Resistance Mechanism and Physiological Effects of Microcin Y in Salmonella enterica subsp. enterica Serovar Typhimurium. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
883501.0000Resistance Mechanism and Physiological Effects of Microcin Y in Salmonella enterica subsp. enterica Serovar Typhimurium. Salmonella bacteria pose a significant threat to animal husbandry and human health due to their virulence and multidrug resistance. The lasso peptide MccY is a recently discovered antimicrobial peptide that acts against various serotypes of Salmonella. In this study, we further explore the resistance mechanism and activity of MccY. Mutants of Ton system genes, including tonB, exbB, and exbD, in Salmonella enterica subsp. enterica serovar Typhimurium were constructed, and the MICs to MccY exhibited significant increases in these deletion mutants compared to the MIC of the parent strain. Subsequently, MccY resistance was quantitatively analyzed, and these mutants also showed greatly reduced rates of killing, even with a high concentration of MccY. In addition, a minimal medium with low iron environment enhanced the sensitivity of these mutants to MccY. Measurements of a series of physiological indicators, including iron utilization, biofilm formation, and motility, demonstrated that MccY may decrease the virulence of S. Typhimurium. Transcriptomic analysis showed that iron utilization, biofilm formation, flagellar assembly, and virulence-related genes were downregulated to varying degrees when S. Typhimurium was treated with MccY. In conclusion, deletion of Ton system genes resulted in resistance to MccY and the susceptibility of these mutants to MccY was increased and differed under a low-iron condition. This lasso peptide can alter multiple physiological properties of S. Typhimurium. Our study will contribute to improve the knowledge and understanding of the mechanism of MccY resistance in Salmonella strains. IMPORTANCE The resistance of Salmonella to traditional antibiotics remains a serious challenge. Novel anti-Salmonella drugs are urgently needed to address the looming crisis. The newly identified antimicrobial peptide MccY shows broad prospects for development and application because of its obvious antagonistic effect on various serotypes of Salmonella. However, our previous study showed that the peptide could confer resistance to Salmonella by disrupting the receptor gene fhuA. In this study, we further explored the potential resistance mechanism of MccY and demonstrated the importance of the Salmonella Ton complex for MccY transport. Disruption in Ton system genes resulted in S. Typhimurium resistance to this peptide, and MccY could alter multiple bacterial physiological properties. In summary, this study further explored the resistance mechanism and antibacterial effect of MccY in S. Typhimurium and provided a scientific basis for its development and application.202236453909
470410.9994Genetic Determinants of Salmonella Resistance to the Biofilm-Inhibitory Effects of a Synthetic 4-Oxazolidinone Analog. Biofilms formed by Salmonella enterica are a frequent source of food supply contamination. Since biofilms are inherently resistant to disinfection, new agents capable of preventing biofilm formation are needed. Synthetic analogs of 4-oxazolidinone containing natural products have shown promise as antibiofilm compounds against Gram-positive bacteria. The purpose of our study was 2-fold: to establish the antibiofilm effects and mechanism of action of a synthetic 4-oxazolidinone analog (JJM-ox-3-70) and to establish mechanisms of resistance to this compound in Salmonella enterica serovar Typhimurium (S Typhimurium). JJM-ox-3-70 inhibited biofilm formation but had no effect on cell growth. The antibiofilm effects were linked to disruption of curli fimbriae and flagellar gene expression and alteration in swimming motility, suggesting an effect on multiple cellular processes. Using a 2-step screening approach of defined multigene and single-gene deletion mutant libraries, we identified 3 mutants that produced less biofilm in the presence of JJM-ox-3-70 than the isogenic WT, with phenotypes reversed by complementation in trans Genes responsible for S Typhimurium resistance to the compound included acrB, a component of the major drug efflux pump AcrAB-TolC, and two genes of unknown function (STM0437 and STM1292). The results of this study suggest that JJM-ox-3-70 inhibits biofilm formation by indirect inhibition of extracellular matrix production that may be linked to disruption of flagellar motility. Further work is needed to establish the role of the newly characterized genes as potential mechanisms of biofilm intrinsic antimicrobial resistance.IMPORTANCE Biofilms are resistant to killing by disinfectants and antimicrobials. S. enterica biofilms facilitate long-term host colonization and persistence in food processing environments. Synthetic analogs of 4-oxazolidinone natural products show promise as antibiofilm agents. Here, we show that a synthetic 4-oxazolidinone analog inhibits Salmonella biofilm through effects on both motility and biofilm matrix gene expression. Furthermore, we identify three genes that promote Salmonella resistance to the antibiofilm effects of the compound. This work provides insight into the mechanism of antibiofilm effects of a synthetic 4-oxazolidinone analog in Gram-negative bacteria and demonstrates new mechanisms of intrinsic antimicrobial resistance in Salmonella biofilms.202032769186
896520.9994Resistance characterization and transcriptomic analysis of imipenem-induced drug resistance in Escherichia coli. BACKGROUND: Bacteria can develop resistance to various antibiotics under selective pressure, leading to multifaceted changes in resistance mechanisms. Transcriptomic sequencing allows for the observation of transcriptional level alterations in cells under antibiotic stress. Understanding the bacterial response to such stress is essential for deciphering their strategy against drug-resistant antibiotics and identifying potential targets for antibiotic development. METHODS: This study using wild-type (WT) Escherichia coli (E. coli) discovered that continuous in vitro induction screening for imipenem-resistant strains resulted in bacteria with enhanced biofilm-forming ability and mutations in antibiotic target sites. Transcriptomic sequencing of the resistant bacteria revealed significant changes in carbon and amino acid metabolism, nutrient assimilation, substance transport, nucleotide metabolism, protein biosynthesis, and cell wall biosynthesis. The up-regulated drug efflux genes were disrupted using gene knockout technology. Drug sensitivity tests indicated that drug efflux has a minimal effect on imipenem resistance. RESULTS: This suggests a strategy for E. coli drug resistance involving the reduction of unnecessary substance synthesis and metabolism, coupled with an increase in activities that aid in resisting foreign threats.202439624129
896930.9994Breaching the Barrier: Genome-Wide Investigation into the Role of a Primary Amine in Promoting E. coli Outer-Membrane Passage and Growth Inhibition by Ampicillin. Gram-negative bacteria are problematic for antibiotic development due to the low permeability of their cell envelopes. To rationally design new antibiotics capable of breaching this barrier, more information is required about the specific components of the cell envelope that prevent the passage of compounds with different physiochemical properties. Ampicillin and benzylpenicillin are β-lactam antibiotics with identical chemical structures except for a clever synthetic addition of a primary amine group in ampicillin, which promotes its accumulation in Gram-negatives. Previous work showed that ampicillin is better able to pass through the outer membrane porin OmpF in Escherichia coli compared to benzylpenicillin. It is not known, however, how the primary amine may affect interaction with other cell envelope components. This study applied TraDIS to identify genes that affect E. coli fitness in the presence of equivalent subinhibitory concentrations of ampicillin and benzylpenicillin, with a focus on the cell envelope. Insertions that compromised the outer membrane, particularly the lipopolysaccharide layer, were found to decrease fitness under benzylpenicillin exposure, but had less effect on fitness under ampicillin treatment. These results align with expectations if benzylpenicillin is poorly able to pass through porins. Disruption of genes encoding the AcrAB-TolC efflux system were detrimental to survival under both antibiotics, but particularly ampicillin. Indeed, insertions in these genes and regulators of acrAB-tolC expression were differentially selected under ampicillin treatment to a greater extent than insertions in ompF. These results suggest that maintaining ampicillin efflux may be more significant to E. coli survival than full inhibition of OmpF-mediated uptake. IMPORTANCE Due to the growing antibiotic resistance crisis, there is a critical need to develop new antibiotics, particularly compounds capable of targeting high-priority antibiotic-resistant Gram-negative pathogens. In order to develop new compounds capable of overcoming resistance a greater understanding of how Gram-negative bacteria are able to prevent the uptake and accumulation of many antibiotics is required. This study used a novel genome wide approach to investigate the significance of a primary amine group as a chemical feature that promotes the uptake and accumulation of compounds in the Gram-negative model organism Escherichia coli. The results support previous biochemical observations that the primary amine promotes passage through the outer membrane porin OmpF, but also highlight active efflux as a major resistance factor.202236409154
897140.9994Bacteriophage induces modifications in outer membrane protein expression and antibiotic susceptibility in Acinetobacter baumannii. Bacteriophages, the most abundant biological agents targeting bacteria, offer a promising alternative to antibiotics for combating multi-drug resistant pathogens like Acinetobacter baumannii. However, the rapid development of bacteriophage resistance poses a significant challenge. This study highlights the contribution of outer membrane proteins (OMPs) in the emergence of bacteriophage resistance in A. baumannii. The bacteriophage-sensitive and resistant isolates were studied for their native OMP profiles. Bacteriophage-tolerant A. baumannii were generated by infecting bacteria with bacteriophages and sub-culturing the survivors, and their expression of OMP and virulence was further characterized. These tolerant strains had significantly downregulated omp genes and under-expressed OMPs. Phenotypic changes like reduced adsorption to phages, deviant growth rates, biofilm-forming capacities, higher survival in limiting conditions, higher motility, and higher alkaline protease production were observed in the phage-tolerant strains equipped with better survival and virulent properties. The tolerant strains were re-sensitized to antibiotics they previously resisted. The significantly under-expressed OMPs in phage-tolerant strains were identified as OmpA and other OMPs similar to OmpA. This study could identify certain OMPs significantly under-expressed on bacteriophage exposure. The tolerant bacteria had altered phenotypic properties in addition to the development of phage resistance and the re-sensitisation to antibiotics, which paved the way for the future of phage therapeutics.202539800016
896650.9994Gene expression profile of Campylobacter jejuni in response to macrolide antibiotics. Campylobacter jejuni is a foodborne pathogen that causes gastroenteritis in humans and has developed resistance to various antibiotics. The primary objective of this research was to examine the network of antibiotic resistance in C. jejuni. The study involved the wild and antibiotic-resistant strains placed in the presence and absence of antibiotics to review their gene expression profiles in response to ciprofloxacin via microarray. Differentially expressed genes (DEGs) analysis and Protein-Protein Interaction (PPI) Network studies were performed for these genes. The results showed that the resistance network of C. jejuni is modular, with different genes involved in bacterial motility, capsule synthesis, efflux, and amino acid and sugar synthesis. Antibiotic treatment resulted in the down-regulation of cluster genes related to translation, flagellum formation, and chemotaxis. In contrast, cluster genes involved in homeostasis, capsule formation, and cation efflux were up-regulated. The study also found that macrolide antibiotics inhibit the progression of C. jejuni infection by inactivating topoisomerase enzymes and increasing the activity of epimerase enzymes, trying to compensate for the effect of DNA twisting. Then, the bacterium limits the movement to conserve energy. Identifying the antibiotic resistance network in C. jejuni can aid in developing drugs to combat these bacteria. Genes involved in cell division, capsule formation, and substance transport may be potential targets for inhibitory drugs. Future research must be directed toward comprehending the underlying mechanisms contributing to the modularity of antibiotic resistance and developing strategies to disrupt and mitigate the growing threat of antibiotic resistance effectively.202438393387
897260.9994Curcumin rescues Caenorhabditis elegans from a Burkholderia pseudomallei infection. The tropical pathogen Burkholderia pseudomallei requires long-term parenteral antimicrobial treatment to eradicate the pathogen from an infected patient. However, the development of antibiotic resistance is emerging as a threat to this form of treatment. To meet the need for alternative therapeutics, we proposed a screen of natural products for compounds that do not kill the pathogen, but in turn, abrogate bacterial virulence. We suggest that the use of molecules or compounds that are non-bactericidal (bacteriostatic) will reduce or abolish the development of resistance by the pathogen. In this study, we adopted the established Caenorhabditis elegans-B. pseudomallei infection model to screen a collection of natural products for any that are able to extend the survival of B. pseudomallei infected worms. Of the 42 natural products screened, only curcumin significantly improved worm survival following infection whilst not affecting bacterial growth. This suggested that curcumin promoted B. pseudomallei-infected worm survival independent of pathogen killing. To validate that the protective effect of curcumin was directed toward the pathogen, bacteria were treated with curcumin prior to infection. Worms fed with curcumin-treated bacteria survived with a significantly extended mean-time-to-death (p < 0.0001) compared to the untreated control. In in vitro assays, curcumin reduced the activity of known virulence factors (lipase and protease) and biofilm formation. To determine if other bacterial genes were also regulated in the presence of curcumin, a genome-wide transcriptome analysis was performed on curcumin-treated pathogen. A number of genes involved in iron acquisition and transport as well as genes encoding hypothetical proteins were induced in the presence of curcumin. Thus, we propose that curcumin may attenuate B. pseudomallei by modulating the expression of a number of bacterial proteins including lipase and protease as well as biofilm formation whilst concomitantly regulating iron transport and other proteins of unknown function.201525914690
910270.9994An Organogold Compound as Potential Antimicrobial Agent against Drug-Resistant Bacteria: Initial Mechanistic Insights. The rise of antimicrobial resistance has necessitated novel strategies to efficiently combat pathogenic bacteria. Metal-based compounds have been proven as a possible alternative to classical organic drugs. Here, we have assessed the antibacterial activity of seven gold complexes of different families. One compound, a cyclometalated Au(III) C^N complex, showed activity against Gram-positive bacteria, including multi-drug resistant clinical strains. The mechanism of action of this compound was studied in Bacillus subtilis. Overall, the studies point towards a complex mode of antibacterial action, which does not include induction of oxidative stress or cell membrane damage. A number of genes related to metal transport and homeostasis were upregulated upon short treatment of the cells with gold compound. Toxicity tests conducted on precision-cut mouse tissue slices ex vivo revealed that the organogold compound is poorly toxic to mouse liver and kidney tissues, and may thus, be treated as an antibacterial drug candidate.202134181818
469980.9993Exposure to DDAB disinfectants promotes antimicrobial resistance to antibiotics and collateral-sensitivity to polymyxins in Salmonella enterica. SALMONELLA: as an important food-borne zoonotic pathogen, is found in soil and processing environment by human or animal feces, causing serious public health problems. Quaternary ammonium compounds (QACs) disinfectants are widely used in hospitals, livestock farms and food processing sites because of their low toxicity and broad-spectrum disinfection. However, sub-lethal levels of QACs disinfectants can induce bacteria to develop tolerance to disinfectants and cross-resistance to other antimicrobial agents. The acquired resistance will undoubtedly pose a threat to the prevention of antimicrobial resistance. In this study, Salmonella enterica SE211 was induced by the sub-inhibitory concentration and sub-lethal concentration of dodecyl dimethyl ammonium bromide (DDAB) in vitro. Following exposure to DDAB, the strains showed increased resistance to DDAB, doxycycline, amphenicols and fluoroquinolones, and increased sensitivity to colistin drugs. Phenotypic experiments showed that the induced strains exhibited changes in efflux pump activity, biofilm formation ability, motility and membrane characterization. Next-generation sequencing revealed mutations in induced strains involved in LPS-related genes (msbA, lptDE) and cationic antimicrobial peptide (CAMP) resistance-related genes (phoQ, pmrD). Transcriptome sequencing (RNA-seq) analysis revealed up-regulation of efflux pump genes and down-regulation of CAMP resistance, LPS and peptidoglycan related genes. Our study provided a theoretical basis for the potential consequences of disinfection failures and environmental residues of QACs disinfectants on the evolution of antibiotic resistance in salmonella. Furthermore, the induction of colistin sensitivity in salmonella by DDBA resulted in the emergence of collateral sensitivity, which offered a new strategy for drug combination applications to prevent the rise of colistin-resistant superbugs.202540021029
897090.9993Transcriptomic Analyses to Unravel Cronobacter sakazakii Resistance Pathways. The proliferation of antibiotic usage has precipitated the emergence of drug-resistant variants of bacteria, thereby augmenting their capacity to withstand pharmaceutical interventions. Among these variants, Cronobacter sakazakii (C. sakazakii), prevalent in powdered infant formula (PIF), poses a grave threat to the well-being of infants. Presently, global contamination by C. sakazakii is being observed. Consequently, research endeavors have been initiated to explore the strain's drug resistance capabilities, alterations in virulence levels, and resistance mechanisms. The primary objective of this study is to investigate the resistance mechanisms and virulence levels of C. sakazakii induced by five distinct antibiotics, while concurrently conducting transcriptomic analyses. Compared to the susceptible strains prior to induction, the drug-resistant strains exhibited differential gene expression, resulting in modifications in the activity of relevant enzymes and biofilm secretion. Transcriptomic studies have shown that the expression of glutathione S-transferase and other genes were significantly upregulated after induction, leading to a notable enhancement in biofilm formation ability, alongside the existence of antibiotic resistance mechanisms associated with efflux pumps, cationic antimicrobial peptides, and biofilm formation pathways. These alterations significantly influence the strain's resistance profile.202439272551
8922100.9993Transitioning from Soil to Host: Comparative Transcriptome Analysis Reveals the Burkholderia pseudomallei Response to Different Niches. Burkholderia pseudomallei, a soil and water saprophyte, is responsible for the tropical human disease melioidosis. A hundred years since its discovery, there is still much to learn about B. pseudomallei proteins that are essential for the bacterium's survival in and interaction with the infected host, as well as their roles within the bacterium's natural soil habitat. To address this gap, bacteria grown under conditions mimicking the soil environment were subjected to transcriptome sequencing (RNA-seq) analysis. A dual RNA-seq approach was used on total RNA from spleens isolated from a B. pseudomallei mouse infection model at 5 days postinfection. Under these conditions, a total of 1,434 bacterial genes were induced, with 959 induced in the soil environment and 475 induced in bacteria residing within the host. Genes encoding metabolism and transporter proteins were induced when the bacteria were present in soil, while virulence factors, metabolism, and bacterial defense mechanisms were upregulated during active infection of mice. On the other hand, capsular polysaccharide and quorum-sensing pathways were inhibited during infection. In addition to virulence factors, reactive oxygen species, heat shock proteins, siderophores, and secondary metabolites were also induced to assist bacterial adaptation and survival in the host. Overall, this study provides crucial insights into the transcriptome-level adaptations which facilitate infection by soil-dwelling B. pseudomallei. Targeting novel therapeutics toward B. pseudomallei proteins required for adaptation provides an alternative treatment strategy given its intrinsic antimicrobial resistance and the absence of a vaccine. IMPORTANCE Burkholderia pseudomallei, a soil-dwelling bacterium, is the causative agent of melioidosis, a fatal infectious disease of humans and animals. The bacterium has a large genome consisting of two chromosomes carrying genes that encode proteins with important roles for survival in diverse environments as well as in the infected host. While a general mechanism of pathogenesis has been proposed, it is not clear which proteins have major roles when the bacteria are in the soil and whether the same proteins are key to successful infection and spread. To address this question, we grew the bacteria in soil medium and then in infected mice. At 5 days postinfection, bacteria were recovered from infected mouse organs and their gene expression was compared against that of bacteria grown in soil medium. The analysis revealed a list of genes expressed under soil growth conditions and a different set of genes encoding proteins which may be important for survival, replication, and dissemination in an infected host. These proteins are a potential resource for understanding the full adaptation mechanism of this pathogen. In the absence of a vaccine for melioidosis and with treatment being reliant on combinatorial antibiotic therapy, these proteins may be ideal targets for designing antimicrobials to treat melioidosis.202336856434
8850110.9993Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Antimicrobial peptides are promising alternative antimicrobial agents. However, little is known about whether resistance to small-molecule antibiotics leads to cross-resistance (decreased sensitivity) or collateral sensitivity (increased sensitivity) to antimicrobial peptides. We systematically addressed this question by studying the susceptibilities of a comprehensive set of 60 antibiotic-resistant Escherichia coli strains towards 24 antimicrobial peptides. Strikingly, antibiotic-resistant bacteria show a high frequency of collateral sensitivity to antimicrobial peptides, whereas cross-resistance is relatively rare. We identify clinically relevant multidrug-resistance mutations that increase bacterial sensitivity to antimicrobial peptides. Collateral sensitivity in multidrug-resistant bacteria arises partly through regulatory changes shaping the lipopolysaccharide composition of the bacterial outer membrane. These advances allow the identification of antimicrobial peptide-antibiotic combinations that enhance antibiotic activity against multidrug-resistant bacteria and slow down de novo evolution of resistance. In particular, when co-administered as an adjuvant, the antimicrobial peptide glycine-leucine-amide caused up to 30-fold decrease in the antibiotic resistance level of resistant bacteria. Our work provides guidelines for the development of efficient peptide-based therapies of antibiotic-resistant infections.201829795541
8851120.9993Sequence-Specific Targeting of Bacterial Resistance Genes Increases Antibiotic Efficacy. The lack of effective and well-tolerated therapies against antibiotic-resistant bacteria is a global public health problem leading to prolonged treatment and increased mortality. To improve the efficacy of existing antibiotic compounds, we introduce a new method for strategically inducing antibiotic hypersensitivity in pathogenic bacteria. Following the systematic verification that the AcrAB-TolC efflux system is one of the major determinants of the intrinsic antibiotic resistance levels in Escherichia coli, we have developed a short antisense oligomer designed to inhibit the expression of acrA and increase antibiotic susceptibility in E. coli. By employing this strategy, we can inhibit E. coli growth using 2- to 40-fold lower antibiotic doses, depending on the antibiotic compound utilized. The sensitizing effect of the antisense oligomer is highly specific to the targeted gene's sequence, which is conserved in several bacterial genera, and the oligomer does not have any detectable toxicity against human cells. Finally, we demonstrate that antisense oligomers improve the efficacy of antibiotic combinations, allowing the combined use of even antagonistic antibiotic pairs that are typically not favored due to their reduced activities.201627631336
8848130.9993Harnessing the effect of iron deprivation to attenuate the growth of opportunistic pathogen Acinetobacter baumannii. Acinetobacter baumannii is an opportunistic pathogen having high infectivity among immunocompromised patients. The bacteria are resistant to major first-line antibiotics and have become a serious concern in the aspect of nosocomial and community-acquired infections. To overcome this dire situation, the necessity of introducing new approaches is undeniable, which can bypass the need for conventional antibiotic therapy. In this article, we have pinpointed the importance of iron in A. baumannii. Iron is an essential micronutrient in all bacteria. Loss of iron acquisition leads to membrane destabilization, and change in the expression of iron-transporting or -metabolizing genes causes death of the bacteria. Iron scavenging was primarily mediated by different chelators, and β-thujaplicin showed the best antibacterial efficacy with respect to time killing assay and CFU analysis. When iron (Fe(2+)) was supplemented after initial deficiency, the growth of the bacteria was seen to be restored. Iron deprivation also disintegrates the biofilm matrix, a major cause of bacterial resistance against different types of antibiotics. Moreover, iron scavenging promotes inhibition of biofilm sessile persister cells, the root cause of recalcitrant and chronic infection. As a part of antimicrobial therapy, β-thujaplicin was treated alongside colistin and chloramphenicol at an amount significantly lower than its MIC value. Our results indicated that β-thujaplicin nicely complemented those antibiotics to potentiate their antimicrobial action. In a nutshell, iron chelating agents are potential alternative therapeutics that can be used alongside different antibiotics to circumvent the resistance of different nosocomial pathogens.202540202344
9103140.9993Development of cannabidiol derivatives as potent broad-spectrum antibacterial agents with membrane-disruptive mechanism. The emergence of antibiotic resistance has brought a significant burden to public health. Here, we designed and synthesized a series of cannabidiol derivatives by biomimicking the structure and function of cationic antibacterial peptides. This is the first report on the design of cannabidiol derivatives as broad-spectrum antibacterial agents. Through the structure-activity relationship (SAR) study, we found a lead compound 23 that killed both Gram-negative and Gram-positive bacteria via a membrane-targeting mechanism of action with low resistance frequencies. Compound 23 also exhibited very weak hemolytic activity, low toxicity toward mammalian cells, and rapid bactericidal properties. To further validate the membrane action mechanism of compound 23, we performed transcriptomic analysis using RNA-seq, which revealed that treatment with compound 23 altered many cell wall/membrane/envelope biogenesis-related genes in Gram-positive and Gram-negative bacteria. More importantly, compound 23 showed potent in vivo antibacterial efficacy in murine corneal infection models caused by Staphylococcus aureus or Pseudomonas aeruginosa. These findings would provide a new design idea for the discovery of novel broad-spectrum antibacterial agents to overcome the antibiotic resistance crisis.202438266554
8891150.9993Analysis of Shigella flexneri Resistance, Biofilm Formation, and Transcriptional Profile in Response to Bile Salts. The Shigella species cause millions of cases of watery or bloody diarrhea each year, mostly in children in developing countries. While many aspects of Shigella colonic cell invasion are known, crucial gaps in knowledge regarding how the bacteria survive, transit, and regulate gene expression prior to infection remain. In this study, we define mechanisms of resistance to bile salts and build on previous research highlighting induced virulence in Shigella flexneri strain 2457T following exposure to bile salts. Typical growth patterns were observed within the physiological range of bile salts; however, growth was inhibited at higher concentrations. Interestingly, extended periods of exposure to bile salts led to biofilm formation, a conserved phenotype that we observed among members of the Enterobacteriaceae Characterization of S. flexneri 2457T biofilms determined that both bile salts and glucose were required for formation, dispersion was dependent upon bile salts depletion, and recovered bacteria displayed induced adherence to HT-29 cells. RNA-sequencing analysis verified an important bile salt transcriptional profile in S. flexneri 2457T, including induced drug resistance and virulence gene expression. Finally, functional mutagenesis identified the importance of the AcrAB efflux pump and lipopolysaccharide O-antigen synthesis for bile salt resistance. Our data demonstrate that S. flexneri 2457T employs multiple mechanisms to survive exposure to bile salts, which may have important implications for multidrug resistance. Furthermore, our work confirms that bile salts are important physiological signals to activate S. flexneri 2457T virulence. This work provides insights into how exposure to bile likely regulates Shigella survival and virulence during host transit and subsequent colonic infection.201728348056
8923160.9993The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli. Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions. Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100 genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutrient stress genes have also been shown to be important for the growth of various bacterial pathogens in vivo To better understand the genetic network that underpins nutrient stress in E. coli, we performed a genome-scale cross of strains harboring deletions in some 82 nutrient stress genes with the entire E. coli gene deletion collection (Keio) to create 315,400 double deletion mutants. An analysis of the growth of the resulting strains on rich microbiological media revealed an average of 23 synthetic sick or lethal genetic interactions for each nutrient stress gene, suggesting that the network defining nutrient stress is surprisingly complex. A vast majority of these interactions involved genes of unknown function or genes of unrelated pathways. The most profound synthetic lethal interactions were between nutrient acquisition and biosynthesis. Further, the interaction map reveals remarkable metabolic robustness in E. coli through pathway redundancies. In all, the genetic interaction network provides a powerful tool to mine and identify missing links in nutrient synthesis and to further characterize genes of unknown function in E. coli Moreover, understanding of bacterial growth under nutrient stress could aid in the development of novel antibiotic discovery platforms. IMPORTANCE: With the rise of antibiotic drug resistance, there is an urgent need for new antibacterial drugs. Here, we studied a group of genes that are essential for the growth of Escherichia coli under nutrient limitation, culture conditions that arguably better represent nutrient availability during an infection than rich microbiological media. Indeed, many such nutrient stress genes are essential for infection in a variety of pathogens. Thus, the respective proteins represent a pool of potential new targets for antibacterial drugs that have been largely unexplored. We have created all possible double deletion mutants through a genetic cross of nutrient stress genes and the E. coli deletion collection. An analysis of the growth of the resulting clones on rich media revealed a robust, dense, and complex network for nutrient acquisition and biosynthesis. Importantly, our data reveal new genetic connections to guide innovative approaches for the development of new antibacterial compounds targeting bacteria under nutrient stress.201627879333
8858170.9993Exploring the genetic basis of natural resistance to microcins. Enterobacteriaceae produce an arsenal of antimicrobial compounds including microcins, ribosomally produced antimicrobial peptides showing diverse structures and mechanisms of action. Microcins target close relatives of the producing strain to promote its survival. Their narrow spectrum of antibacterial activity makes them a promising alternative to conventional antibiotics, as it should decrease the probability of resistance dissemination and collateral damage to the host's microbiota. To assess the therapeutic potential of microcins, there is a need to understand the mechanisms of resistance to these molecules. In this study, we performed genomic analyses of the resistance to four microcins [microcin C, a nucleotide peptide; microcin J25, a lasso peptide; microcin B17, a linear azol(in)e-containing peptide; and microcin E492, a siderophore peptide] on a collection of 54 Enterobacteriaceae from three species: Escherichia coli, Salmonella enterica and Klebsiella pneumoniae. A gene-targeted analysis revealed that about half of the microcin-resistant strains presented mutations of genes involved in the microcin mechanism of action, especially those involved in their uptake (fhuA, fepA, cirA and ompF). A genome-wide association study did not reveal any significant correlations, yet relevant genetic elements were associated with microcin resistance. These were involved in stress responses, biofilm formation, transport systems and acquisition of immunity genes. Additionally, microcin-resistant strains exhibited several mutations within genes involved in specific metabolic pathways, especially for S. enterica and K. pneumoniae.202438407259
8836180.9993Identification of an anti-virulence drug that reverses antibiotic resistance in multidrug resistant bacteria. The persistent incidence of high levels of multidrug-resistant (MDR) bacteria seriously endangers global public health. In response to MDR-associated infections, new antibacterial drugs and strategies are particularly needed. Screening to evaluate a potential compound to reverse antibiotic resistance is a good strategy to alleviate this crisis. In this paper, using high-throughput screening methods, we identified that oxyclozanide potentiated tetracycline antibiotics act against MDR bacterial pathogens by promoting intracellular accumulation of tetracycline in resistant bacteria. Furthermore, mechanistic studies demonstrated that oxyclozanide could directly kill bacteria by disrupting bacterial membrane and inducing the overproduction of bacterial reactive oxygen species. Oxyclozanide effectively reduced the production of virulence proteins in S. aureus and neutralized the produced α-hemolysin, thereby effectively alleviating the inflammatory response caused by bacteria. Finally, oxyclozanide significantly reversed tetracycline resistance in animal infection assays. In summary, these results demonstrated the capacity of oxyclozanide as a novel antibiotic adjuvant, antibacterial and anti-virulence multifunctional compound to circumvent MDR bacteria and improve the therapeutic effect of persistent infections caused by MDR bacteria worldwide.202235797943
4405190.9993Copper Resistance of the Emerging Pathogen Acinetobacter baumannii. Acinetobacter baumannii is an important emerging pathogen that is capable of causing many types of severe infection, especially in immunocompromised hosts. Since A. baumannii can rapidly acquire antibiotic resistance genes, many infections are on the verge of being untreatable, and novel therapies are desperately needed. To investigate the potential utility of copper-based antibacterial strategies against Acinetobacter infections, we characterized copper resistance in a panel of recent clinical A. baumannii isolates. Exposure to increasing concentrations of copper in liquid culture and on solid surfaces resulted in dose-dependent and strain-dependent effects; levels of copper resistance varied broadly across isolates, possibly resulting from identified genotypic variation among strains. Examination of the growth-phase-dependent effect of copper on A. baumannii revealed that resistance to copper increased dramatically in stationary phase. Moreover, A. baumannii biofilms were more resistant to copper than planktonic cells but were still susceptible to copper toxicity. Exposure of bacteria to subinhibitory concentrations of copper allowed them to better adapt to and grow in high concentrations of copper; this copper tolerance response is likely achieved via increased expression of copper resistance mechanisms. Indeed, genomic analysis revealed numerous putative copper resistance proteins that share amino acid homology to known proteins in Escherichia coli and Pseudomonas aeruginosa Transcriptional analysis revealed significant upregulation of these putative copper resistance genes following brief copper exposure. Future characterization of copper resistance mechanisms may aid in the search for novel antibiotics against Acinetobacter and other highly antibiotic-resistant pathogens. IMPORTANCE: Acinetobacter baumannii causes many types of severe nosocomial infections; unfortunately, some isolates have acquired resistance to almost every available antibiotic, and treatment options are incredibly limited. Copper is an essential nutrient but becomes toxic at high concentrations. The inherent antimicrobial properties of copper give it potential for use in novel therapeutics against drug-resistant pathogens. We show that A. baumannii clinical isolates are sensitive to copper in vitro, both in liquid and on solid metal surfaces. Since bacterial resistance to copper is mediated though mechanisms of efflux and detoxification, we identified genes encoding putative copper-related proteins in A. baumannii and showed that expression of some of these genes is regulated by the copper concentration. We propose that the antimicrobial effects of copper may be beneficial in the development of future therapeutics that target multidrug-resistant bacteria.201627520808