# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8876 | 0 | 1.0000 | Enterohaemorrhagic Escherichia coli produces outer membrane vesicles as an active defence system against antimicrobial peptide LL-37. Antimicrobial peptides (AMPs) are important components of the innate immune system. Enterohaemorrhagic Escherichia coli (EHEC), a food-borne pathogen causing serious diarrheal diseases, must overcome attack by AMPs. Here, we show that resistance of EHEC against human cathelicidin LL-37, a primary AMP, was enhanced by butyrate, which has been shown to act as a stimulant for the expression of virulence genes. The increase of resistance depended on the activation of the ompT gene, which encodes the outer membrane protease OmpT for LL-37. The expression of the ompT gene was enhanced through the activation system for virulence genes. The increase in ompT expression did not result in an increase in OmpT protease in bacteria but in enhancement of the production of OmpT-loaded outer membrane vesicles (OMVs), which primarily contributed to the increase in LL-37-resistance. Furthermore, a sublethal dosage of LL-37 stimulated the production of OMVs. Finally, we showed that OMVs produced by OmpT-positive strains protect the OmpT-negative strain, which is susceptible to LL-37 by itself more efficiently than OMVs from the ompT mutant. These results indicate that EHEC enhances the secretion of OmpT-loaded OMVs in coordination with the activation of virulence genes during infection and blocks bacterial cell attack by LL-37. | 2017 | 28622430 |
| 8875 | 1 | 0.9997 | Endotoxin, capsule, and bacterial attachment contribute to Neisseria meningitidis resistance to the human antimicrobial peptide LL-37. Pathogenic bacteria have evolved numerous mechanisms to evade the human immune system and have developed widespread resistance to traditional antibiotics. We studied the human pathogen Neisseria meningitidis and present evidence of novel mechanisms of resistance to the human antimicrobial peptide LL-37. We found that bacteria attached to host epithelial cells are resistant to 10 microM LL-37 whereas bacteria in solution or attached to plastic are killed, indicating that the cell microenvironment protects bacteria. The bacterial endotoxin lipooligosaccharide and the polysaccharide capsule contribute to LL-37 resistance, probably by preventing LL-37 from reaching the bacterial membrane, as more LL-37 reaches the bacterial membrane on both lipooligosaccharide-deficient and capsule-deficient mutants whereas both mutants are also more susceptible to LL-37 killing than the wild-type strain. N. meningitidis bacteria respond to sublethal doses of LL-37 and upregulate two of their capsule genes, siaC and siaD, which further results in upregulation of capsule biosynthesis. | 2009 | 19376861 |
| 6317 | 2 | 0.9996 | O-specific polysaccharide confers lysozyme resistance to extraintestinal pathogenic Escherichia coli. Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause of bloodstream and other extraintestinal infections in human and animals. The greatest challenge encountered by ExPEC during an infection is posed by the host defense mechanisms, including lysozyme. ExPEC have developed diverse strategies to overcome this challenge. The aim of this study was to characterize the molecular mechanism of ExPEC resistance to lysozyme. For this, 15,000 transposon mutants of a lysozyme-resistant ExPEC strain NMEC38 were screened; 20 genes were identified as involved in ExPEC resistance to lysozyme-of which five were located in the gene cluster between galF and gnd, and were further confirmed to be involved in O-specific polysaccharide biosynthesis. The O-specific polysaccharide was able to inhibit the hydrolytic activity of lysozyme; it was also required by the complete lipopolysaccharide (LPS)-mediated protection of ExPEC against the bactericidal activity of lysozyme. The O-specific polysaccharide was further shown to be able to directly interact with lysozyme. Furthermore, LPS from ExPEC strains of different O serotypes was also able to inhibit the hydrolytic activity of lysozyme. Because of their cell surface localization and wide distribution in Gram-negative bacteria, O-specific polysaccharides appear to play a long-overlooked role in protecting bacteria against exogenous lysozyme. | 2018 | 29405825 |
| 6328 | 3 | 0.9996 | Inactivation of MarR gene homologs increases susceptibility to antimicrobials in Bacteroides fragilis. Bacteroides fragilis is the strict anaerobic bacteria most commonly found in human infections, and has a high mortality rate. Among other virulence factors, the remarkable ability to acquire resistance to a variety of antimicrobial agents and to tolerate nanomolar concentrations of oxygen explains in part their success in causing infection and colonizing the mucosa. Much attention has been given to genes related to multiple drug resistance derived from plasmids, integrons or transposon, but such genes are also detected in chromosomal systems, like the mar (multiple antibiotic resistance) locus, that confer resistance to a range of drugs. Regulators like MarR, that control expression of the locus mar, also regulate resistance to organic solvents, disinfectants and oxygen reactive species are important players in these events. Strains derived from the parental strain 638R, with mutations in the genes hereby known as marRI (BF638R_3159) and marRII (BF638R_3706) were constructed by gene disruption using a suicide plasmid. Phenotypic response of the mutant strains to hydrogen peroxide, cell survival assay against exposure to oxygen, biofilm formation, resistance to bile salts and resistance to antibiotics was evaluated. The results showed that the mutant strains exhibit statistically significant differences in their response to oxygen stress, but no changes were observed in survival when exposed to bile salts. Biofilm formation was not affected by either gene disruption. Both mutant strains however, became more sensitive to multiple antimicrobial drugs tested. This indicates that as observed in other bacterial species, MarR are an important resistance mechanism in B. fragilis. | 2018 | 28847541 |
| 8878 | 4 | 0.9996 | How type 1 fimbriae help Escherichia coli to evade extracellular antibiotics. To survive antibiotics, bacteria use two different strategies: counteracting antibiotic effects by expression of resistance genes or evading their effects e.g. by persisting inside host cells. Since bacterial adhesins provide access to the shielded, intracellular niche and the adhesin type 1 fimbriae increases bacterial survival chances inside macrophages, we asked if fimbriae also influenced survival by antibiotic evasion. Combined gentamicin survival assays, flow cytometry, single cell microscopy and kinetic modeling of dose response curves showed that type 1 fimbriae increased the adhesion and internalization by macrophages. This was caused by strongly decreased off-rates and affected the number of intracellular bacteria but not the macrophage viability and morphology. Fimbriae thus promote antibiotic evasion which is particularly relevant in the context of chronic infections. | 2016 | 26728082 |
| 8892 | 5 | 0.9995 | Fur is the master regulator of the extraintestinal pathogenic Escherichia coli response to serum. Drug-resistant extraintestinal pathogenic Escherichia coli (ExPEC) strains are the major cause of colisepticemia (colibacillosis), a condition that has become an increasing public health problem in recent years. ExPEC strains are characterized by high resistance to serum, which is otherwise highly toxic to most bacteria. To understand how these bacteria survive and grow in serum, we performed system-wide analyses of their response to serum, making a clear distinction between the responses to nutritional immunity and innate immunity. Thus, mild heat inactivation of serum destroys the immune complement and abolishes the bactericidal effect of serum (inactive serum), making it possible to examine nutritional immunity. We used a combination of deep RNA sequencing and proteomics in order to characterize ExPEC genes whose expression is affected by the nutritional stress of serum and by the immune complement. The major change in gene expression induced by serum-active and inactive-involved metabolic genes. In particular, the serum metabolic response is coordinated by three transcriptional regulators, Fur, BasR, and CysB. Fur alone was responsible for more than 80% of the serum-induced transcriptional response. Consistent with its role as a major serum response regulator, deletion of Fur renders the bacteria completely serum sensitive. These results highlight the role of metabolic adaptation in colisepticemia and virulence. IMPORTANCE: Drug-resistant extraintestinal pathogenic Escherichia coli (ExPEC) strains have emerged as major pathogens, especially in community- and hospital-acquired infections. These bacteria cause a large spectrum of syndromes, the most serious of which is septicemia, a condition with a high mortality rate. These bacterial strains are characterized by high resistance to serum, otherwise highly toxic to most bacteria. To understand the basis of this resistance, we carried out system-wide analyses of the response of ExPEC strains to serum by using proteomics and deep RNA sequencing. The major changes in gene expression induced by exposure to serum involved metabolic genes, not necessarily implicated in relation to virulence. One metabolic regulator-Fur-involved in iron metabolism was responsible for more than 80% of the serum-induced response, and its deletion renders the bacteria completely serum sensitive. These results highlight the role of metabolic adaptation in virulence. | 2014 | 25118243 |
| 8971 | 6 | 0.9995 | Bacteriophage induces modifications in outer membrane protein expression and antibiotic susceptibility in Acinetobacter baumannii. Bacteriophages, the most abundant biological agents targeting bacteria, offer a promising alternative to antibiotics for combating multi-drug resistant pathogens like Acinetobacter baumannii. However, the rapid development of bacteriophage resistance poses a significant challenge. This study highlights the contribution of outer membrane proteins (OMPs) in the emergence of bacteriophage resistance in A. baumannii. The bacteriophage-sensitive and resistant isolates were studied for their native OMP profiles. Bacteriophage-tolerant A. baumannii were generated by infecting bacteria with bacteriophages and sub-culturing the survivors, and their expression of OMP and virulence was further characterized. These tolerant strains had significantly downregulated omp genes and under-expressed OMPs. Phenotypic changes like reduced adsorption to phages, deviant growth rates, biofilm-forming capacities, higher survival in limiting conditions, higher motility, and higher alkaline protease production were observed in the phage-tolerant strains equipped with better survival and virulent properties. The tolerant strains were re-sensitized to antibiotics they previously resisted. The significantly under-expressed OMPs in phage-tolerant strains were identified as OmpA and other OMPs similar to OmpA. This study could identify certain OMPs significantly under-expressed on bacteriophage exposure. The tolerant bacteria had altered phenotypic properties in addition to the development of phage resistance and the re-sensitisation to antibiotics, which paved the way for the future of phage therapeutics. | 2025 | 39800016 |
| 8877 | 7 | 0.9995 | Conditioning of uropathogenic Escherichia coli for enhanced colonization of host. While in transit within and between hosts, uropathogenic Escherichia coli (UPEC) encounters multiple stresses, including substantial levels of nitric oxide and reactive nitrogen intermediates. Here we show that UPEC, the primary cause of urinary tract infections, can be conditioned to grow at higher rates in the presence of acidified sodium nitrite (ASN), a model system used to generate nitrosative stress. When inoculated into the bladder of a mouse, ASN-conditioned UPEC bacteria are far more likely to establish an infection than nonconditioned bacteria. Microarray analysis of ASN-conditioned bacteria suggests that several NsrR-regulated genes and other stress- and polyamine-responsive factors may be partially responsible for this effect. Compared to K-12 reference strains, most UPEC isolates have increased resistance to ASN, and this resistance can be substantially enhanced by addition of the polyamine cadaverine. Nitrosative stress, as generated by ASN, can stimulate cadaverine synthesis by UPEC, and growth of UPEC in cadaverine-supplemented broth in the absence of ASN can also promote UPEC colonization of the bladder. These results suggest that UPEC interactions with polyamines or stresses such as reactive nitrogen intermediates can in effect reprogram the bacteria, enabling them to better colonize the host. | 2009 | 19255192 |
| 8965 | 8 | 0.9995 | Resistance characterization and transcriptomic analysis of imipenem-induced drug resistance in Escherichia coli. BACKGROUND: Bacteria can develop resistance to various antibiotics under selective pressure, leading to multifaceted changes in resistance mechanisms. Transcriptomic sequencing allows for the observation of transcriptional level alterations in cells under antibiotic stress. Understanding the bacterial response to such stress is essential for deciphering their strategy against drug-resistant antibiotics and identifying potential targets for antibiotic development. METHODS: This study using wild-type (WT) Escherichia coli (E. coli) discovered that continuous in vitro induction screening for imipenem-resistant strains resulted in bacteria with enhanced biofilm-forming ability and mutations in antibiotic target sites. Transcriptomic sequencing of the resistant bacteria revealed significant changes in carbon and amino acid metabolism, nutrient assimilation, substance transport, nucleotide metabolism, protein biosynthesis, and cell wall biosynthesis. The up-regulated drug efflux genes were disrupted using gene knockout technology. Drug sensitivity tests indicated that drug efflux has a minimal effect on imipenem resistance. RESULTS: This suggests a strategy for E. coli drug resistance involving the reduction of unnecessary substance synthesis and metabolism, coupled with an increase in activities that aid in resisting foreign threats. | 2024 | 39624129 |
| 8943 | 9 | 0.9995 | Effects of indole on drug resistance and virulence of Salmonella enterica serovar Typhimurium revealed by genome-wide analyses. BACKGROUND: Many Gram-positive and Gram-negative bacteria produce large quantities of indole as an intercellular signal in microbial communities. Indole demonstrated to affect gene expression in Escherichia coli as an intra-species signaling molecule. In contrast to E. coli, Salmonella does not produce indole because it does not harbor tnaA, which encodes the enzyme responsible for tryptophan metabolism. Our previous study demonstrated that E. coli-conditioned medium and indole induce expression of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium for inter-species communication; however, the global effect of indole on genes in Salmonella remains unknown. RESULTS: To understand the complete picture of genes regulated by indole, we performed DNA microarray analysis of genes in the S. enterica serovar Typhimurium strain ATCC 14028s affected by indole. Predicted Salmonella phenotypes affected by indole based on the microarray data were also examined in this study. Indole induced expression of genes related to efflux-mediated multidrug resistance, including ramA and acrAB, and repressed those related to host cell invasion encoded in the Salmonella pathogenicity island 1, and flagella production. Reduction of invasive activity and motility of Salmonella by indole was also observed phenotypically. CONCLUSION: Our results suggest that indole is an important signaling molecule for inter-species communication to control drug resistance and virulence of S. enterica. | 2012 | 22632036 |
| 8890 | 10 | 0.9995 | Eavesdropping by bacteria: the role of SdiA in Escherichia coli and Salmonella enterica serovar Typhimurium quorum sensing. Many gram-negative bacteria utilize N-acyl-L-homoserine lactones (AHLs) to bind to transcriptional regulators leading to activation or repression of target genes. Escherichia coli and Salmonella enterica do not synthesize AHLs but do contain the AHL receptor, SdiA. Studies reveal that SdiA can bind AHLs produced by other bacterial species and thereby allow E. coli and S. enterica to regulate gene transcription. The Salmonella sdiA gene regulates the rck gene, which mediates Salmonella adhesion and invasion of epithelial cells and the resistance of the organism to complement. In E. coli, there is some evidence that SdiA may regulate genes associated with acid resistance, virulence, motility, biofilm formation, and autoinducer-2 transport and processing. However, there is a lack of information concerning the role of SdiA in regulating growth and survival of E. coli and Salmonella in food environments, and therefore studies in this area are needed. | 2011 | 21034261 |
| 8893 | 11 | 0.9995 | Transcriptome of uropathogenic Escherichia coli during urinary tract infection. A uropathogenic Escherichia coli strain CFT073-specific DNA microarray that includes each open reading frame was used to analyze the transcriptome of CFT073 bacteria isolated directly from the urine of infected CBA/J mice. The in vivo expression profiles were compared to that of E. coli CFT073 grown statically to exponential phase in rich medium, revealing the strategies this pathogen uses in vivo for colonization, growth, and survival in the urinary tract environment. The most highly expressed genes overall in vivo encoded translational machinery, indicating that the bacteria were in a rapid growth state despite specific nutrient limitations. Expression of type 1 fimbriae, a virulence factor involved in adherence, was highly upregulated in vivo. Five iron acquisition systems were all highly upregulated during urinary tract infection, as were genes responsible for capsular polysaccharide and lipopolysaccharide synthesis, drug resistance, and microcin secretion. Surprisingly, other fimbrial genes, such as pap and foc/sfa, and genes involved in motility and chemotaxis were downregulated in vivo. E. coli CFT073 grown in human urine resulted in the upregulation of iron acquisition, capsule, and microcin secretion genes, thus partially mimicking growth in vivo. On the basis of gene expression levels, the urinary tract appears to be nitrogen and iron limiting, of high osmolarity, and of moderate oxygenation. This study represents the first assessment of any E. coli pathotype's transcriptome in vivo and provides specific insights into the mechanisms necessary for urinary tract pathogenesis. | 2004 | 15501767 |
| 6333 | 12 | 0.9995 | Outer Membrane Proteins form Specific Patterns in Antibiotic-Resistant Edwardsiella tarda. Outer membrane proteins of Gram-negative bacteria play key roles in antibiotic resistance. However, it is unknown whether outer membrane proteins that respond to antibiotics behave in a specific manner. The present study specifically investigated the differentially expressed outer membrane proteins of an antibiotic-resistant bacterium, Edwardsiella tarda, a Gram-negative pathogen that can lead to unnecessary mass medication of antimicrobials and consequently resistance development in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. The comparison of a clinically isolated strain to the laboratory derived kanamycin-, tetracycline-, or chloramphenicol-resistant strains identified their respective outer membrane proteins expression patterns, which are distinct to each other. Similarly, the same approach was utilized to profile the patterns in double antibiotic-resistant bacteria. Surprisingly, one pattern is always dominant over the other as to these three antibiotics; the pattern of chloramphenicol is over tetracycline, which is over kanamycin. This type of pattern was also confirmed in clinically relevant multidrug-resistant bacteria. In addition, the presence of plasmid encoding antibiotic-resistant genes also alters the outer membrane protein profile in a similar manner. Our results demonstrate that bacteria adapt the antibiotic stress through the regulation of outer membrane proteins expression. And more importantly, different outer membrane protein profiles were required to cope with different antibiotics. This type of specific pattern provides the rationale for the development of novel strategy to design outer membrane protein arrays to identify diverse multidrug resistance profiles as biomarkers for clinical medication. | 2017 | 28210241 |
| 4702 | 13 | 0.9995 | Increased antimicrobial resistance of acid-adapted pathogenic Escherichia coli, and transcriptomic analysis of polymyxin-resistant strain. This study investigated the acid adaptation and antimicrobial resistance of seven pathogenic Escherichia coli strains and one commensal strain under nutrient-rich acidic conditions. After acid adaptation, three pathogenic E. coli survived during 100 h incubation in tryptic soy broth at pH 3.25. Acid-adapted (AA) strains showed increased resistance to antimicrobials including ampicillin, ciprofloxacin and especially polymyxins (colistin and polymyxin B), the last resort antimicrobial for multidrug-resistant Gram-negative bacteria. Enterotoxigenic E. coli strain (NCCP 13717) showed significantly increased resistance to acids and polymyxins. Transcriptome analysis of the AA NCCP 13717 revealed upregulation of genes related to the acid fitness island and the arn operon, which reduces lipopolysaccharide binding affinity at the polymyxin site of action. Genes such as eptA, tolC, and ompCF were also upregulated to alter the structure of the cell membrane, reducing the outer membrane permeability compared to the control, which is likely to be another mechanism for polymyxin resistance. This study highlights the emergence of antimicrobial resistance in AA pathogenic E. coli strains, particularly polymyxin resistance, and the mechanisms behind the increased antimicrobial resistance, providing important insights for the development of risk management strategies to effectively control the antimicrobial resistant foodborne pathogens. | 2024 | 39307200 |
| 8886 | 14 | 0.9995 | Transcriptional analysis reveals the relativity of acid tolerance and antimicrobial peptide resistance of Salmonella. The objective of this study was to comprehensively identify the target genes induced by acid stimulation in Salmonella, and to clarify the relativity of acid tolerance and antimicrobial peptide resistance. A clinical S. Typhimurium strain, S6, was selected and performed a transcriptome analysis under the acid tolerance response. In total, we found 1461 genes to be differentially expressed, including 721 up-regulated and 740 down-regulated genes. Functional annotation revealed differentially expressed genes to be associated with regulation, metabolism, transport, virulence, and motility. Interestingly, KEGG pathway analysis demonstrated that the induced genes by acid were enriched in cationic antimicrobial peptide resistance, sulfur relay system, ABC transporters, and two-component system pathway. Therein, PhoQ belonging to the two-component system PhoP-PhoQ that promotes virulence by detecting the macrophage phagosome and controls the transcript levels of many genes associated with the resistance to AMPs; MarA, a multiple antibiotic resistance factor; SapA, one of the encoding gene of sapABCDF operon that confers resistance to small cationic peptides of Salmonella; YejB, one of the encoding gene of yejABEF operon that confers resistance to antimicrobial peptides and contributes to the virulence of Salmonella, were all induced by acid stimulation, and could potentially explain that there is a correlation between acid tolerance and AMPs resistance, and finally affects the virulence of intracellular pathogenic bacteria. | 2019 | 31472260 |
| 8964 | 15 | 0.9995 | Analysis of the Oxidative Stress Regulon Identifies soxS as a Genetic Target for Resistance Reversal in Multidrug-Resistant Klebsiella pneumoniae. In bacteria, the defense system deployed to counter oxidative stress is orchestrated by three transcriptional factors, SoxS, SoxR, and OxyR. Although the regulon that these factors control is known in many bacteria, similar data are not available for Klebsiella pneumoniae. To address this data gap, oxidative stress was artificially induced in K. pneumoniae MGH78578 using paraquat and the corresponding oxidative stress regulon recorded using transcriptome sequencing (RNA-seq). The soxS gene was significantly induced during oxidative stress, and a knockout mutant was constructed to explore its functionality. The wild type and mutant were grown in the presence of paraquat and subjected to RNA-seq to elucidate the soxS regulon in K. pneumoniae MGH78578. Genes that are commonly regulated both in the oxidative stress and soxS regulons were identified and denoted as the oxidative SoxS regulon; these included a group of genes specifically regulated by SoxS. Efflux pump-encoding genes and global regulators were identified as part of this regulon. Consequently, the isogenic soxS mutant was found to exhibit a reduction in the minimum bactericidal concentration against tetracycline compared to that of the wild type. Impaired efflux activity, allowing tetracycline to be accumulated in the cytoplasm to bactericidal levels, was further evaluated using a tetraphenylphosphonium (TPP(+)) accumulation assay. The soxS mutant was also susceptible to tetracycline in vivo in a zebrafish embryo model. We conclude that the soxS gene could be considered a genetic target against which an inhibitor could be developed and used in combinatorial therapy to combat infections associated with multidrug-resistant K. pneumoniae. IMPORTANCE Antimicrobial resistance is a global health challenge. Few new antibiotics have been developed for use over the years, and preserving the efficacy of existing compounds is an important step to protect public health. This paper describes a study that examines the effects of exogenously induced oxidative stress on K. pneumoniae and uncovers a target that could be useful to harness as a strategy to mitigate resistance. | 2021 | 34098732 |
| 4807 | 16 | 0.9995 | Age influences resistance of Caenorhabditis elegans to killing by pathogenic bacteria. Caenorhabditis elegans has previously been proposed as an alternative host for models of infectious disease caused by human pathogens. When exposed to some human pathogenic bacteria, the life span of nematodes is significantly reduced. We have shown that mutations in the age-1, and/or age-2 genes of C. elegans, that normally enhance life expectancy, can also increase resistance to killing by the bacterial pathogens Pseudomonas aeruginosa, Salmonella enterica var. Typhimurium, Burkholderia cepacia or Yersinia pseudotuberculosis. We also found that the rate at which wild-type C. elegans was killed by the bacterial pathogens tested increased as nematodes aged. In the case of P. aeruginosa infection, the difference in life span of wild type and age-1 mutants of C. elegans was not due to differences in the level of bacterial colonisation of the gut. | 2004 | 15135534 |
| 641 | 17 | 0.9995 | Bile salts induce resistance to polymyxin in enterohemorrhagic Escherichia coli O157:H7. Many enteric bacteria use bile as an environmental cue to signal resistance and virulence gene expression. Microarray analysis of enterohemorrhagic Escherichia coli O157:H7 (EHEC) treated with bile salts revealed upregulation of genes for an efflux system (acrAB), a two-component signal transduction system (basRS/pmrAB), and lipid A modification (arnBCADTEF and ugd). Bile salt treatment of EHEC produced a basS- and arnT-dependent resistance to polymyxin. | 2011 | 21725004 |
| 8324 | 18 | 0.9995 | Bile Sensing: The Activation of Vibrio parahaemolyticus Virulence. Bacteria must develop resistance to various inhospitable conditions in order to survive in the human gastrointestinal tract. Bile, which is secreted by the liver, and plays an important role in food digestion also has antimicrobial properties and is able to disrupt cellular homeostasis. Paradoxically, although bile is one of the guts defenses, many studies have reported that bacteria such as Vibrio parahaemolyticus can sense bile and use its presence as an environmental cue to upregulate virulence genes during infection. This article aims to discuss how bile is detected by V. parahaemolyticus and its role in regulating type III secretion system 2 leading to human infection. This bile-bacteria interaction pathway gives us a clearer understanding of the biochemical and structural analysis of the bacterial receptors involved in mediating a response to bile salts which appear to be a significant environmental cue during initiation of an infection. | 2017 | 28484445 |
| 8968 | 19 | 0.9995 | Antibiotic stress, genetic response and altered permeability of E. coli. BACKGROUND: Membrane permeability is the first step involved in resistance of bacteria to an antibiotic. The number and activity of efflux pumps and outer membrane proteins that constitute porins play major roles in the definition of intrinsic resistance in Gram-negative bacteria that is altered under antibiotic exposure. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the genetic regulation of porins and efflux pumps of Escherichia coli during prolonged exposure to increasing concentrations of tetracycline and demonstrate, with the aid of quantitative real-time reverse transcriptase-polymerase chain reaction methodology and western blot detection, the sequence order of genetic expression of regulatory genes, their relationship to each other, and the ensuing increased activity of genes that code for transporter proteins of efflux pumps and down-regulation of porin expression. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that, in addition to the transcriptional regulation of genes coding for membrane proteins, the post-translational regulation of proteins involved in the permeability of Gram-negative bacteria also plays a major role in the physiological adaptation to antibiotic exposure. A model is presented that summarizes events during the physiological adaptation of E. coli to tetracycline exposure. | 2007 | 17426813 |