant, as tigecycline in the case of P. aeruginosa and that this may confer cross-resistance to other antibiotics of therapeutic value. Our results are particularly relevant in the case of patients under empiric treatment with tigecycline, which frequently suffer P. aeruginosa superinfections. | 2018 | 30405685 |
| 8913 | 14 | 0.9998 | The gut environment regulates bacterial gene expression which modulates susceptibility to bacteriophage infection. Abundance and diversity of bacteria and their viral predators, bacteriophages (phages), in the digestive tract are associated with human health. Particularly intriguing is the long-term coexistence of these two antagonistic populations. We performed genome-wide RNA sequencing on a human enteroaggregative Escherichia coli isolate to identify genes differentially expressed between in vitro conditions and in murine intestines. We experimentally demonstrated that four of these differentially expressed genes modified the interactions between E. coli and three virulent phages by either increasing or decreasing its susceptibility/resistance pattern and also by interfering with biofilm formation. Therefore, the regulation of bacterial genes expression during the colonization of the digestive tract influences the coexistence of phages and bacteria, highlighting the intricacy of tripartite relationships between phages, bacteria, and the animal host in intestinal homeostasis. | 2022 | 35421351 |
| 4276 | 15 | 0.9998 | Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms. The evolution of multi-antibiotic resistance in bacterial pathogens, often resulting from de novo mutations, is creating a public health crisis. Phages show promise for combating antibiotic-resistant bacteria, the efficacy of which, however, may also be limited by resistance evolution. Here, we suggest that phages may be used as supplements to antibiotics in treating initially sensitive bacteria to prevent resistance evolution, as phages are unaffected by most antibiotics and there should be little cross-resistance to antibiotics and phages. In vitro experiments using the bacterium Pseudomonas fluorescens, a lytic phage, and the antibiotic kanamycin supported this prediction: an antibiotic-phage combination dramatically decreased the chance of bacterial population survival that indicates resistance evolution, compared with antibiotic treatment alone, whereas the phage alone did not affect bacterial survival. This effect of the combined treatment in preventing resistance evolution was robust to immigration of bacteria from an untreated environment, but not to immigration from environment where the bacteria had coevolved with the phage. By contrast, an isogenic hypermutable strain constructed from the wild-type P. fluorescens evolved resistance to all treatments regardless of immigration, but typically suffered very large fitness costs. These results suggest that an antibiotic-phage combination may show promise as an antimicrobial strategy. | 2012 | 23028398 |
| 9431 | 16 | 0.9998 | Biofilms and antimicrobial resistance. The pathogenesis of many orthopaedic infections is related to the presence of microorganisms in biofilms. I examine the emerging understanding of the mechanisms of biofilm-associated antimicrobial resistance. Biofilm-associated resistance to antimicrobial agents begins at the attachment phase and increases as the biofilm ages. A variety of reasons for the increased antimicrobial resistance of microorganisms in biofilms have been postulated and investigated. Although bacteria in biofilms are surrounded by an extracellular matrix that might physically restrict the diffusion of antimicrobial agents, this does not seem to be a predominant mechanism of biofilm-associated antimicrobial resistance. Nutrient and oxygen depletion within the biofilm cause some bacteria to enter a nongrowing (ie, stationary) state, in which they are less susceptible to growth-dependent antimicrobial killing. A subpopulation of bacteria might differentiate into a phenotypically resistant state. Finally, some organisms in biofilms have been shown to express biofilm-specific antimicrobial resistance genes that are not required for biofilm formation. Overall, the mechanism of biofilm-associated antimicrobial resistance seems to be multifactorial and may vary from organism to organism. Techniques that address biofilm susceptibility testing to antimicrobial agents may be necessary before antimicrobial regimens for orthopaedic prosthetic device-associated infections can be appropriately defined in research and clinical settings. Finally, a variety of approaches are being defined to overcome biofilm-associated antimicrobial resistance. | 2005 | 16056024 |
| 9662 | 17 | 0.9998 | Species-Scale Genomic Analysis of Staphylococcus aureus Genes Influencing Phage Host Range and Their Relationships to Virulence and Antibiotic Resistance Genes. Phage therapy has been proposed as a possible alternative treatment for infections caused by the ubiquitous bacterial pathogen Staphylococcus aureus. However, successful therapy requires understanding the genetic basis of host range-the subset of strains in a species that could be killed by a particular phage. We searched diverse sets of S. aureus public genome sequences against a database of genes suggested from prior studies to influence host range to look for patterns of variation across the species. We found that genes encoding biosynthesis of molecules that were targets of S. aureus phage adsorption to the outer surface of the cell were the most conserved in the pangenome. Putative phage resistance genes that were core components of the pangenome genes had similar nucleotide diversity, ratio of nonsynonymous to synonymous substitutions, and functionality (measured by delta-bitscore) to other core genes. However, phage resistance genes that were not part of the core genome were significantly less consistent with the core genome phylogeny than all noncore genes in this set, suggesting more frequent movement between strains by horizontal gene transfer. Only superinfection immunity genes encoded by temperate phages inserted in the genome correlated with experimentally determined temperate phage resistance. Taken together, these results suggested that, while phage adsorption genes are heavily conserved in the S. aureus species, HGT may play a significant role in strain-specific evolution of host range patterns. IMPORTANCE Staphylococcus aureus is a widespread, hospital- and community-acquired pathogen that is commonly antibiotic resistant. It causes diverse diseases affecting both the skin and internal organs. Its ubiquity, antibiotic resistance, and disease burden make new therapies urgent, such as phage therapy, in which viruses specific to infecting bacteria clear infection. S. aureus phage host range not only determines whether phage therapy will be successful by killing bacteria but also horizontal gene transfer through transduction of host genetic material by phages. In this work, we comprehensively reviewed existing literature to build a list of S. aureus phage resistance genes and searched our database of almost 43,000 S. aureus genomes for these genes to understand their patterns of evolution, finding that prophages' superinfection immunity correlates best with phage resistance and HGT. These findings improved our understanding of the relationship between known phage resistance genes and phage host range in the species. | 2022 | 35040700 |
| 4261 | 18 | 0.9998 | Recovery and Characterization of Bacteria Resisting Infection by Lytic Bacteriophage. Bacteria and bacteriophages coexist and coevolve, bacteriophages being obligatory predators exerting an evolutionary pressure on their prey. Mechanisms in action vary depending on the bacterial genomic content and on the regulation of the bacteriophage cycle. To assess the multiplicity of bacterial genes involved in resistance as well as the changes in the bacteriophage interactions with the bacteria, it is necessary to isolate and investigate large numbers of independent resistant variants. Here we describe protocols that have been applied to the study of Pseudomonas aeruginosa and four of its virulent bacteriophages belonging to the Podoviridae and Myoviridae bacteriophage families. Mutations are identified using whole genome sequencing of resistant variants. Phenotypic analyses are performed to describe the changes conferred by the mutations. | 2018 | 29119434 |
| 9433 | 19 | 0.9998 | The relative contributions of physical structure and cell density to the antibiotic susceptibility of bacteria in biofilms. For many bacterial infections, noninherited mechanisms of resistance are responsible for extending the term of treatment and in some cases precluding its success. Among the most important of these noninherited mechanisms of resistance is the ability of bacteria to form biofilms. There is compelling evidence that bacteria within biofilms are more refractory to antibiotics than are planktonic cells. Not so clear, however, is the extent to which this resistance can be attributed to the structure of biofilms rather than the physiology and density of bacteria within them. To explore the contribution of the structure of biofilms to resistance in a quantitative way, we developed an assay that compares the antibiotic sensitivity of bacteria in biofilms to cells mechanically released from these structures. Our method, which we apply to Escherichia coli and Staphylococcus aureus each with antibiotics of five classes, controls for the density and physiological state of the treated bacteria. For most of the antibiotics tested, the bacteria in biofilms were no more resistant than the corresponding populations of planktonic cells of similar density. Our results, however, suggest that killing by gentamicin, streptomycin, and colistin is profoundly inhibited by the structure of biofilms; these drugs are substantially more effective in killing bacteria released from biofilms than cells within these structures. | 2012 | 22450987 |