# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8909 | 0 | 1.0000 | Nanoalumina triggers the antibiotic persistence of Escherichia coli through quorum sensing regulators lrsF and qseB. Nanomaterials with bactericidal effects might provide novel strategies against bacteria. However, some bacteria can survive despite the exposure to nanomaterials, which challenges the safety of antibacterial nanomaterials. Here, we used a high dose of antibiotics to kill the E. coli. that survived under different concentrations of nanoalumina treatment to screen persisters, and found that nanoalumina could significantly trigger persisters formation. Treatment with 50 mg/L nanoalumina for 4 h resulted in the formation of (0.084 ± 0.005) % persisters. Both reactive oxygen species (ROS) and toxin-antitoxin (TA) system were involved in persisters formation. Interestingly, RT-PCR analysis and knockout of the five genes related to ROS and TA confirmed that only hipB was associated with the formation of persisters, suggesting the involvement of other mechanisms. We further identified 73 differentially expressed genes by transcriptome sequencing and analyzed them with bioinformatics tools. We selected six candidate genes and verified that five of them closely related to quorum sensing (QS) that were involved in persisters formation, and further validated that the coexpression of QS factors lrsF and qseB was a novel pathway for persisters. Our findings provided a better understanding on the emergence of bacterial persistence and the microbial behavior under nanomaterials exposure. | 2022 | 35739728 |
| 8908 | 1 | 0.9997 | Characterization and Transcriptome Analysis of Acinetobacter baumannii Persister Cells. Acinetobacter baumannii is a nonfermenting Gram-negative bacillus. A. baumannii resistance is a significant obstacle to clinical infection treatment. The existence of persister cells (persisters) might represent the reason for therapy failure and relapse, and such cells may be the driving force behind rising resistance rates. In this study, A. baumannii ATCC 19606 was used as a target to explore the essential features of A. baumannii persisters. Antibiotic treatment of A. baumannii cultures at 50-fold the minimum inhibitory concentration resulted in a distinct plateau of surviving drug-tolerant persisters. The sensitive bacteria were lysed with ceftazidime, and the nonreplicating bacteria were isolated for transcriptome analysis using RNA sequencing. We analyzed the transcriptome of A. baumannii persisters and identified significantly differentially expressed genes, as well as their enriched pathways. The results showed that both the GP49 (HigB)/Cro (HigA) and DUF1044/RelB toxin/antitoxin systems were significantly increased during the persister incubation period. In addition, the activities of certain metabolic pathways (such as electron transport, adenosine triphosphate [ATP], and the citrate cycle) decreased sharply after antibiotic treatment and remained low during the persister period, while aromatic compound degradation genes were only upregulated in persisters. These results suggest the involvement of aromatic compound degradation genes in persister formation and maintenance. They further provide the first insight into the mechanism of persister formation in A. baumannii. | 2018 | 29902105 |
| 8967 | 2 | 0.9996 | Distinct transcriptomic response of S. coelicolor to ciprofloxacin in a nutrient-rich environment. With the rising threat of anti-microbial resistance (AMR), there is an urgent need to enhance efficacy of existing antibiotics. Understanding the myriad mechanisms through which bacteria evade these drugs would be of immense value to designing novel strategies against them. Streptomyces coelicolor A3(2) M145 belongs to the actinomyctes species that are responsible for more than two-thirds of antibiotics. This group of bacteria therefore encodes for various mechanisms that can resist both endogenous and non-endogenous antibiotics. In an earlier study, we had studied the transcriptomic response of these bacteria to ciprofloxacin, when cultured in a minimal media. In this work, we investigate why the minimum inhibitory concentration of the drug increases by fourfold when the bacteria are grown in a nutrient-rich media. Through transcriptomic, biochemical, and microscopic studies, we show that S. coelicolor responds to ciprofloxacin in a concentration-dependent manner. While, sub-inhibitory concentration of the drug primarily causes oxidative stress, the inhibitory concentration of ciprofloxacin evokes a more severe genome-wide response in the cell, which ranges from the familiar upregulation of the SOS response and DNA repair pathways to the widespread alterations in the central metabolism pathway to accommodate the increased needs of nucleotides and other precursors. Further, the upregulation of peptidoglycan synthesis genes, along with microscopy images, suggest alterations in the cell morphology to increase fitness of the bacteria during the antibiotic stress. The data also points to the enhanced efflux activity in cells cultured in rich media that contributes significantly towards reducing intracellular drug concentration and thus promotes survival. | 2018 | 30327831 |
| 8965 | 3 | 0.9996 | Resistance characterization and transcriptomic analysis of imipenem-induced drug resistance in Escherichia coli. BACKGROUND: Bacteria can develop resistance to various antibiotics under selective pressure, leading to multifaceted changes in resistance mechanisms. Transcriptomic sequencing allows for the observation of transcriptional level alterations in cells under antibiotic stress. Understanding the bacterial response to such stress is essential for deciphering their strategy against drug-resistant antibiotics and identifying potential targets for antibiotic development. METHODS: This study using wild-type (WT) Escherichia coli (E. coli) discovered that continuous in vitro induction screening for imipenem-resistant strains resulted in bacteria with enhanced biofilm-forming ability and mutations in antibiotic target sites. Transcriptomic sequencing of the resistant bacteria revealed significant changes in carbon and amino acid metabolism, nutrient assimilation, substance transport, nucleotide metabolism, protein biosynthesis, and cell wall biosynthesis. The up-regulated drug efflux genes were disrupted using gene knockout technology. Drug sensitivity tests indicated that drug efflux has a minimal effect on imipenem resistance. RESULTS: This suggests a strategy for E. coli drug resistance involving the reduction of unnecessary substance synthesis and metabolism, coupled with an increase in activities that aid in resisting foreign threats. | 2024 | 39624129 |
| 8871 | 4 | 0.9996 | Phage selection drives resistance-virulence trade-offs in Ralstonia solanacearum plant-pathogenic bacterium irrespective of the growth temperature. While temperature has been shown to affect the survival and growth of bacteria and their phage parasites, it is unclear if trade-offs between phage resistance and other bacterial traits depend on the temperature. Here, we experimentally compared the evolution of phage resistance-virulence trade-offs and underlying molecular mechanisms in phytopathogenic Ralstonia solanacearum bacterium at 25 °C and 35 °C temperature environments. We found that while phages reduced R. solanacearum densities relatively more at 25 °C, no difference in the final level of phage resistance was observed between temperature treatments. Instead, small colony variants (SCVs) with increased growth rate and mutations in the quorum-sensing (QS) signaling receptor gene, phcS, evolved in both temperature treatments. Interestingly, SCVs were also phage-resistant and reached higher frequencies in the presence of phages. Evolving phage resistance was costly, resulting in reduced carrying capacity, biofilm formation, and virulence in planta, possibly due to loss of QS-mediated expression of key virulence genes. We also observed mucoid phage-resistant colonies that showed loss of virulence and reduced twitching motility likely due to parallel mutations in prepilin peptidase gene, pilD. Moreover, phage-resistant SCVs from 35 °C-phage treatment had parallel mutations in type II secretion system (T2SS) genes (gspE and gspF). Adsorption assays confirmed the role of pilD as a phage receptor, while no loss of adsorption was found with phcS or T2SS mutants, indicative of other downstream phage resistance mechanisms. Additional transcriptomic analysis revealed upregulation of CBASS and type I restriction-modification phage defense systems in response to phage exposure, which coincided with reduced expression of motility and virulence-associated genes, including pilD and type II and III secretion systems. Together, these results suggest that while phage resistance-virulence trade-offs are not affected by the growth temperature, they could be mediated through both pre- and postinfection phage resistance mechanisms. | 2024 | 38525025 |
| 8964 | 5 | 0.9996 | Analysis of the Oxidative Stress Regulon Identifies soxS as a Genetic Target for Resistance Reversal in Multidrug-Resistant Klebsiella pneumoniae. In bacteria, the defense system deployed to counter oxidative stress is orchestrated by three transcriptional factors, SoxS, SoxR, and OxyR. Although the regulon that these factors control is known in many bacteria, similar data are not available for Klebsiella pneumoniae. To address this data gap, oxidative stress was artificially induced in K. pneumoniae MGH78578 using paraquat and the corresponding oxidative stress regulon recorded using transcriptome sequencing (RNA-seq). The soxS gene was significantly induced during oxidative stress, and a knockout mutant was constructed to explore its functionality. The wild type and mutant were grown in the presence of paraquat and subjected to RNA-seq to elucidate the soxS regulon in K. pneumoniae MGH78578. Genes that are commonly regulated both in the oxidative stress and soxS regulons were identified and denoted as the oxidative SoxS regulon; these included a group of genes specifically regulated by SoxS. Efflux pump-encoding genes and global regulators were identified as part of this regulon. Consequently, the isogenic soxS mutant was found to exhibit a reduction in the minimum bactericidal concentration against tetracycline compared to that of the wild type. Impaired efflux activity, allowing tetracycline to be accumulated in the cytoplasm to bactericidal levels, was further evaluated using a tetraphenylphosphonium (TPP(+)) accumulation assay. The soxS mutant was also susceptible to tetracycline in vivo in a zebrafish embryo model. We conclude that the soxS gene could be considered a genetic target against which an inhibitor could be developed and used in combinatorial therapy to combat infections associated with multidrug-resistant K. pneumoniae. IMPORTANCE Antimicrobial resistance is a global health challenge. Few new antibiotics have been developed for use over the years, and preserving the efficacy of existing compounds is an important step to protect public health. This paper describes a study that examines the effects of exogenously induced oxidative stress on K. pneumoniae and uncovers a target that could be useful to harness as a strategy to mitigate resistance. | 2021 | 34098732 |
| 8304 | 6 | 0.9996 | A Shift to Human Body Temperature (37°C) Rapidly Reprograms Multiple Adaptive Responses in Escherichia coli That Would Facilitate Niche Survival and Colonization. One of the first environmental cues sensed by a microbe as it enters a human host is an upshift in temperature to 37°C. In this dynamic time point analysis, we demonstrate that this environmental transition rapidly signals a multitude of gene expression changes in Escherichia coli. Bacteria grown at 23°C under aerobic conditions were shifted to 37°C, and mRNA expression was measured at time points after the shift to 37°C (t = 0.5, 1, and 4 h). The first hour is characterized by a transient shift to anaerobic respiration strategies and stress responses, particularly acid resistance, indicating that temperature serves as a sentinel cue to predict and prepare for various niches within the host. The temperature effects on a subset of stress response genes were shown to be mediated by RpoS and directly correlated with RpoS, DsrA, and RprA levels, and increased acid resistance was observed that was dependent on 23°C growth and RpoS. By 4 h, gene expression shifted to aerobic respiration pathways and decreased stress responses, coupled with increases in genes associated with biosynthesis (amino acid and nucleotides), iron uptake, and host defense. ompT, a gene that confers resistance to antimicrobial peptides, was highly thermoregulated, with a pattern conserved in enteropathogenic and uropathogenic E. coli strains. An immediate decrease in curli gene expression concomitant with an increase in flagellar gene expression implicates temperature in this developmental decision. Together, our studies demonstrate that temperature signals a reprogramming of gene expression immediately upon an upshift that may predict, prepare, and benefit the survival of the bacterium within the host. IMPORTANCE As one of the first cues sensed by the microbe upon entry into a human host, understanding how bacteria like E. coli modulate gene expression in response to temperature improves our understanding of how bacteria immediately initiate responses beneficial for survival and colonization. For pathogens, understanding the various pathways of thermal regulation could yield valuable targets for anti-infective chemotherapeutic drugs or disinfection measures. In addition, our data provide a dynamic examination of the RpoS stress response, providing genome-wide support for how temperature impacts RpoS through changes in RpoS stability and modulation by small regulatory RNAs. | 2021 | 34516284 |
| 8979 | 7 | 0.9996 | Silver nanoparticles resistance in Listeria monocytogenes: morphologic, virulence and cellular response. Bacterial antibiotic resistance poses a growing global health threat. To address this, silver nanoparticles (AgNPs) have been extensively applied for their broad-spectrum antibacterial activity. However, the recent emergence of AgNPs resistance in bacteria presents a critical challenge, as the underlying resistance mechanisms remain poorly understood. In this study, spherical citrate-capped AgNPs were synthesized with an average particle size of approximately 12 nm. Listeria monocytogenes developed resistance to AgNPs (L.M(AgNPs)) after repeated exposure, and the underlying mechanisms were investigated through phenotypic and genetic changes. The results showed that the hemispherical poles of rod-shaped cells became sharply tapered after long-term exposure to AgNPs, and the cell wall thickness in L.M(AgNPs) increased by approximately 17.4 % compared to wild type strain, with p ˂ 0.0001. Differential gene expression analysis showed that the relative expression of virulence genes was significantly down-regulated in L.M(AgNPs) (padj ≤ 0.05). Some genes were barely expressed upon exposure to AgNPs, and this was further validated by qRT-PCR and hemolysis assay. The gliding motility of L.M(AgNPs) was significantly increased. Based on these studies, we emphasize that the mechanism of AgNPs resistance in L. monocytogenes may be mediated by the sharp-tapered poles of resistance strain, which make them more rigid, and by altered virulence responses and enhanced gliding motility, which are distinct from the reported AgNPs resistance. This work not only advances the understanding of the relationship between antibacterial stress responses and virulence in pathogen, but also facilitates safer utilization of AgNPs by clarifying bacterial resistance mechanisms. | 2025 | 40749459 |
| 8971 | 8 | 0.9996 | Bacteriophage induces modifications in outer membrane protein expression and antibiotic susceptibility in Acinetobacter baumannii. Bacteriophages, the most abundant biological agents targeting bacteria, offer a promising alternative to antibiotics for combating multi-drug resistant pathogens like Acinetobacter baumannii. However, the rapid development of bacteriophage resistance poses a significant challenge. This study highlights the contribution of outer membrane proteins (OMPs) in the emergence of bacteriophage resistance in A. baumannii. The bacteriophage-sensitive and resistant isolates were studied for their native OMP profiles. Bacteriophage-tolerant A. baumannii were generated by infecting bacteria with bacteriophages and sub-culturing the survivors, and their expression of OMP and virulence was further characterized. These tolerant strains had significantly downregulated omp genes and under-expressed OMPs. Phenotypic changes like reduced adsorption to phages, deviant growth rates, biofilm-forming capacities, higher survival in limiting conditions, higher motility, and higher alkaline protease production were observed in the phage-tolerant strains equipped with better survival and virulent properties. The tolerant strains were re-sensitized to antibiotics they previously resisted. The significantly under-expressed OMPs in phage-tolerant strains were identified as OmpA and other OMPs similar to OmpA. This study could identify certain OMPs significantly under-expressed on bacteriophage exposure. The tolerant bacteria had altered phenotypic properties in addition to the development of phage resistance and the re-sensitisation to antibiotics, which paved the way for the future of phage therapeutics. | 2025 | 39800016 |
| 8966 | 9 | 0.9995 | Gene expression profile of Campylobacter jejuni in response to macrolide antibiotics. Campylobacter jejuni is a foodborne pathogen that causes gastroenteritis in humans and has developed resistance to various antibiotics. The primary objective of this research was to examine the network of antibiotic resistance in C. jejuni. The study involved the wild and antibiotic-resistant strains placed in the presence and absence of antibiotics to review their gene expression profiles in response to ciprofloxacin via microarray. Differentially expressed genes (DEGs) analysis and Protein-Protein Interaction (PPI) Network studies were performed for these genes. The results showed that the resistance network of C. jejuni is modular, with different genes involved in bacterial motility, capsule synthesis, efflux, and amino acid and sugar synthesis. Antibiotic treatment resulted in the down-regulation of cluster genes related to translation, flagellum formation, and chemotaxis. In contrast, cluster genes involved in homeostasis, capsule formation, and cation efflux were up-regulated. The study also found that macrolide antibiotics inhibit the progression of C. jejuni infection by inactivating topoisomerase enzymes and increasing the activity of epimerase enzymes, trying to compensate for the effect of DNA twisting. Then, the bacterium limits the movement to conserve energy. Identifying the antibiotic resistance network in C. jejuni can aid in developing drugs to combat these bacteria. Genes involved in cell division, capsule formation, and substance transport may be potential targets for inhibitory drugs. Future research must be directed toward comprehending the underlying mechanisms contributing to the modularity of antibiotic resistance and developing strategies to disrupt and mitigate the growing threat of antibiotic resistance effectively. | 2024 | 38393387 |
| 8894 | 10 | 0.9995 | Genome Recombination-Mediated tRNA Up-Regulation Conducts General Antibiotic Resistance of Bacteria at Early Stage. Bacterial antibiotic resistance sets a great challenge to human health. It seems that the bacteria can spontaneously evolve resistance against any antibiotic within a short time without the horizontal transfer of heterologous genes and before accumulating drug-resistant mutations. We have shown that the tRNA-mediated translational regulation counteracts the reactive oxygen species (ROS) in bacteria. In this study, we demonstrated that isolated and subcultured Escherichia coli elevated its tRNAs under antibiotic stress to rapidly provide antibiotic resistance, especially at the early stage, before upregulating the efflux pump and evolving resistance mutations. The DNA recombination system repaired the antibiotic-induced DNA breakage in the genome, causing numerous structural variations. These structural variations are overrepresented near the tRNA genes, which indicated the cause of tRNA up-regulation. Knocking out the recombination system abolished the up-regulation of tRNAs, and coincidently, they could hardly evolve antibiotic resistance in multiple antibiotics, respectively. With these results, we proposed a multi-stage model of bacterial antibiotic resistance in an isolated scenario: the early stage (recombination-tRNA up-regulation-translational regulation); the medium stage (up-regulation of efflux pump); the late stage (resistant mutations). These results also indicated that the bacterial DNA recombination system and tRNA could be targeted to retard the bacterial spontaneous drug resistance. | 2021 | 35126332 |
| 8970 | 11 | 0.9995 | Transcriptomic Analyses to Unravel Cronobacter sakazakii Resistance Pathways. The proliferation of antibiotic usage has precipitated the emergence of drug-resistant variants of bacteria, thereby augmenting their capacity to withstand pharmaceutical interventions. Among these variants, Cronobacter sakazakii (C. sakazakii), prevalent in powdered infant formula (PIF), poses a grave threat to the well-being of infants. Presently, global contamination by C. sakazakii is being observed. Consequently, research endeavors have been initiated to explore the strain's drug resistance capabilities, alterations in virulence levels, and resistance mechanisms. The primary objective of this study is to investigate the resistance mechanisms and virulence levels of C. sakazakii induced by five distinct antibiotics, while concurrently conducting transcriptomic analyses. Compared to the susceptible strains prior to induction, the drug-resistant strains exhibited differential gene expression, resulting in modifications in the activity of relevant enzymes and biofilm secretion. Transcriptomic studies have shown that the expression of glutathione S-transferase and other genes were significantly upregulated after induction, leading to a notable enhancement in biofilm formation ability, alongside the existence of antibiotic resistance mechanisms associated with efflux pumps, cationic antimicrobial peptides, and biofilm formation pathways. These alterations significantly influence the strain's resistance profile. | 2024 | 39272551 |
| 6294 | 12 | 0.9995 | Comparison of Gene Expression Profiles of Uropathogenic Escherichia Coli CFT073 after Prolonged Exposure to Subinhibitory Concentrations of Different Biocides. Biocides are chemical compounds widely used for sterilization and disinfection. The aim of this study was to examine whether exposure to subinhibitory biocide concentrations influenced transcriptional expression of genes that could improve a pathogen's drug resistance or fitness. We used DNA microarrays to investigate the transcriptome of the uropathogenic Escherichia coli strain CFT073 in response to prolonged exposure to subinhibitory concentrations of four biocides: benzalkonium chloride, chlorhexidine, hydrogen peroxide and triclosan. Transcription of a gene involved in polymyxin resistance, arnT, was increased after treatment with benzalkonium chloride. However, pretreatment of the bacteria with this biocide did not result in cross-resistance to polymyxin in vitro. Genes encoding products related to transport formed the functional group that was most affected by biocides, as 110 out of 884 genes in this category displayed altered transcription. Transcripts of genes involved in cysteine uptake, sulfate assimilation, dipeptide transport, as well as cryptic phage genes were also more abundant in response to several biocides. Additionally, we identified groups of genes with transcription changes unique to single biocides that might include potential targets for the biocides. The biocides did not increase the resistance potential of the pathogen to other antimicrobials. | 2019 | 31569631 |
| 8957 | 13 | 0.9995 | Transcriptome Profiling Reveals Interplay of Multifaceted Stress Response in Escherichia coli on Exposure to Glutathione and Ciprofloxacin. We have previously reported that supplementation of exogenous glutathione (GSH) promotes ciprofloxacin resistance in Escherichia coli by neutralizing antibiotic-induced oxidative stress and by enhancing the efflux of antibiotic. In the present study, we used a whole-genome microarray as a tool to analyze the system-level transcriptomic changes of E. coli on exposure to GSH and/or ciprofloxacin. The microarray data revealed that GSH supplementation affects redox function, transport, acid shock, and virulence genes of E. coli. The data further highlighted the interplay of multiple underlying stress response pathways (including those associated with the genes mentioned above and DNA damage repair genes) at the core of GSH, offsetting the effect of ciprofloxacin in E. coli. The results of a large-scale validation of the transcriptomic data using reverse transcription-quantitative PCR (RT-qPCR) analysis for 40 different genes were mostly in agreement with the microarray results. The altered growth profiles of 12 different E. coli strains carrying deletions in the specific genes mentioned above with GSH and/or ciprofloxacin supplementation implicate these genes in the GSH-mediated phenotype not only at the molecular level but also at the functional level. We further associated GSH supplementation with increased acid shock survival of E. coli on the basis of our transcriptomic data. Taking the data together, it can be concluded that GSH supplementation influences the expression of genes of multiple stress response pathways apart from its effect(s) at the physiological level to counter the action of ciprofloxacin in E. coli. IMPORTANCE The emergence and spread of multidrug-resistant bacterial strains have serious medical and clinical consequences. In addition, the rate of discovery of new therapeutic antibiotics has been inadequate in last few decades. Fluoroquinolone antibiotics such as ciprofloxacin represent a precious therapeutic resource in the fight against bacterial pathogens. However, these antibiotics have been gradually losing their appeal due to the emergence and buildup of resistance to them. In this report, we shed light on the genome-level expression changes in bacteria with respect to glutathione (GSH) exposure which act as a trigger for fluoroquinolone antibiotic resistance. The knowledge about different bacterial stress response pathways under conditions of exposure to the conditions described above and potential points of cross talk between them could help us in understanding and formulating the conditions under which buildup and spread of antibiotic resistance could be minimized. Our findings are also relevant because GSH-induced genome-level expression changes have not been reported previously for E. coli. | 2018 | 29468195 |
| 8968 | 14 | 0.9995 | Antibiotic stress, genetic response and altered permeability of E. coli. BACKGROUND: Membrane permeability is the first step involved in resistance of bacteria to an antibiotic. The number and activity of efflux pumps and outer membrane proteins that constitute porins play major roles in the definition of intrinsic resistance in Gram-negative bacteria that is altered under antibiotic exposure. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the genetic regulation of porins and efflux pumps of Escherichia coli during prolonged exposure to increasing concentrations of tetracycline and demonstrate, with the aid of quantitative real-time reverse transcriptase-polymerase chain reaction methodology and western blot detection, the sequence order of genetic expression of regulatory genes, their relationship to each other, and the ensuing increased activity of genes that code for transporter proteins of efflux pumps and down-regulation of porin expression. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that, in addition to the transcriptional regulation of genes coding for membrane proteins, the post-translational regulation of proteins involved in the permeability of Gram-negative bacteria also plays a major role in the physiological adaptation to antibiotic exposure. A model is presented that summarizes events during the physiological adaptation of E. coli to tetracycline exposure. | 2007 | 17426813 |
| 8972 | 15 | 0.9995 | Curcumin rescues Caenorhabditis elegans from a Burkholderia pseudomallei infection. The tropical pathogen Burkholderia pseudomallei requires long-term parenteral antimicrobial treatment to eradicate the pathogen from an infected patient. However, the development of antibiotic resistance is emerging as a threat to this form of treatment. To meet the need for alternative therapeutics, we proposed a screen of natural products for compounds that do not kill the pathogen, but in turn, abrogate bacterial virulence. We suggest that the use of molecules or compounds that are non-bactericidal (bacteriostatic) will reduce or abolish the development of resistance by the pathogen. In this study, we adopted the established Caenorhabditis elegans-B. pseudomallei infection model to screen a collection of natural products for any that are able to extend the survival of B. pseudomallei infected worms. Of the 42 natural products screened, only curcumin significantly improved worm survival following infection whilst not affecting bacterial growth. This suggested that curcumin promoted B. pseudomallei-infected worm survival independent of pathogen killing. To validate that the protective effect of curcumin was directed toward the pathogen, bacteria were treated with curcumin prior to infection. Worms fed with curcumin-treated bacteria survived with a significantly extended mean-time-to-death (p < 0.0001) compared to the untreated control. In in vitro assays, curcumin reduced the activity of known virulence factors (lipase and protease) and biofilm formation. To determine if other bacterial genes were also regulated in the presence of curcumin, a genome-wide transcriptome analysis was performed on curcumin-treated pathogen. A number of genes involved in iron acquisition and transport as well as genes encoding hypothetical proteins were induced in the presence of curcumin. Thus, we propose that curcumin may attenuate B. pseudomallei by modulating the expression of a number of bacterial proteins including lipase and protease as well as biofilm formation whilst concomitantly regulating iron transport and other proteins of unknown function. | 2015 | 25914690 |
| 8956 | 16 | 0.9995 | Biofilm characteristics and transcriptomic profiling of Acinetobacter johnsonii defines signatures for planktonic and biofilm cells. Most bacteria in the natural environment have a biofilm mode of life, which is intrinsically tolerant to antibiotics. While until now, the knowledge of biofilm formation by Acinetobacter johnsonii is not well understood. In this study, the characteristics and the effect of a sub-inhibitory concentration of antibiotic on A. johnsonii biofilm and planktonic cells were determined. We discovered a positive relationship between biofilm formation and tetracycline resistance, and biofilms rapidly evolve resistance to tetracycline they are treated with. Persister cells commonly exist in both planktonic and biofilm cells, with a higher frequency in the latter. Further transcriptomic analysis speculates that the overexpression of multidrug resistance genes and stress genes were mainly answered to sub lethal concentration of tetracycline in planktonic cells, and the lower metabolic levels after biofilm formation result in high resistance level of biofilm cells to tetracycline. Altogether, these data suggest that A. johnsonii can adjust its phenotype when grown as biofilm and change its metabolism under antibiotic stress, and provide implications for subsequent biofilm control. | 2022 | 35718162 |
| 8301 | 17 | 0.9995 | Metabolic disruption impairs ribosomal protein levels, resulting in enhanced aminoglycoside tolerance. Aminoglycoside antibiotics target ribosomes and are effective against a wide range of bacteria. Here, we demonstrated that knockout strains related to energy metabolism in Escherichia coli showed increased tolerance to aminoglycosides during the mid-exponential growth phase. Contrary to expectations, these mutations did not reduce the proton motive force or aminoglycoside uptake, as there were no significant changes in metabolic indicators or intracellular gentamicin levels between wild-type and mutant strains. Our comprehensive proteomics analysis unveiled a noteworthy upregulation of proteins linked to the tricarboxylic acid (TCA) cycle in the mutant strains during the mid-exponential growth phase, suggesting that these strains compensate for the perturbation in their energy metabolism by increasing TCA cycle activity to maintain their membrane potential and ATP levels. Furthermore, our pathway enrichment analysis shed light on local network clusters displaying downregulation across all mutant strains, which were associated with both large and small ribosomal binding proteins, ribosome biogenesis, translation factor activity, and the biosynthesis of ribonucleoside monophosphates. These findings offer a plausible explanation for the observed tolerance of aminoglycosides in the mutant strains. Altogether, this research provides valuable insights into the mechanisms of aminoglycoside tolerance, paving the way for novel strategies to combat such cells. | 2024 | 39093940 |
| 681 | 18 | 0.9995 | Global transcriptional response to vancomycin in Mycobacterium tuberculosis. In order to gain additional understanding of the physiological mechanisms used by bacteria to maintain surface homeostasis and to identify potential targets for new antibacterial drugs, we analysed the variation of the Mycobacterium tuberculosis transcriptional profile in response to inhibitory and subinhibitory concentrations of vancomycin. Our analysis identified 153 genes differentially regulated after exposing bacteria to a concentration of the drug ten times higher than the MIC, and 141 genes differentially expressed when bacteria were growing in a concentration of the drug eightfold lower than the MIC. Hierarchical clustering analysis indicated that the response to these different conditions is different, although with some overlap. This approach allowed us to identify several genes whose products could be involved in the protection from antibiotic stress targeting the envelope and help to confer the basal level of M. tuberculosis resistance to antibacterial drugs, such as Rv2623 (UspA-like), Rv0116c, PE20-PPE31, PspA and proteins related to toxin-antitoxin systems. Moreover, we also demonstrated that the alternative sigma factor sigma(E) confers basal resistance to vancomycin, once again underlining its importance in the physiology of the mycobacterial surface stress response. | 2009 | 19332811 |
| 720 | 19 | 0.9995 | Escherichia Coli Increases its ATP Concentration in Weakly Acidic Environments Principally through the Glycolytic Pathway. Acid resistance is an intrinsic characteristic of intestinal bacteria in order to survive passage through the stomach. Adenosine triphosphate (ATP), the ubiquitous chemical used to power metabolic reactions, activate signaling cascades, and form precursors of nucleic acids, was also found to be associated with the survival of Escherichia coli (E. coli) in acidic environments. The metabolic pathway responsible for elevating the level of ATP inside these bacteria during acid adaptation has been unclear. E. coli uses several mechanisms of ATP production, including oxidative phosphorylation, glycolysis and the oxidation of organic compounds. To uncover which is primarily used during adaptation to acidic conditions, we broadly analyzed the levels of gene transcription of multiple E. coli metabolic pathway components. Our findings confirmed that the primary producers of ATP in E. coli undergoing mild acidic stress are the glycolytic enzymes Glk, PykF and Pgk, which are also essential for survival under markedly acidic conditions. By contrast, the transcription of genes related to oxidative phosphorylation was downregulated, despite it being the major producer of ATP in neutral pH environments. | 2020 | 32854287 |