Amelioration of the Fitness Costs of Antibiotic Resistance Due To Reduced Outer Membrane Permeability by Upregulation of Alternative Porins. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
891201.0000Amelioration of the Fitness Costs of Antibiotic Resistance Due To Reduced Outer Membrane Permeability by Upregulation of Alternative Porins. The fitness cost of antibiotic resistance is a key parameter in determining the evolutionary success of resistant bacteria. Studies of the effect of antibiotic resistance on bacterial fitness are heavily biased toward target alterations. Here we investigated how the costs in the form of a severely impaired growth rate associated with resistance due to absence of two major outer membrane porins can be genetically compensated. We performed an evolution experiment with 16 lineages of a double mutant of Escherichia coli with the ompCF genes deleted, and reduced fitness and increased resistance to different classes of antibiotics, including the carbapenems ertapenem and meropenem. After serial passage for only 250 generations, the relative growth rate increased from 0.85 to 0.99 (susceptible wild type set to 1.0). Compensation of the costs followed two different adaptive pathways where upregulation of expression of alternative porins bypassed the need for functional OmpCF porins. The first compensatory mechanism involved mutations in the phoR and pstS genes, causing constitutive high-level expression of the PhoE porin. The second mechanism involved mutations in the hfq and chiX genes that disrupted Hfq-dependent small RNA regulation, causing overexpression of the ChiP porin. Although susceptibility was restored in compensated mutants with PhoE overexpression, evolved mutants with high ChiP expression maintained the resistance phenotype. Our findings may explain why porin composition is often altered in resistant clinical isolates and provide new insights into how bypass mechanisms may allow genetic adaptation to a common multidrug resistance mechanism.201526358402
892910.9997Interplay in the selection of fluoroquinolone resistance and bacterial fitness. Fluoroquinolones are antibacterial drugs that inhibit DNA Gyrase and Topoisomerase IV. These essential enzymes facilitate chromosome replication and RNA transcription by regulating chromosome supercoiling. High-level resistance to fluoroquinolones in E. coli requires the accumulation of multiple mutations, including those that alter target genes and genes regulating drug efflux. Previous studies have shown some drug-resistance mutations reduce bacterial fitness, leading to the selection of fitness-compensatory mutations. The impact of fluoroquinolone-resistance on bacterial fitness was analyzed in constructed isogenic strains carrying up to 5 resistance mutations. Some mutations significantly decreased bacterial fitness both in vitro and in vivo. We identified low-fitness triple-mutants where the acquisition of a fourth resistance mutation significantly increased fitness in vitro and in vivo while at the same time dramatically decreasing drug susceptibility. The largest effect occurred with the addition of a parC mutation (Topoisomerase IV) to a low-fitness strain carrying resistance mutations in gyrA (DNA Gyrase) and marR (drug efflux regulation). Increased fitness was accompanied by a significant change in the level of gyrA promoter activity as measured in an assay of DNA supercoiling. In selection and competition experiments made in the absence of drug, parC mutants that improved fitness and reduced susceptibility were selected. These data suggest that natural selection for improved growth in bacteria with low-level resistance to fluoroquinolones could in some cases select for further reductions in drug susceptibility. Thus, increased resistance to fluoroquinolones could be selected even in the absence of further exposure to the drug.200919662169
896820.9997Antibiotic stress, genetic response and altered permeability of E. coli. BACKGROUND: Membrane permeability is the first step involved in resistance of bacteria to an antibiotic. The number and activity of efflux pumps and outer membrane proteins that constitute porins play major roles in the definition of intrinsic resistance in Gram-negative bacteria that is altered under antibiotic exposure. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the genetic regulation of porins and efflux pumps of Escherichia coli during prolonged exposure to increasing concentrations of tetracycline and demonstrate, with the aid of quantitative real-time reverse transcriptase-polymerase chain reaction methodology and western blot detection, the sequence order of genetic expression of regulatory genes, their relationship to each other, and the ensuing increased activity of genes that code for transporter proteins of efflux pumps and down-regulation of porin expression. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that, in addition to the transcriptional regulation of genes coding for membrane proteins, the post-translational regulation of proteins involved in the permeability of Gram-negative bacteria also plays a major role in the physiological adaptation to antibiotic exposure. A model is presented that summarizes events during the physiological adaptation of E. coli to tetracycline exposure.200717426813
896530.9997Resistance characterization and transcriptomic analysis of imipenem-induced drug resistance in Escherichia coli. BACKGROUND: Bacteria can develop resistance to various antibiotics under selective pressure, leading to multifaceted changes in resistance mechanisms. Transcriptomic sequencing allows for the observation of transcriptional level alterations in cells under antibiotic stress. Understanding the bacterial response to such stress is essential for deciphering their strategy against drug-resistant antibiotics and identifying potential targets for antibiotic development. METHODS: This study using wild-type (WT) Escherichia coli (E. coli) discovered that continuous in vitro induction screening for imipenem-resistant strains resulted in bacteria with enhanced biofilm-forming ability and mutations in antibiotic target sites. Transcriptomic sequencing of the resistant bacteria revealed significant changes in carbon and amino acid metabolism, nutrient assimilation, substance transport, nucleotide metabolism, protein biosynthesis, and cell wall biosynthesis. The up-regulated drug efflux genes were disrupted using gene knockout technology. Drug sensitivity tests indicated that drug efflux has a minimal effect on imipenem resistance. RESULTS: This suggests a strategy for E. coli drug resistance involving the reduction of unnecessary substance synthesis and metabolism, coupled with an increase in activities that aid in resisting foreign threats.202439624129
889740.9997Clinically relevant mutant DNA gyrase alters supercoiling, changes the transcriptome, and confers multidrug resistance. Bacterial DNA is maintained in a supercoiled state controlled by the action of topoisomerases. Alterations in supercoiling affect fundamental cellular processes, including transcription. Here, we show that substitution at position 87 of GyrA of Salmonella influences sensitivity to antibiotics, including nonquinolone drugs, alters global supercoiling, and results in an altered transcriptome with increased expression of stress response pathways. Decreased susceptibility to multiple antibiotics seen with a GyrA Asp87Gly mutant was not a result of increased efflux activity or reduced reactive-oxygen production. These data show that a frequently observed and clinically relevant substitution within GyrA results in altered expression of numerous genes, including those important in bacterial survival of stress, suggesting that GyrA mutants may have a selective advantage under specific conditions. Our findings help contextualize the high rate of quinolone resistance in pathogenic strains of bacteria and may partly explain why such mutant strains are evolutionarily successful. IMPORTANCE: Fluoroquinolones are a powerful group of antibiotics that target bacterial enzymes involved in helping bacteria maintain the conformation of their chromosome. Mutations in the target enzymes allow bacteria to become resistant to these antibiotics, and fluoroquinolone resistance is common. We show here that these mutations also provide protection against a broad range of other antimicrobials by triggering a defensive stress response in the cell. This work suggests that fluoroquinolone resistance mutations may be beneficial under a range of conditions.201323882012
899550.9996Interaction between mutations and regulation of gene expression during development of de novo antibiotic resistance. Bacteria can become resistant not only by horizontal gene transfer or other forms of exchange of genetic information but also by de novo by adaptation at the gene expression level and through DNA mutations. The interrelationship between changes in gene expression and DNA mutations during acquisition of resistance is not well documented. In addition, it is not known whether the DNA mutations leading to resistance always occur in the same order and whether the final result is always identical. The expression of >4,000 genes in Escherichia coli was compared upon adaptation to amoxicillin, tetracycline, and enrofloxacin. During adaptation, known resistance genes were sequenced for mutations that cause resistance. The order of mutations varied within two sets of strains adapted in parallel to amoxicillin and enrofloxacin, respectively, whereas the buildup of resistance was very similar. No specific mutations were related to the rather modest increase in tetracycline resistance. Ribosome-sensed induction and efflux pump activation initially protected the cell through induction of expression and allowed it to survive low levels of antibiotics. Subsequently, mutations were promoted by the stress-induced SOS response that stimulated modulation of genetic instability, and these mutations resulted in resistance to even higher antibiotic concentrations. The initial adaptation at the expression level enabled a subsequent trial and error search for the optimal mutations. The quantitative adjustment of cellular processes at different levels accelerated the acquisition of antibiotic resistance.201424841263
899460.9996Bacteria can compensate the fitness costs of amplified resistance genes via a bypass mechanism. Antibiotic heteroresistance is a phenotype in which a susceptible bacterial population includes a small subpopulation of cells that are more resistant than the main population. Such resistance can arise by tandem amplification of DNA regions containing resistance genes that in single copy are not sufficient to confer resistance. However, tandem amplifications often carry fitness costs, manifested as reduced growth rates. Here, we investigated if and how these fitness costs can be genetically ameliorated. We evolved four clinical isolates of three bacterial species that show heteroresistance to tobramycin, gentamicin and tetracyclines at increasing antibiotic concentrations above the minimal inhibitory concentration (MIC) of the main susceptible population. This led to a rapid enrichment of resistant cells with up to an 80-fold increase in the resistance gene copy number, an increased MIC, and severely reduced growth rates. When further evolved in the presence of antibiotic, these strains acquired compensatory resistance mutations and showed a reduction in copy number while maintaining high-level resistance. A deterministic model indicated that the loss of amplified units was driven mainly by their fitness costs and that the compensatory mutations did not affect the loss rate of the gene amplifications. Our findings suggest that heteroresistance mediated by copy number changes can facilitate and precede the evolution towards stable resistance.202438485998
440670.9996A Screen for Antibiotic Resistance Determinants Reveals a Fitness Cost of the Flagellum in Pseudomonas aeruginosa. The intrinsic resistance of Pseudomonas aeruginosa to many antibiotics limits treatment options for pseudomonal infections. P. aeruginosa's outer membrane is highly impermeable and decreases antibiotic entry into the cell. We used an unbiased high-throughput approach to examine mechanisms underlying outer membrane-mediated antibiotic exclusion. Insertion sequencing (INSeq) identified genes that altered fitness in the presence of linezolid, rifampin, and vancomycin, antibiotics to which P. aeruginosa is intrinsically resistant. We reasoned that resistance to at least one of these antibiotics would depend on outer membrane barrier function, as previously demonstrated in Escherichia coli and Vibrio cholerae This approach demonstrated a critical role of the outer membrane barrier in vancomycin fitness, while efflux pumps were primary contributors to fitness in the presence of linezolid and rifampin. Disruption of flagellar assembly or function was sufficient to confer a fitness advantage to bacteria exposed to vancomycin. These findings clearly show that loss of flagellar function alone can confer a fitness advantage in the presence of an antibiotic.IMPORTANCE The cell envelopes of Gram-negative bacteria render them intrinsically resistant to many classes of antibiotics. We used insertion sequencing to identify genes whose disruption altered the fitness of a highly antibiotic-resistant pathogen, Pseudomonas aeruginosa, in the presence of antibiotics usually excluded by the cell envelope. This screen identified gene products involved in outer membrane biogenesis and homeostasis, respiration, and efflux as important contributors to fitness. An unanticipated fitness cost of flagellar assembly and function in the presence of the glycopeptide antibiotic vancomycin was further characterized. These findings have clinical relevance for individuals with cystic fibrosis who are infected with P. aeruginosa and undergo treatment with vancomycin for a concurrent Staphylococcus aureus infection.202031871033
634280.9996Determinants of Extreme β-Lactam Tolerance in the Burkholderia pseudomallei Complex. Slow-growing bacteria are insensitive to killing by antibiotics, a trait known as antibiotic tolerance. In this study, we characterized the genetic basis of an unusually robust β-lactam (meropenem) tolerance seen in Burkholderia species. We identified tolerance genes under three different slow-growth conditions by extensive transposon mutant sequencing (Tn-seq), followed by single mutant validation. There were three principal findings. First, mutations in a small number of genes reduced tolerance under multiple conditions. Most of the functions appeared to be specific to peptidoglycan synthesis and the response to its disruption by meropenem action rather than being associated with more general physiological processes. The top tolerance genes are involved in immunity toward a type VI toxin targeting peptidoglycan (BTH_I0069), peptidoglycan recycling (ldcA), periplasmic regulation by proteolysis (prc), and an envelope stress response (rpoE and degS). Second, most of the tolerance functions did not contribute to growth in the presence of meropenem (intrinsic resistance), indicating that the two traits are largely distinct. Third, orthologues of many of the top Burkholderia thailandensis tolerance genes were also important in Burkholderia pseudomallei Overall, these studies show that the determinants of meropenem tolerance differ considerably depending on cultivation conditions, but that there are a few shared functions with strong mutant phenotypes that are important in multiple Burkholderia species.201829439964
889590.9996Loss of DNA mismatch repair genes leads to acquisition of antibiotic resistance independent of secondary mutations. Antibiotic resistant bacteria have been a rising clinical concern for decades. Beyond acquisition of alleles conferring resistance, bacteria under stress (e.g., from changing environmental conditions or mutations) can have higher intrinsic resistance to antibiotics than unstressed cells. This concern is expanded for gram-negative bacteria which have a protective outer membrane serving as an additional barrier against harmful molecules such as antibiotics. Here, we report a pathway which increases antibiotic resistance (i.e., minimum inhibitory concentration) in response to inactivation of the DNA Mismatch Repair pathway (MMR). This pathway led to increased intrinsic resistance and was independent of secondary mutations. Specifically, deletion of the DNA mismatch repair genes mutL or mutS caused resistance to various antibiotics spanning different classes, molecular sizes, and mechanisms of action in several different E. coli K-12 MG1655 strains, and in Salmonella enterica serovar Typhimurium LT2. This pathway was independent of the SOS response (severe DNA damage response). However, the patterns of resistance correlated with previously reported increases in MMR mutants in rates of homoeologous recombination, homologous recombination between non-identical DNA strands. Mutations expected to lower rates of recombination in MMR mutants also decreased the resistance to most antibiotics. Finally, we found lysis occurs in MMR mutants and may contribute to resistance to other antibiotics. Our results have demonstrated a novel mechanism that increases antibiotic resistance in direct response to loss of MMR genes, and we propose this resistance involves increased rates of homoeologous recombination and cell lysis. The increased antibiotic resistance of MMR mutants provides a path for these cells to survive in antibiotics long enough to develop more specific resistance mutations and so may contribute to the development of new clinical resistance alleles.202540667202
8993100.9996Adaptation Through Lifestyle Switching Sculpts the Fitness Landscape of Evolving Populations: Implications for the Selection of Drug-Resistant Bacteria at Low Drug Pressures. Novel genotypes evolve under selection through mutations in pre-existing genes. However, mutations have pleiotropic phenotypic effects that influence the fitness of emerging genotypes in complex ways. The evolution of antimicrobial resistance is mediated by selection of mutations in genes coding for antibiotic-target proteins. Drug-resistance is commonly associated with a fitness cost due to the impact of resistance-conferring mutations on protein function and/or stability. These costs are expected to prohibit the selection of drug-resistant mutations at low drug pressures. Using laboratory evolution of rifampicin resistance in Escherichia coli, we show that when exposed intermittently to low concentration (0.1 × minimal inhibitory concentration) of rifampicin, the evolution of canonical drug resistance was indeed unfavorable. Instead, these bacterial populations adapted by evolving into small-colony variants that displayed enhanced pellicle-forming ability. This shift in lifestyle from planktonic to pellicle-like was necessary for enhanced fitness at low drug pressures, and was mediated by the genetic activation of the fim operon promoter, which allowed expression of type I fimbriae. Upon continued low drug exposure, these bacteria evolved exclusively into high-level drug-resistant strains through mutations at a limited set of loci within the rifampicin-resistance determining region of the rpoB gene. We show that our results are explained by mutation-specific epistasis, resulting in differential impact of lifestyle switching on the competitive fitness of different rpoB mutations. Thus, lifestyle-alterations that are selected at low selection pressures have the potential to modify the fitness effects of mutations, change the genetic structure, and affect the ultimate fate of evolving populations.201930670539
8971110.9996Bacteriophage induces modifications in outer membrane protein expression and antibiotic susceptibility in Acinetobacter baumannii. Bacteriophages, the most abundant biological agents targeting bacteria, offer a promising alternative to antibiotics for combating multi-drug resistant pathogens like Acinetobacter baumannii. However, the rapid development of bacteriophage resistance poses a significant challenge. This study highlights the contribution of outer membrane proteins (OMPs) in the emergence of bacteriophage resistance in A. baumannii. The bacteriophage-sensitive and resistant isolates were studied for their native OMP profiles. Bacteriophage-tolerant A. baumannii were generated by infecting bacteria with bacteriophages and sub-culturing the survivors, and their expression of OMP and virulence was further characterized. These tolerant strains had significantly downregulated omp genes and under-expressed OMPs. Phenotypic changes like reduced adsorption to phages, deviant growth rates, biofilm-forming capacities, higher survival in limiting conditions, higher motility, and higher alkaline protease production were observed in the phage-tolerant strains equipped with better survival and virulent properties. The tolerant strains were re-sensitized to antibiotics they previously resisted. The significantly under-expressed OMPs in phage-tolerant strains were identified as OmpA and other OMPs similar to OmpA. This study could identify certain OMPs significantly under-expressed on bacteriophage exposure. The tolerant bacteria had altered phenotypic properties in addition to the development of phage resistance and the re-sensitisation to antibiotics, which paved the way for the future of phage therapeutics.202539800016
6294120.9996Comparison of Gene Expression Profiles of Uropathogenic Escherichia Coli CFT073 after Prolonged Exposure to Subinhibitory Concentrations of Different Biocides. Biocides are chemical compounds widely used for sterilization and disinfection. The aim of this study was to examine whether exposure to subinhibitory biocide concentrations influenced transcriptional expression of genes that could improve a pathogen's drug resistance or fitness. We used DNA microarrays to investigate the transcriptome of the uropathogenic Escherichia coli strain CFT073 in response to prolonged exposure to subinhibitory concentrations of four biocides: benzalkonium chloride, chlorhexidine, hydrogen peroxide and triclosan. Transcription of a gene involved in polymyxin resistance, arnT, was increased after treatment with benzalkonium chloride. However, pretreatment of the bacteria with this biocide did not result in cross-resistance to polymyxin in vitro. Genes encoding products related to transport formed the functional group that was most affected by biocides, as 110 out of 884 genes in this category displayed altered transcription. Transcripts of genes involved in cysteine uptake, sulfate assimilation, dipeptide transport, as well as cryptic phage genes were also more abundant in response to several biocides. Additionally, we identified groups of genes with transcription changes unique to single biocides that might include potential targets for the biocides. The biocides did not increase the resistance potential of the pathogen to other antimicrobials.201931569631
773130.9996Mutational Activation of Antibiotic-Resistant Mechanisms in the Absence of Major Drug Efflux Systems of Escherichia coli. Mutations are one of the common means by which bacteria acquire resistance to antibiotics. In an Escherichia coli mutant lacking major antibiotic efflux pumps AcrAB and AcrEF, mutations can activate alternative pathways that lead to increased antibiotic resistance. In this work, we isolated and characterized compensatory mutations of this nature mapping in four different regulatory genes, baeS, crp, hns, and rpoB. The gain-of-function mutations in baeS constitutively activated the BaeSR two-component regulatory system to increase the expression of the MdtABC efflux pump. Missense or insertion mutations in crp and hns caused derepression of an operon coding for the MdtEF efflux pump. Interestingly, despite the dependence of rpoB missense mutations on MdtABC for their antibiotic resistance phenotype, neither the expression of the mdtABCD-baeSR operon nor that of other known antibiotic efflux pumps went up. Instead, the transcriptome sequencing (RNA-seq) data revealed a gene expression profile resembling that of a "stringent" RNA polymerase where protein and DNA biosynthesis pathways were downregulated but pathways to combat various stresses were upregulated. Some of these activated stress pathways are also controlled by the general stress sigma factor RpoS. The data presented here also show that compensatory mutations can act synergistically to further increase antibiotic resistance to a level similar to the efflux pump-proficient parental strain. Together, the findings highlight a remarkable genetic ability of bacteria to circumvent antibiotic assault, even in the absence of a major intrinsic antibiotic resistance mechanism. IMPORTANCE Antibiotic resistance among bacterial pathogens is a chronic health concern. Bacteria possess or acquire various mechanisms of antibiotic resistance, and chief among them is the ability to accumulate beneficial mutations that often alter antibiotic targets. Here, we explored E. coli's ability to amass mutations in a background devoid of a major constitutively expressed efflux pump and identified mutations in several regulatory genes that confer resistance by activating specific or pleiotropic mechanisms.202133972351
8969140.9996Breaching the Barrier: Genome-Wide Investigation into the Role of a Primary Amine in Promoting E. coli Outer-Membrane Passage and Growth Inhibition by Ampicillin. Gram-negative bacteria are problematic for antibiotic development due to the low permeability of their cell envelopes. To rationally design new antibiotics capable of breaching this barrier, more information is required about the specific components of the cell envelope that prevent the passage of compounds with different physiochemical properties. Ampicillin and benzylpenicillin are β-lactam antibiotics with identical chemical structures except for a clever synthetic addition of a primary amine group in ampicillin, which promotes its accumulation in Gram-negatives. Previous work showed that ampicillin is better able to pass through the outer membrane porin OmpF in Escherichia coli compared to benzylpenicillin. It is not known, however, how the primary amine may affect interaction with other cell envelope components. This study applied TraDIS to identify genes that affect E. coli fitness in the presence of equivalent subinhibitory concentrations of ampicillin and benzylpenicillin, with a focus on the cell envelope. Insertions that compromised the outer membrane, particularly the lipopolysaccharide layer, were found to decrease fitness under benzylpenicillin exposure, but had less effect on fitness under ampicillin treatment. These results align with expectations if benzylpenicillin is poorly able to pass through porins. Disruption of genes encoding the AcrAB-TolC efflux system were detrimental to survival under both antibiotics, but particularly ampicillin. Indeed, insertions in these genes and regulators of acrAB-tolC expression were differentially selected under ampicillin treatment to a greater extent than insertions in ompF. These results suggest that maintaining ampicillin efflux may be more significant to E. coli survival than full inhibition of OmpF-mediated uptake. IMPORTANCE Due to the growing antibiotic resistance crisis, there is a critical need to develop new antibiotics, particularly compounds capable of targeting high-priority antibiotic-resistant Gram-negative pathogens. In order to develop new compounds capable of overcoming resistance a greater understanding of how Gram-negative bacteria are able to prevent the uptake and accumulation of many antibiotics is required. This study used a novel genome wide approach to investigate the significance of a primary amine group as a chemical feature that promotes the uptake and accumulation of compounds in the Gram-negative model organism Escherichia coli. The results support previous biochemical observations that the primary amine promotes passage through the outer membrane porin OmpF, but also highlight active efflux as a major resistance factor.202236409154
8964150.9996Analysis of the Oxidative Stress Regulon Identifies soxS as a Genetic Target for Resistance Reversal in Multidrug-Resistant Klebsiella pneumoniae. In bacteria, the defense system deployed to counter oxidative stress is orchestrated by three transcriptional factors, SoxS, SoxR, and OxyR. Although the regulon that these factors control is known in many bacteria, similar data are not available for Klebsiella pneumoniae. To address this data gap, oxidative stress was artificially induced in K. pneumoniae MGH78578 using paraquat and the corresponding oxidative stress regulon recorded using transcriptome sequencing (RNA-seq). The soxS gene was significantly induced during oxidative stress, and a knockout mutant was constructed to explore its functionality. The wild type and mutant were grown in the presence of paraquat and subjected to RNA-seq to elucidate the soxS regulon in K. pneumoniae MGH78578. Genes that are commonly regulated both in the oxidative stress and soxS regulons were identified and denoted as the oxidative SoxS regulon; these included a group of genes specifically regulated by SoxS. Efflux pump-encoding genes and global regulators were identified as part of this regulon. Consequently, the isogenic soxS mutant was found to exhibit a reduction in the minimum bactericidal concentration against tetracycline compared to that of the wild type. Impaired efflux activity, allowing tetracycline to be accumulated in the cytoplasm to bactericidal levels, was further evaluated using a tetraphenylphosphonium (TPP(+)) accumulation assay. The soxS mutant was also susceptible to tetracycline in vivo in a zebrafish embryo model. We conclude that the soxS gene could be considered a genetic target against which an inhibitor could be developed and used in combinatorial therapy to combat infections associated with multidrug-resistant K. pneumoniae. IMPORTANCE Antimicrobial resistance is a global health challenge. Few new antibiotics have been developed for use over the years, and preserving the efficacy of existing compounds is an important step to protect public health. This paper describes a study that examines the effects of exogenously induced oxidative stress on K. pneumoniae and uncovers a target that could be useful to harness as a strategy to mitigate resistance.202134098732
8916160.9996Increased mutations in lipopolysaccharide biosynthetic genes cause time-dependent development of phage resistance in Salmonella. Understanding how bacteria evolve resistance to phages has implications for phage-based therapies and microbial evolution. In this study, the susceptibility of 335 Salmonella isolates to the wide host range Salmonella phage BPSELC-1 was tested. Potentially significant gene sets that could confer resistance were identified using bioinformatics approaches based on phage susceptibility phenotypes; more than 90 potential antiphage defense gene sets, including those involved in lipopolysaccharide (LPS) biosynthesis, DNA replication, secretion systems, and respiratory chain, were found. The evolutionary dynamics of Salmonella resistance to phage were assessed through laboratory evolution experiments, which showed that phage-resistant mutants rapidly developed and exhibited genetic heterogeneity. Most representative Salmonella hosts (58.1% of 62) rapidly developed phage resistance within 24 h. All phage-resistant mutant clones exhibited genetic heterogeneity and observed mutations in LPS-related genes (rfaJ and rfaK) as well as other genes such as cellular respiration, transport, and cell replication-related genes. The study also identified potential trade-offs, indicating that bacteria tend to escape fitness trade-offs through multi-site mutations, all tested mutants increased sensitivity to polymyxin B, but this does not always affect their relative fitness or biofilm-forming capacity. Furthermore, complementing the rfaJ mutant gene could partially restore the phage sensitivity of phage-resistant mutants. These results provide insight into the phage resistance mechanisms of Salmonella and the complexity of bacterial evolution resulting from phage predation, which can inform future strategies for phage-based therapies and microbial evolution.202438193669
8908170.9996Characterization and Transcriptome Analysis of Acinetobacter baumannii Persister Cells. Acinetobacter baumannii is a nonfermenting Gram-negative bacillus. A. baumannii resistance is a significant obstacle to clinical infection treatment. The existence of persister cells (persisters) might represent the reason for therapy failure and relapse, and such cells may be the driving force behind rising resistance rates. In this study, A. baumannii ATCC 19606 was used as a target to explore the essential features of A. baumannii persisters. Antibiotic treatment of A. baumannii cultures at 50-fold the minimum inhibitory concentration resulted in a distinct plateau of surviving drug-tolerant persisters. The sensitive bacteria were lysed with ceftazidime, and the nonreplicating bacteria were isolated for transcriptome analysis using RNA sequencing. We analyzed the transcriptome of A. baumannii persisters and identified significantly differentially expressed genes, as well as their enriched pathways. The results showed that both the GP49 (HigB)/Cro (HigA) and DUF1044/RelB toxin/antitoxin systems were significantly increased during the persister incubation period. In addition, the activities of certain metabolic pathways (such as electron transport, adenosine triphosphate [ATP], and the citrate cycle) decreased sharply after antibiotic treatment and remained low during the persister period, while aromatic compound degradation genes were only upregulated in persisters. These results suggest the involvement of aromatic compound degradation genes in persister formation and maintenance. They further provide the first insight into the mechanism of persister formation in A. baumannii.201829902105
6326180.9996Identification of novel metronidazole-inducible genes in Mycobacterium smegmatis using a customized amplification library. The incidence of antibiotic resistance in pathogenic bacteria is rising. Bacterial resistance may be a natural defense of organisms, or it may result from spontaneous mutations or the acquisition of exogenous resistance genes. We grew spontaneous metronidazole-resistant Mycobacterium smegmatis mutants on solid medium cultures and employed differential expression using a customized amplification library to analyze the global gene profiles of metronidazole-resistant mutants under hypoxic conditions. In total, 66 genes involved in metronidazole resistance were identified and functionally characterized using the gene role category of M. smegmatis. Overall, genes associated with cell wall synthesis, such as methyltransferase and glycosyltransferase, and genes encoding drug transporters were highly expressed. The genes may be involved in the natural drug resistance of mycobacteria by increasing mycobacterial cell wall permeability and the efflux pumps of active drugs. In addition, the genes may play a role in dormancy. The genes identified in this study may lead to a better understanding of the mechanisms of metronidazole resistance during dormancy.200818373646
8900190.9996Adaptive Resistance Mutations at Suprainhibitory Concentrations Independent of SOS Mutagenesis. Emergence of resistant bacteria during antimicrobial treatment is one of the most critical and universal health threats. It is known that several stress-induced mutagenesis and heteroresistance mechanisms can enhance microbial adaptation to antibiotics. Here, we demonstrate that the pathogen Bartonella can undergo stress-induced mutagenesis despite the fact it lacks error-prone polymerases, the rpoS gene and functional UV-induced mutagenesis. We demonstrate that Bartonella acquire de novo single mutations during rifampicin exposure at suprainhibitory concentrations at a much higher rate than expected from spontaneous fluctuations. This is while exhibiting a minimal heteroresistance capacity. The emerged resistant mutants acquired a single rpoB mutation, whereas no other mutations were found in their whole genome. Interestingly, the emergence of resistance in Bartonella occurred only during gradual exposure to the antibiotic, indicating that Bartonella sense and react to the changing environment. Using a mathematical model, we demonstrated that, to reproduce the experimental results, mutation rates should be transiently increased over 1,000-folds, and a larger population size or greater heteroresistance capacity is required. RNA expression analysis suggests that the increased mutation rate is due to downregulation of key DNA repair genes (mutS, mutY, and recA), associated with DNA breaks caused by massive prophage inductions. These results provide new evidence of the hazard of antibiotic overuse in medicine and agriculture.202134175952