Transcriptional analysis reveals the relativity of acid tolerance and antimicrobial peptide resistance of Salmonella. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
888601.0000Transcriptional analysis reveals the relativity of acid tolerance and antimicrobial peptide resistance of Salmonella. The objective of this study was to comprehensively identify the target genes induced by acid stimulation in Salmonella, and to clarify the relativity of acid tolerance and antimicrobial peptide resistance. A clinical S. Typhimurium strain, S6, was selected and performed a transcriptome analysis under the acid tolerance response. In total, we found 1461 genes to be differentially expressed, including 721 up-regulated and 740 down-regulated genes. Functional annotation revealed differentially expressed genes to be associated with regulation, metabolism, transport, virulence, and motility. Interestingly, KEGG pathway analysis demonstrated that the induced genes by acid were enriched in cationic antimicrobial peptide resistance, sulfur relay system, ABC transporters, and two-component system pathway. Therein, PhoQ belonging to the two-component system PhoP-PhoQ that promotes virulence by detecting the macrophage phagosome and controls the transcript levels of many genes associated with the resistance to AMPs; MarA, a multiple antibiotic resistance factor; SapA, one of the encoding gene of sapABCDF operon that confers resistance to small cationic peptides of Salmonella; YejB, one of the encoding gene of yejABEF operon that confers resistance to antimicrobial peptides and contributes to the virulence of Salmonella, were all induced by acid stimulation, and could potentially explain that there is a correlation between acid tolerance and AMPs resistance, and finally affects the virulence of intracellular pathogenic bacteria.201931472260
894310.9996Effects of indole on drug resistance and virulence of Salmonella enterica serovar Typhimurium revealed by genome-wide analyses. BACKGROUND: Many Gram-positive and Gram-negative bacteria produce large quantities of indole as an intercellular signal in microbial communities. Indole demonstrated to affect gene expression in Escherichia coli as an intra-species signaling molecule. In contrast to E. coli, Salmonella does not produce indole because it does not harbor tnaA, which encodes the enzyme responsible for tryptophan metabolism. Our previous study demonstrated that E. coli-conditioned medium and indole induce expression of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium for inter-species communication; however, the global effect of indole on genes in Salmonella remains unknown. RESULTS: To understand the complete picture of genes regulated by indole, we performed DNA microarray analysis of genes in the S. enterica serovar Typhimurium strain ATCC 14028s affected by indole. Predicted Salmonella phenotypes affected by indole based on the microarray data were also examined in this study. Indole induced expression of genes related to efflux-mediated multidrug resistance, including ramA and acrAB, and repressed those related to host cell invasion encoded in the Salmonella pathogenicity island 1, and flagella production. Reduction of invasive activity and motility of Salmonella by indole was also observed phenotypically. CONCLUSION: Our results suggest that indole is an important signaling molecule for inter-species communication to control drug resistance and virulence of S. enterica.201222632036
68220.9996Comparative transcriptome analysis of Brucella melitensis in an acidic environment: Identification of the two-component response regulator involved in the acid resistance and virulence of Brucella. Brucella melitensis, encounters a very stressful environment in phagosomes, especially low pH levels. So identifying the genes that contribute to the replication and survival within an acidic environment is critical in understanding the pathogenesis of the Brucella bacteria. In our research, comparative transcriptome with RNA-seq were used to analyze the changes of genes in normal-medium culture and in pH4.4-medium culture. The results reveal that 113 genes expressed with significant differences (|log2Ratio| ≥ 3); about 44% genes expressed as up-regulated. With GO term analysis, structural constituent of the ribosome, rRNA binding, structural molecule activity, and cation-transporting ATPase activity were significantly enriched (p-value ≤ 0.05). These genes distributed in 51 pathways, in which ribosome and photosynthesis pathways were significantly enriched. Six pathways (oxidative phosphorylation, iron-transporting, bacterial secretion system, transcriptional regulation, two-component system, and ABC transporters pathways) tightly related to the intracellular survival and virulence of Brucella were analyzed. A two-component response regulator gene in the transcriptional regulation pathway, identified through gene deletion and complementary technologies, played an important role in the resistance to the acid-resistance and virulence of Brucella.201626691825
621730.9996Identification of the sigmaB regulon of Bacillus cereus and conservation of sigmaB-regulated genes in low-GC-content gram-positive bacteria. The alternative sigma factor sigma(B) has an important role in the acquisition of stress resistance in many gram-positive bacteria, including the food-borne pathogen Bacillus cereus. Here, we describe the identification of the set of sigma(B)-regulated genes in B. cereus by DNA microarray analysis of the transcriptome upon a mild heat shock. Twenty-four genes could be identified as being sigma(B) dependent as witnessed by (i) significantly lower expression levels of these genes in mutants with a deletion of sigB and rsbY (which encode the alternative sigma factor sigma(B) and a crucial positive regulator of sigma(B) activity, respectively) than in the parental strain B. cereus ATCC 14579 and (ii) increased expression of these genes upon a heat shock. Newly identified sigma(B)-dependent genes in B. cereus include a histidine kinase and two genes that have predicted functions in spore germination. This study shows that the sigma(B) regulon of B. cereus is considerably smaller than that of other gram-positive bacteria. This appears to be in line with phylogenetic analyses where sigma(B) of the B. cereus group was placed close to the ancestral form of sigma(B) in gram-positive bacteria. The data described in this study and previous studies in which the complete sigma(B) regulon of the gram-positive bacteria Bacillus subtilis, Listeria monocytogenes, and Staphylococcus aureus were determined enabled a comparison of the sets of sigma(B)-regulated genes in the different gram-positive bacteria. This showed that only three genes (rsbV, rsbW, and sigB) are conserved in their sigma(B) dependency in all four bacteria, suggesting that the sigma(B) regulon of the different gram-positive bacteria has evolved to perform niche-specific functions.200717416654
63340.9996The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium that is also a major opportunistic human pathogen in nosocomial infections and cystic fibrosis chronic lung infections. PhoP-PhoQ is a two-component regulatory system that has been identified as essential for virulence and cationic antimicrobial peptide resistance in several other Gram-negative bacteria. This study demonstrated that mutation of phoQ caused reduced twitching motility, biofilm formation and rapid attachment to surfaces, 2.2-fold reduced cytotoxicity to human lung epithelial cells, substantially reduced lettuce leaf virulence, and a major, 10 000-fold reduction in competitiveness in chronic rat lung infections. Microarray analysis revealed that PhoQ controlled the expression of many genes consistent with these phenotypes and with its known role in polymyxin B resistance. It was also demonstrated that PhoQ controls the expression of many genes outside the known PhoP regulon.200919246741
470750.9996Comparative transcriptome analyses of magainin I-susceptible and -resistant Escherichia coli strains. Antimicrobial peptides (AMPs) have attracted considerable attention because of their multiple and complex mechanisms of action toward resistant bacteria. However, reports have increasingly highlighted how bacteria can escape AMP administration. Here, the molecular mechanisms involved in Escherichia coli resistance to magainin I were investigated through comparative transcriptomics. Sub-inhibitory concentrations of magainin I were used to generate four experimental groups, including magainin I-susceptible E. coli, in the absence (C) and presence of magainin I (CM); and magainin I-resistant E. coli in the absence (R) and presence of magainin I (RM). The total RNA from each sample was extracted; cDNA libraries were constructed and further submitted for Illumina MiSeq sequencing. After RNA-seq data pre-processing and functional annotation, a total of 103 differentially expressed genes (DEGs) were identified, mainly related to bacterial metabolism. Moreover, down-regulation of cell motility and chaperone-related genes was observed in CM and RM, whereas cell communication, acid tolerance and multidrug efflux pump genes (ABC transporter, major facilitator and resistance-nodulation cell division superfamilies) were up-regulated in these same groups. DEGs from the C and R groups are related to basal levels of expression of homeostasis-related genes compared to CM and RM, suggesting that the presence of magainin I is required to change the transcriptomics panel in both C and R E. coli strains. These findings show the complexity of E. coli resistance to magainin I through the rearrangement of several metabolic pathways involved in bacterial physiology and drug response, also providing information on the development of novel antimicrobial strategies targeting resistance-related transcripts and proteins herein described.201830277857
887960.9996Global metabolic regulation in Vibrio parahaemolyticus under polymyxin B stimulation. Vibrio parahaemolyticus is responsible for infection diseases of people who consume the contaminated seafood, but its metabolic regulation profile in response to colistin, the last treatment option for multidrug-resistant Gram-negative bacteria, remains unclear. In this study, the metabolic regulation profile of V. parahaemolyticus ATCC33846 under polymyxin B stimulation has been investigated. V. parahaemolyticus exposed to polymyxin B resulted in 4597 differentially transcribed genes, including 673 significantly up-regulated genes and 569 significantly down-regulated genes. In V. parahaemolyticus under polymyxin B stimulation, the cellular antioxidant systems to prevent bacteria from oxidant stress was activated, the synthesis of some nonessential macromolecules was reduced, and the assembly and modification of lipopolysaccharide and peptidoglycan to resist the attack from other antibiotics were promoted. These findings provide new insights into polymyxin B-related stress response in V. parahaemolyticus which should be useful for developing novel drugs for infection.202134688850
68370.9996Integrative Multiomics Analysis of the Heat Stress Response of Enterococcus faecium. A continuous heat-adaptation test was conducted for one Enterococcus faecium (E. faecium) strain wild-type (WT) RS047 to obtain a high-temperature-resistant strain. After domestication, the strain was screened with a significantly higher ability of heat resistance. which is named RS047-wl. Then a multi-omics analysis of transcriptomics and metabolomics was used to analyze the mechanism of the heat resistance of the mutant. A total of 98 differentially expressed genes (DEGs) and 115 differential metabolites covering multiple metabolic processes were detected in the mutant, which indicated that the tolerance of heat resistance was regulated by multiple mechanisms. The changes in AgrB, AgrC, and AgrA gene expressions were involved in quorum-sensing (QS) system pathways, which regulate biofilm formation. Second, highly soluble osmotic substances such as putrescine, spermidine, glycine betaine (GB), and trehalose-6P were accumulated for the membrane transport system. Third, organic acids metabolism and purine metabolism were down-regulated. The findings can provide target genes for subsequent genetic modification of E. faecium, and provide indications for screening heat-resistant bacteria, so as to improve the heat-resistant ability of E. faecium for production.202336979372
888780.9996RpoE is a Putative Antibiotic Resistance Regulator of Salmonella enteric Serovar Typhi. Bacterial antimicrobial resistance has been associated with the up regulation of genes encoding efflux pumps and the down regulation of genes encoding outer membrane proteins (OMPs). Gene expression in bacteria is primarily initiated by sigma factors (σ factors) such as RpoE, which plays an important role in responding to many environmental stresses. Here, we report the first observation that RpoE serves as an antibiotic resistance regulator in Salmonella enteric serovar Typhi (S. Typhi). In this study, we found that the rpoE mutant (ΔrpoE) of S. Typhi GIFU10007 has elevated resistance to several antimicrobial agents, including β-lactams, quinolones, and aminoglycosides. Genomic DNA microarray analysis was used to investigate the differential gene expression profiles between a wild type and rpoE mutant in response to ampicillin. The results showed that a total of 57 genes displayed differential expression (two-fold increase or decrease) in ΔrpoE versus the wild-type strain. The expressions of two outer membrane protein genes, ompF and ompC, were significantly down-regulated in ΔrpoE (six and seven-fold lower in comparison to wild-type strain) and RamA, a member of the efflux pump AraC/XylS family, was up-regulated about four-fold in the ΔrpoE. Our results suggest RpoE is a potential antimicrobial regulator in S. Typhi, controlling both the down regulation of the OMP genes and up-regulating the efflux system.201626742769
70690.9995Effect of PhoP-PhoQ activation by broad repertoire of antimicrobial peptides on bacterial resistance. Pathogenic bacteria can resist their microenvironment by changing the expression of virulence genes. In Salmonella typhimurium, some of these genes are controlled by the two-component system PhoP-PhoQ. Studies have shown that activation of the system by cationic antimicrobial peptides (AMPs) results, among other changes, in outer membrane remodeling. However, it is not fully clear what characteristics of AMPs are required to activate the PhoP-PhoQ system and whether activation can induce resistance to the various AMPs. For that purpose, we investigated the ability of a broad repertoire of AMPs to traverse the inner membrane, to activate the PhoP-PhoQ system, and to induce bacterial resistance. The AMPs differ in length, composition, and net positive charge, and the tested bacteria include two wild-type (WT) Salmonella strains and their corresponding PhoP-PhoQ knock-out mutants. A lacZ-reporting system was adapted to follow PhoP-PhoQ activation. The data revealed that: (i) a good correlation exists among the extent of the positive charge, hydrophobicity, and amphipathicity of an AMP and its potency to activate PhoP-PhoQ; (ii) a +1 charged peptide containing histidines was highly potent, suggesting the existence of an additional mechanism independent of the peptide charge; (iii) the WT bacteria are more resistant to AMPs that are potent activators of PhoP-PhoQ; (iv) only a subset of AMPs, independent of their potency to activate the system, is more toxic to the mutated bacteria compared with the WT strains; and (v) short term exposure of WT bacteria to these AMPs does not enhance resistance. Overall, this study advances our understanding of the molecular mechanism by which AMPs activate PhoP-PhoQ and induce bacterial resistance. It also reveals that some AMPs can overcome such a resistance mechanism.201222158870
8880100.9995Nisin and acid resistance in Salmonella is enhanced by N-dodecanoyl-homoserine lactone. Salmonella is a foodborne pathogen that can develop resistance to different stresses, which is essential for successful infection of the host. Some genes directly related to acid resistance are also involved in cationic peptide resistance in Gram-negative bacteria and could be under the control of quorum sensing (QS) mediated by autoinducer 1, known as acyl-homoserine lactone. Here, we investigated the influence of autoinducer 1, N-dodecanoyl-homoserine lactone (C12-HSL) on the resistance of Salmonella enterica subspecies enterica serovar Enteritidis to nisin and acid stress. Salmonella cells growing in anaerobic tryptic soy agar (TSB) at a pH of 7.0 for 7 h were submitted to acid stress at a pH of 4.5 in the presence and absence of nisin and were either supplemented or not with C12-HSL. Viable cell counts, gene expression, membrane charge alterations, fatty acid composition, and intracellular content leakage were observed. The autoinducer C12-HSL increased nisin resistance and survival at a pH of 4.5 in Salmonella. Also, C12-HSL increased the expression of the genes, phoP, phoQ, pmrA, and pmrB, which are involved with antimicrobial and acid resistance. The positive charge on the cell surface and concentration of cyclopropane fatty acid of the cellular membrane were increased in the presence of C12-HSL under acidic conditions, whereas membrane fluidity decreased. The loss of K(+) and NADPH, promoted by nisin, was reduced in the presence of C12-HSL at a pH of 4.5. Taken together, these findings suggest that quorum sensing plays an important role in enhanced nisin and acid resistance in Salmonella.202032534181
8964110.9995Analysis of the Oxidative Stress Regulon Identifies soxS as a Genetic Target for Resistance Reversal in Multidrug-Resistant Klebsiella pneumoniae. In bacteria, the defense system deployed to counter oxidative stress is orchestrated by three transcriptional factors, SoxS, SoxR, and OxyR. Although the regulon that these factors control is known in many bacteria, similar data are not available for Klebsiella pneumoniae. To address this data gap, oxidative stress was artificially induced in K. pneumoniae MGH78578 using paraquat and the corresponding oxidative stress regulon recorded using transcriptome sequencing (RNA-seq). The soxS gene was significantly induced during oxidative stress, and a knockout mutant was constructed to explore its functionality. The wild type and mutant were grown in the presence of paraquat and subjected to RNA-seq to elucidate the soxS regulon in K. pneumoniae MGH78578. Genes that are commonly regulated both in the oxidative stress and soxS regulons were identified and denoted as the oxidative SoxS regulon; these included a group of genes specifically regulated by SoxS. Efflux pump-encoding genes and global regulators were identified as part of this regulon. Consequently, the isogenic soxS mutant was found to exhibit a reduction in the minimum bactericidal concentration against tetracycline compared to that of the wild type. Impaired efflux activity, allowing tetracycline to be accumulated in the cytoplasm to bactericidal levels, was further evaluated using a tetraphenylphosphonium (TPP(+)) accumulation assay. The soxS mutant was also susceptible to tetracycline in vivo in a zebrafish embryo model. We conclude that the soxS gene could be considered a genetic target against which an inhibitor could be developed and used in combinatorial therapy to combat infections associated with multidrug-resistant K. pneumoniae. IMPORTANCE Antimicrobial resistance is a global health challenge. Few new antibiotics have been developed for use over the years, and preserving the efficacy of existing compounds is an important step to protect public health. This paper describes a study that examines the effects of exogenously induced oxidative stress on K. pneumoniae and uncovers a target that could be useful to harness as a strategy to mitigate resistance.202134098732
685120.9995Implication of a Key Region of Six Bacillus cereus Genes Involved in Siroheme Synthesis, Nitrite Reductase Production and Iron Cluster Repair in the Bacterial Response to Nitric Oxide Stress. Bacterial response to nitric oxide (NO) is of major importance for bacterial survival. NO stress is a main actor of the eukaryotic immune response and several pathogenic bacteria have developed means for detoxification and repair of the damages caused by NO. However, bacterial mechanisms of NO resistance by Gram-positive bacteria are poorly described. In the opportunistic foodborne pathogen Bacillus cereus, genome sequence analyses did not identify homologs to known NO reductases and transcriptional regulators, such as NsrR, which orchestrate the response to NO of other pathogenic or non-pathogenic bacteria. Using a transcriptomic approach, we investigated the adaptation of B. cereus to NO stress. A cluster of 6 genes was identified to be strongly up-regulated in the early phase of the response. This cluster contains an iron-sulfur cluster repair enzyme, a nitrite reductase and three enzymes involved in siroheme biosynthesis. The expression pattern and close genetic localization suggest a functional link between these genes, which may play a pivotal role in the resistance of B. cereus to NO stress during infection.202134064887
6338130.9995Transcriptome Analysis of the Intracellular Facultative Pathogen Piscirickettsia salmonis: Expression of Putative Groups of Genes Associated with Virulence and Iron Metabolism. The intracellular facultative bacteria Piscirickettsia salmonis is one of the most important pathogens of the Chilean aquaculture. However, there is a lack of information regarding the whole genomic transcriptional response according to different extracellular environments. We used next generation sequencing (NGS) of RNA (RNA-seq) to study the whole transcriptome of an isolate of P. salmonis (FAVET-INBIOGEN) using a cell line culture and a modified cell-free liquid medium, with or without iron supplementation. This was done in order to obtain information about the factors there are involved in virulence and iron acquisition. First, the isolate was grown in the Sf21 cell line; then, the bacteria were cultured into a cell-free liquid medium supplemented or not with iron. We identified in the transcriptome, genes associated with type IV secretion systems, genes related to flagellar structure assembly, several proteases and sigma factors, and genes related to the development of drug resistance. Additionally, we identified for the first time several iron-metabolism associated genes including at least two iron uptake pathways (ferrous iron and ferric iron uptake) that are actually expressed in the different conditions analyzed. We further describe putative genes that are related with the use and storage of iron in the bacteria, which have not been previously described. Several sets of genes related to virulence were expressed in both the cell line and cell-free culture media (for example those related to flagellar structure; such as basal body, MS-ring, C-ring, proximal and distal rod, and filament), which may play roles in other basic processes rather than been restricted to virulence.201628033422
6218140.9995An allele of an ancestral transcription factor dependent on a horizontally acquired gene product. Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.201223300460
8881150.9995Transcriptomic and phenotype analysis revealed the role of rpoS in stress resistance and virulence of pathogenic Enterobacter cloacae from Macrobrachium rosenbergii. Enterobacter cloacae is widely distributed in the aquatic environment, and has been determined as a novel pathogen of various aquatic animals recently. Our previous studies have indicated E. cloacae caused repeated infections in Macrobrachium rosenbergii, suggesting a high survival ability of the bacteria, and rpoS gene has been known to regulate stress response and virulence of many bacteria. In this study, the E. cloacae-rpoS RNAi strain was constructed by RNAi technology, and the regulation role of rpoS in stress resistance and virulence of E. cloacae was explored by transcriptomic and phenotype analysis. The transcriptome analysis showed a total of 488 differentially expressed genes (DEGs) were identified between rpoS-RNAi and wild-type strains, including 30 up-regulated genes and 458 down-regulated genes, and these down-regulated DEGs were mainly related to environmental response, biofilm formation, bacterial type II secretory system, flagellin, fimbrillin, and chemotactic protein which associated with bacterial survival and virulence. The phenotype changes also showed the E. cloacae-rpoS RNAi strain exhibited significantly decreasing abilities of survival in environmental stresses (starvation, salinity, low pH, and oxidative stress), biofilm production, movement, adhesion to cells, pathogenicity, and colonization to M. rosenbergii. These results reveal that rpoS plays an important regulatory role in environmental stress adaptation and virulence of E. cloacae.202236439857
6342160.9995Determinants of Extreme β-Lactam Tolerance in the Burkholderia pseudomallei Complex. Slow-growing bacteria are insensitive to killing by antibiotics, a trait known as antibiotic tolerance. In this study, we characterized the genetic basis of an unusually robust β-lactam (meropenem) tolerance seen in Burkholderia species. We identified tolerance genes under three different slow-growth conditions by extensive transposon mutant sequencing (Tn-seq), followed by single mutant validation. There were three principal findings. First, mutations in a small number of genes reduced tolerance under multiple conditions. Most of the functions appeared to be specific to peptidoglycan synthesis and the response to its disruption by meropenem action rather than being associated with more general physiological processes. The top tolerance genes are involved in immunity toward a type VI toxin targeting peptidoglycan (BTH_I0069), peptidoglycan recycling (ldcA), periplasmic regulation by proteolysis (prc), and an envelope stress response (rpoE and degS). Second, most of the tolerance functions did not contribute to growth in the presence of meropenem (intrinsic resistance), indicating that the two traits are largely distinct. Third, orthologues of many of the top Burkholderia thailandensis tolerance genes were also important in Burkholderia pseudomallei Overall, these studies show that the determinants of meropenem tolerance differ considerably depending on cultivation conditions, but that there are a few shared functions with strong mutant phenotypes that are important in multiple Burkholderia species.201829439964
6318170.9995Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Phenotypic differences among closely related bacteria have been largely ascribed to species-specific genes, such as those residing in pathogenicity islands. However, we now report that the differential regulation of homologous genes is the mechanism responsible for the divergence of the enteric bacteria Salmonella enterica and Escherichia coli in their ability to make LPS modifications mediating resistance to the antibiotic polymyxin B. In S. enterica serovar Typhimurium, the PmrA/PmrB two-component system governing polymyxin B resistance is induced in low Mg(2+) in a process that requires the PmrD protein and by Fe(3+) in a PmrD-independent fashion. We establish that E. coli K-12 induces PmrA-activated gene transcription and polymyxin B resistance in response to Fe(3+), but that it is blind to the low Mg(2+) signal. The highly divergent PmrD protein is responsible for this phenotype as replacement of the E. coli pmrD gene by its Salmonella counterpart resulted in an E. coli strain that transcribed PmrA-activated genes and displayed polymyxin B resistance under the same conditions as Salmonella. Molecular analysis of natural isolates of E. coli and Salmonella revealed that the PmrD proteins are conserved within each genus and that selection might have driven the divergence between the Salmonella and E. coli PmrD proteins. Investigation of PmrD function demonstrated statistically different distributions for the Salmonella and E. coli isolates in PmrD-dependent transcription occurring in low Mg(2+). Our results suggest that the differential regulation of conserved genes may have ecological consequences, determining the range of niches a microorganism can occupy.200415569938
684180.9995Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance. Nisin, a posttranslationally modified antimicrobial peptide produced by Lactococcus lactis, is widely used as a food preservative. Yet, the mechanisms leading to the development of nisin resistance in bacteria are poorly understood. We used whole-genome DNA microarrays of L. lactis IL1403 to identify the factors underlying acquired nisin resistance mechanisms. The transcriptomes of L. lactis IL1403 and L. lactis IL1403 Nis(r), which reached a 75-fold higher nisin resistance level, were compared. Differential expression was observed in genes encoding proteins that are involved in cell wall biosynthesis, energy metabolism, fatty acid and phospholipid metabolism, regulatory functions, and metal and/or peptide transport and binding. These results were further substantiated by showing that several knockout and overexpression mutants of these genes had strongly altered nisin resistance levels and that some knockout strains could no longer become resistant to the same level of nisin as that of the wild-type strain. The acquired nisin resistance mechanism in L. lactis is complex, involving various different mechanisms. The four major mechanisms are (i) preventing nisin from reaching the cytoplasmic membrane, (ii) reducing the acidity of the extracellular medium, thereby stimulating the binding of nisin to the cell wall, (iii) preventing the insertion of nisin into the membrane, and (iv) possibly transporting nisin across the membrane or extruding nisin out of the membrane.200616641446
8876190.9995Enterohaemorrhagic Escherichia coli produces outer membrane vesicles as an active defence system against antimicrobial peptide LL-37. Antimicrobial peptides (AMPs) are important components of the innate immune system. Enterohaemorrhagic Escherichia coli (EHEC), a food-borne pathogen causing serious diarrheal diseases, must overcome attack by AMPs. Here, we show that resistance of EHEC against human cathelicidin LL-37, a primary AMP, was enhanced by butyrate, which has been shown to act as a stimulant for the expression of virulence genes. The increase of resistance depended on the activation of the ompT gene, which encodes the outer membrane protease OmpT for LL-37. The expression of the ompT gene was enhanced through the activation system for virulence genes. The increase in ompT expression did not result in an increase in OmpT protease in bacteria but in enhancement of the production of OmpT-loaded outer membrane vesicles (OMVs), which primarily contributed to the increase in LL-37-resistance. Furthermore, a sublethal dosage of LL-37 stimulated the production of OMVs. Finally, we showed that OMVs produced by OmpT-positive strains protect the OmpT-negative strain, which is susceptible to LL-37 by itself more efficiently than OMVs from the ompT mutant. These results indicate that EHEC enhances the secretion of OmpT-loaded OMVs in coordination with the activation of virulence genes during infection and blocks bacterial cell attack by LL-37.201728622430