# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8822 | 0 | 1.0000 | Proteomics Analysis Reveals Bacterial Antibiotics Resistance Mechanism Mediated by ahslyA Against Enoxacin in Aeromonas hydrophila. Bacterial antibiotic resistance is a serious global problem; the underlying regulatory mechanisms are largely elusive. The earlier reports states that the vital role of transcriptional regulators (TRs) in bacterial antibiotic resistance. Therefore, we have investigated the role of TRs on enoxacin (ENX) resistance in Aeromonas hydrophila in this study. A label-free quantitative proteomics method was utilized to compare the protein profiles of the ahslyA knockout and wild-type A. hydrophila strains under ENX stress. Bioinformatics analysis showed that the deletion of ahslyA triggers the up-regulated expression of some vital antibiotic resistance proteins in A. hydrophila upon ENX stress and thereby reduce the pressure by preventing the activation of SOS repair system. Moreover, ahslyA directly or indirectly induced at least 11 TRs, which indicates a complicated regulatory network under ENX stress. We also deleted six selected genes in A. hydrophila that altered in proteomics data in order to evaluate their roles in ENX stress. Our results showed that genes such as AHA_0655, narQ, AHA_3721, AHA_2114, and AHA_1239 are regulated by ahslyA and may be involved in ENX resistance. Overall, our data demonstrated the important role of ahslyA in ENX resistance and provided novel insights into the effects of transcriptional regulation on antibiotic resistance in bacteria. | 2021 | 34168639 |
| 9018 | 1 | 0.9984 | Transcriptome analysis of heat resistance regulated by quorum sensing system in Glaesserella parasuis. The ability of bacteria to resist heat shock allows them to adapt to different environments. In addition, heat shock resistance is known for their virulence. Our previous study showed that the AI-2/luxS quorum sensing system affects the growth characteristics, biofilm formation, and virulence of Glaesserella parasuis. The resistance of quorum sensing system deficient G. parasuis to heat shock was obviously weaker than that of wild type strain. However, the regulatory mechanism of this phenotype remains unclear. To illustrate the regulatory mechanism by which the quorum sensing system provides resistance to heat shock, the transcriptomes of wild type (GPS2), ΔluxS, and luxS complemented (C-luxS) strains were analyzed. Four hundred forty-four differentially expressed genes were identified in quorum sensing system deficient G. parasuis, which participated in multiple regulatory pathways. Furthermore, we found that G. parasuis regulates the expression of rseA, rpoE, rseB, degS, clpP, and htrA genes to resist heat shock via the quorum sensing system. We further confirmed that rseA and rpoE genes exerted an opposite regulatory effect on heat shock resistance. In conclusion, the findings of this study provide a novel insight into how the quorum sensing system affects the transcriptome of G. parasuis and regulates its heat shock resistance property. | 2022 | 36033895 |
| 8883 | 2 | 0.9984 | Expression of Meiothermus ruber luxS in E. coli alters the antibiotic susceptibility and biofilm formation. Quorum sensing (QS) and signal molecules used for interspecies communication are well defined in mesophiles, but there is still a plethora of microorganisms in which existence and mechanisms of QS need to be explored, thermophiles being among them. In silico analysis has revealed the presence of autoinducer-2 (AI-2) class of QS signaling molecules in thermophiles, synthesized by LuxS (AI-2 synthase), though the functions of this system are not known. In this study, LuxS of Meiothermus ruber was used for understanding the mechanism and functions of AI-2 based QS among thermophilic bacteria. The luxS gene of M. ruber was expressed in luxS(-) deletion mutant of Escherichia coli. Complementation of luxS resulted in significant AI-2 activity, enhanced biofilm formation, and antibiotic susceptibility. Transcriptome analysis showed significant differential expression of 204 genes between the luxS-complemented and luxS(-) deletion mutant of E. coli. Majority of the genes regulated by luxS belonged to efflux pumps. This elucidation may contribute towards finding novel alternatives against incessant antibiotic resistance in bacteria.Key Points• Expression of luxS in luxS(-)E. coli resulted in increase in biofilm index. • Reduction in the MIC of antibiotics was observed after complementation of luxS. • Downregulation of efflux pump genes was observed after complementation of luxS. • Transcriptome analysis showed that 204 genes were differentially regulated significantly. | 2020 | 32215705 |
| 8817 | 3 | 0.9984 | Study on the estradiol degradation gene expression and resistance mechanism of Rhodococcus R-001 under low-temperature stress. Estradiol (E2), an endocrine disruptor, acts by mimicking or interfering with the normal physiological functions of natural hormones within organisms, leading to issues such as endocrine system disruption. Notably, seasonal fluctuations in environmental temperature may influence the degradation speed of estradiol (E2) in the natural environment, intensifying its potential health and ecological risks. Therefore, this study aims to explore how bacteria can degrade E2 under low-temperature conditions, unveiling their resistance mechanisms, with the goal of developing new strategies to mitigate the threat of E2 to health and ecological safety. In this paper, we found that Rhodococcus equi DSSKP-R-001 (R-001) can efficiently degrade E2 at 30 °C and 10 °C. Six genes in R-001 were shown to be involved in E2 degradation by heterologous expression at 30 °C. Among them, 17β-HSD, KstD2, and KstD3, were also involved in E2 degradation at 10 °C; KstD was not previously known to degrade E2. RNA-seq was used to characterize differentially expressed genes (DEGs) to explore the stress response of R-001 to low-temperature environments to elucidate the strain's adaptation mechanism. At the low temperature, R-001 cells changed from a round spherical shape to a long rod or irregular shape with elevated unsaturated fatty acids and were consistent with the corresponding genetic changes. Many differentially expressed genes linked to the cold stress response were observed. R-001 was found to upregulate genes encoding cold shock proteins, fatty acid metabolism proteins, the ABC transport system, DNA damage repair, energy metabolism and transcriptional regulators. In this study, we demonstrated six E2 degradation genes in R-001 and found for the first time that E2 degradation genes have different expression characteristics at 30 °C and 10 °C. Linking R-001 to cold acclimation provides new insights and a mechanistic basis for the simultaneous degradation of E2 under cold stress in Rhodococcus adaptation. | 2024 | 38677604 |
| 8810 | 4 | 0.9984 | Mechanisms involved in the sequestration and resistance of cadmium for a plant-associated Pseudomonas strain. Understanding Cd-resistant bacterial cadmium (Cd) resistance systems is crucial for improving microremediation in Cd-contaminated environments. However, these mechanisms are not fully understood in plant-associated bacteria. In the present study, we investigated the mechanisms underlying Cd sequestration and resistance in the strain AN-B15. These results showed that extracellular Cd sequestration by complexation in strain AN-B15 was primarily responsible for the removal of Cd from the solution. Transcriptome analyses have shown that the mechanisms of Cd resistance at the transcriptional level involve collaborative processes involving multiple metabolic pathways. The AN-B15 strain upregulated the expression of genes related to exopolymeric substance synthesis, metal transport, Fe-S cluster biogenesis, iron recruitment, reactive oxygen species oxidative stress defense, and DNA and protein repair to resist Cd-induced stress. Furthermore, inoculation with AN-B15 alleviated Cd-induced toxicity and reduced Cd uptake in the shoots of wheat seedlings, indicating its potential for remediation. Overall, the results improve our understanding of the mechanisms involved in Cd resistance in bacteria and thus have important implications for improving microremediation. | 2023 | 37806135 |
| 8823 | 5 | 0.9984 | Complex gene response of herbicide-resistant Enterobacter strain NRS-1 under different glyphosate stresses. Knowledge of biological evolution and genetic mechanisms is gained by studying the adaptation of bacteria to survive in adverse environmental conditions. In this regard, transcriptomic profiling of a glyphosate-tolerant Enterobacter strain NRS-1 was studied under four different treatments to investigate the gene-regulatory system for glyphosate tolerance. A total of 83, 83, 60 and 74 genes were up-regulated and 108, 87, 178 and 117 genes down-regulated under 60-NPG, 110-NPG, NaCl (355 mM) and HCl (pH 4.46) stress treatments, respectively. Complex gene network was identified to be involved in regulating tolerance to glyphosate. This study revealed that NRS-1 has gained glyphosate tolerance at the cost of osmotic and acidic resistance. The 25 differentially expressed genes are reported to may have partly changed the function for providing resistance to glyphosate directly, among them genes metK, mtbK, fdnG and wzb that might detoxify/degrade the glyphosate. However, under 110-NPG condition, NRS-1 might have utilized economical and efficient ways by depressing its metabolism and activity to pass through this stress. Hence, the present study provides insights into the genes involved in glyphosate tolerance, which can be effectively utilized to engineer herbicide-resistant crop varieties after their proper validation to manage weed growth. | 2018 | 30305993 |
| 8868 | 6 | 0.9983 | Effects of Stress, Reactive Oxygen Species, and the SOS Response on De Novo Acquisition of Antibiotic Resistance in Escherichia coli. Strategies to prevent the development of antibiotic resistance in bacteria are needed to reduce the threat of infectious diseases to human health. The de novo acquisition of resistance due to mutations and/or phenotypic adaptation occurs rapidly as a result of interactions of gene expression and mutations (N. Handel, J. M. Schuurmans, Y. Feng, S. Brul, and B. H. Ter Kuile, Antimicrob Agents Chemother 58:4371-4379, 2014, http://dx.doi.org/10.1128/AAC.02892-14). In this study, the contribution of several individual genes to the de novo acquisition of antibiotic resistance in Escherichia coli was investigated using mutants with deletions of genes known to be involved in antibiotic resistance. The results indicate that recA, vital for the SOS response, plays a crucial role in the development of antibiotic resistance. Likewise, deletion of global transcriptional regulators, such as gadE or soxS, involved in pH homeostasis and superoxide removal, respectively, can slow the acquisition of resistance to a degree depending on the antibiotic. Deletion of the transcriptional regulator soxS, involved in superoxide removal, slowed the acquisition of resistance to enrofloxacin. Acquisition of resistance occurred at a lower rate in the presence of a second stress factor, such as a lowered pH or increased salt concentration, than in the presence of optimal growth conditions. The overall outcome suggests that a central cellular mechanism is crucial for the development of resistance and that genes involved in the regulation of transcription play an essential role. The actual cellular response, however, depends on the class of antibiotic in combination with environmental conditions. | 2015 | 26666928 |
| 687 | 7 | 0.9983 | RpoS-Regulated Genes and Phenotypes in the Phytopathogenic Bacterium Pectobacterium atrosepticum. The alternative sigma factor RpoS is considered to be one of the major regulators providing stress resistance and cross-protection in bacteria. In phytopathogenic bacteria, the effects of RpoS have not been analyzed with regard to cross-protection, and genes whose expression is directly or indirectly controlled by RpoS have not been determined at the whole-transcriptome level. Our study aimed to determine RpoS-regulated genes and phenotypes in the phytopathogenic bacterium Pectobacterium atrosepticum. Knockout of the rpoS gene in P. atrosepticum affected the long-term starvation response, cross-protection, and virulence toward plants with enhanced immune status. The whole-transcriptome profiles of the wild-type P. atrosepticum strain and its ΔrpoS mutant were compared under different experimental conditions, and functional gene groups whose expression was affected by RpoS were determined. The RpoS promoter motif was inferred within the promoter regions of the genes affected by rpoS deletion, and the P. atrosepticum RpoS regulon was predicted. Based on RpoS-controlled phenotypes, transcriptome profiles, and RpoS regulon composition, the regulatory role of RpoS in P. atrosepticum is discussed. | 2023 | 38139177 |
| 670 | 8 | 0.9982 | ZntR is a critical regulator for zinc homeostasis and involved in pathogenicity in Riemerella anatipestifer. Zinc (Zn(2+)) is essential for all bacteria, but excessive Zn(2+) levels are toxic. Bacteria maintain zinc homeostasis through regulators, such as Zur, AdcR, and ZntR. Riemerella anatipestifer is a significant Flavobacteriales pathogen causing acute serositis in ducks and other birds. In this study, we identified a homolog of ZntR, a regulator for zinc homeostasis, and demonstrated its contribution to the pathogenicity of R. anatipestifer. Deletion of zntR makes the bacteria hypersensitive to excess Zn(2+) but not to other metals like manganese (Mn(2+)), copper (Cu(2+)), cobalt (Co(2+)), and nickel (Ni(2+)). Deletion of zntR also leads to intracellular zinc accumulation but not of other metals. Additionally, compared to the wild type, the deletion of zntR increases resistance to oxidants hydrogen peroxide (H(2)O(2)) and sodium hypochlorite (NaOCl), respectively. The deletion of zntR causes significant changes in transcriptional and protein expression levels, revealing 35 genes with potential zinc metabolism functions. Among them, zupT, which is inhibited by ZntR, is required for zinc transport and resistance to oxidative stress. Finally, deletion of zntR leads to attenuation of colonization in ducklings. In summary, ZntR is a crucial regulator for zinc homeostasis and contributes to the pathogenicity of R. anatipestifer.IMPORTANCEZinc homeostasis plays a critical role in the environmental adaptability of bacteria. Riemerella anatipestifer is a significant pathogen in poultry with the potential to encounter zinc-deficient or zinc-excess environment. The mechanism of zinc homeostasis in this bacterium remains largely unexplored. In this study, we showed that the transcriptional regulator ZntR of R. anatipestifer is critical for zinc homeostasis by altering the transcription and expression of a number of genes. Importantly, ZntR inhibits the transcription of zinc transporter ZupT and contributes to colonization in R. anatipestifer. The results are significant for understanding zinc homeostasis and the pathogenic mechanisms in R. anatipestifer. | 2025 | 40035565 |
| 8682 | 9 | 0.9982 | Role of manganese superoxide dismutase (Mn-SOD) against Cr(III)-induced toxicity in bacteria. The toxicity of Cr(VI) was widely investigated, but the defense mechanism against Cr(III) in bacteria are seldom reported. Here, we found that Cr(III) inhibited bacterial growth and induced reactive oxygen species (ROS). After exposure to Cr(III), loss of sodA not only led to the excessive generation of ROS, but also enhanced the level of lipid peroxidation and reduced the GSH level, indicating that the deficiency of Mn-SOD decreased the bacterial resistance ability against Cr(III). The adverse effects of oxidative stress caused by Cr(III) could be recovered by the rescue of Mn-SOD in the sodA-deficient strain. Besides the oxidative stress, Cr(III) could cause the bacterial morphology variation, which was distinct between the wild-type and the sodA-deficient strains due to the differential expressions of Z-ring division genes. Moreover, Mn-SOD might prevent Cr(III) from oxidation on the bacterial surface by combining with Cr(III). Taken together, our results indicated that the Mn-SOD played a vital role in regulating the stress resistance, expression of cell division-related genes, bacterial morphology, and chemistry valence state of Cr. Our findings firstly provided a more in-depth understanding of Cr(III) toxicity and bacterial defense mechanism against Cr(III). | 2021 | 32781281 |
| 9017 | 10 | 0.9982 | Molecular mechanism of Hfq-dependent sRNA1039 and sRNA1600 regulating antibiotic resistance and virulence in Shigella sonnei. Bacillary dysentery caused by Shigella spp. is a significant concern for human health. Small non-coding RNA (sRNA) plays a crucial role in regulating antibiotic resistance and virulence in Shigella spp. However, the specific mechanisms behind this phenomenon are still not fully understood. This study discovered two sRNAs (sRNA1039 and sRNA1600) that may be involved in bacterial resistance and virulence. By constructing deletion mutants (WT/ΔSR1039 and WT/ΔSR1600), this study found that the WT/ΔSR1039 mutants caused a two-fold increase in sensitivity to ampicillin, gentamicin and cefuroxime, and the WT/ΔSR1600 mutants caused a two-fold increase in sensitivity to cefuroxime. Furthermore, the WT/ΔSR1600 mutants caused a decrease in the adhesion and invasion of bacteria to HeLa cells (P<0.01), and changed the oxidative stress level of bacteria to reduce their survival rate (P<0.001). Subsequently, this study explored the molecular mechanisms by which sRNA1039 and sRNA1600 regulate antibiotic resistance and virulence. The deletion of sRNA1039 accelerated the degradation of target gene cfa mRNA and reduced its expression, thereby regulating the expression of pore protein gene ompD indirectly and negatively to increase bacterial sensitivity to ampicillin, gentamicin and cefuroxime. The inactivation of sRNA1600 reduced the formation of persister cells to reduce resistance to cefuroxime, and reduced the expression of type-III-secretion-system-related genes to reduce bacterial virulence by reducing the expression of target gene tomB. These results provide new insights into Hfq-sRNA-mRNA regulation of the resistance and virulence network of Shigella sonnei, which could potentially promote the development of more effective treatment strategies. | 2024 | 38141834 |
| 8811 | 11 | 0.9982 | Mechanisms controlling the transformation of and resistance to mercury(II) for a plant-associated Pseudomonas sp. strain, AN-B15. Bioremediation using mercury (Hg)-volatilizing and immobilizing bacteria is an eco-friendly and cost-effective strategy for Hg-polluted farmland. However, the mechanisms controlling the transformation of and resistance to Hg(II) by these bacteria remain unknown. In this study, a plant-associated Pseudomonas sp. strain, AN-B15 was isolated and determined to effectively remove Hg(II) under both nutrient-poor and nutrient-rich conditions via volatilization by transforming Hg(II) to Hg(0) and immobilization by transforming Hg(II) to mercury sulfide and Hg-sulfhydryl. Genome and transcriptome analyses revealed that the molecular mechanisms involved in Hg(II) resistance in AN-B15 were a collaborative process involving multiple metabolic systems at the transcriptional level. Under Hg(II) stress, AN-B15 upregulated genes involved in the mer operon and producing the reducing power to rapidly volatilize Hg(II), thereby decreasing its toxicity. Hydroponic culture experiments also revealed that inoculation with strain AN-B15 alleviated Hg-induced toxicity and reduced the uptake of Hg(II) in the roots of wheat seedlings, as explained by the volatilization and immobilization of Hg(II) and plant growth-promoting traits of AN-B15. Overall, the results from the in vitro assays provided vital information that are essential for understanding the mechanism of Hg(II) resistance in plant-associated bacteria, which can also be applied for the bioremediation of Hg-contamination in future. | 2022 | 34915295 |
| 685 | 12 | 0.9982 | Implication of a Key Region of Six Bacillus cereus Genes Involved in Siroheme Synthesis, Nitrite Reductase Production and Iron Cluster Repair in the Bacterial Response to Nitric Oxide Stress. Bacterial response to nitric oxide (NO) is of major importance for bacterial survival. NO stress is a main actor of the eukaryotic immune response and several pathogenic bacteria have developed means for detoxification and repair of the damages caused by NO. However, bacterial mechanisms of NO resistance by Gram-positive bacteria are poorly described. In the opportunistic foodborne pathogen Bacillus cereus, genome sequence analyses did not identify homologs to known NO reductases and transcriptional regulators, such as NsrR, which orchestrate the response to NO of other pathogenic or non-pathogenic bacteria. Using a transcriptomic approach, we investigated the adaptation of B. cereus to NO stress. A cluster of 6 genes was identified to be strongly up-regulated in the early phase of the response. This cluster contains an iron-sulfur cluster repair enzyme, a nitrite reductase and three enzymes involved in siroheme biosynthesis. The expression pattern and close genetic localization suggest a functional link between these genes, which may play a pivotal role in the resistance of B. cereus to NO stress during infection. | 2021 | 34064887 |
| 682 | 13 | 0.9982 | Comparative transcriptome analysis of Brucella melitensis in an acidic environment: Identification of the two-component response regulator involved in the acid resistance and virulence of Brucella. Brucella melitensis, encounters a very stressful environment in phagosomes, especially low pH levels. So identifying the genes that contribute to the replication and survival within an acidic environment is critical in understanding the pathogenesis of the Brucella bacteria. In our research, comparative transcriptome with RNA-seq were used to analyze the changes of genes in normal-medium culture and in pH4.4-medium culture. The results reveal that 113 genes expressed with significant differences (|log2Ratio| ≥ 3); about 44% genes expressed as up-regulated. With GO term analysis, structural constituent of the ribosome, rRNA binding, structural molecule activity, and cation-transporting ATPase activity were significantly enriched (p-value ≤ 0.05). These genes distributed in 51 pathways, in which ribosome and photosynthesis pathways were significantly enriched. Six pathways (oxidative phosphorylation, iron-transporting, bacterial secretion system, transcriptional regulation, two-component system, and ABC transporters pathways) tightly related to the intracellular survival and virulence of Brucella were analyzed. A two-component response regulator gene in the transcriptional regulation pathway, identified through gene deletion and complementary technologies, played an important role in the resistance to the acid-resistance and virulence of Brucella. | 2016 | 26691825 |
| 669 | 14 | 0.9982 | Manganese Efflux Achieved by MetA and MetB Affects Oxidative Stress Resistance and Iron Homeostasis in Riemerella anatipestifer. In bacteria, manganese homeostasis is controlled by import, regulation, and efflux. Here, we identified 2 Mn exporters, MetA and MetB (manganese efflux transporters A and B), in Riemerella anatipestifer CH-1, encoding a putative cation diffusion facilitator (CDF) protein and putative resistance-nodulation-division (RND) efflux pump, respectively. Compared with the wild type (WT), ΔmetA, ΔmetB, and ΔmetAΔmetB exhibited sensitivity to manganese, since they accumulated more intracellular Mn(2+) than the WT under excess manganese conditions, while the amount of iron in the mutants was decreased. Moreover, ΔmetA, ΔmetB, and ΔmetAΔmetB were more sensitive to the oxidant NaOCl than the WT. Further study showed that supplementation with iron sources could alleviate manganese toxicity and that excess manganese inhibited bacterial cell division. RNA-Seq showed that manganese stress resulted in the perturbation of iron metabolism genes, further demonstrating that manganese efflux is critical for iron homeostasis. metA transcription was upregulated under excess manganese but was not activated by MetR, a DtxR family protein, although MetR was also involved in manganese detoxification, while metB transcription was downregulated under iron depletion conditions and in fur mutants. Finally, homologues of MetA and MetB were found to be mainly distributed in members of Flavobacteriaceae. Specifically, MetB represents a novel manganese exporter in Gram-negative bacteria. IMPORTANCE Manganese is required for the function of many proteins in bacteria, but in excess, manganese can mediate toxicity. Therefore, the intracellular levels of manganese must be tightly controlled. Manganese efflux transporters have been characterized in some other bacteria; however, their homologues could not be found in the genome of Riemerella anatipestifer through sequence comparison. This indicated that other types of manganese efflux transporters likely exist. In this study, we characterized 2 transporters, MetA and MetB, that mediate manganese efflux in R. anatipestifer in response to manganese overload. MetA encodes a putative cation diffusion facilitator (CDF) protein, which has been characterized as a manganese transporter in other bacteria, while this is the first observation of a putative resistance-nodulation-division (RND) transporter contributing to manganese export in Gram-negative bacteria. In addition, the mechanism of manganese toxicity was studied by observing morphological changes and by transcriptome sequencing. Taken together, these results are important for expanding our understanding of manganese transporters and revealing the mechanism of manganese toxicity. | 2023 | 36815770 |
| 8882 | 15 | 0.9982 | Transcriptome Profiling of Wild-Type and pga-Knockout Mutant Strains Reveal the Role of Exopolysaccharide in Aggregatibacter actinomycetemcomitans. Exopolysaccharides have a diverse set of functions in most bacteria including a mechanistic role in protecting bacteria against environmental stresses. Among the many functions attributed to the exopolysaccharides, biofilm formation, antibiotic resistance, immune evasion and colonization have been studied most extensively. The exopolysaccharide produced by many Gram positive as well as Gram negative bacteria including the oral pathogen Aggregatibacter actinomycetemcomitans is the homopolymer of β(1,6)-linked N-acetylglucosamine. Recently, we reported that the PGA-deficient mutant of A. actinomycetemcomitans failed to colonize or induce bone resorption in a rat model of periodontal disease, and the colonization genes, apiA and aae, were significantly down regulated in the mutant strain. To understand the role of exopolysaccharide and the pga locus in the global expression of A. actinomycetemcomitans, we have used comparative transcriptome profiling to identify differentially expressed genes in the wild-type strain in relation to the PGA-deficient strain. Transcriptome analysis revealed that about 50% of the genes are differently expressed (P < 0.05 and fold change >1.5). Our study demonstrated that the absence of the pga locus affects the genes involved in peptidoglycan recycling, glycogen storage, and virulence. Further, using confocal microscopy and plating assays, we show that the viability of pga mutant strain is significantly reduced during biofilm growth. Thus, this study highlights the importance of pga genes and the exopolysaccharide in the virulence of A. actinomycetemcomitans. | 2015 | 26221956 |
| 8867 | 16 | 0.9982 | Hfq plays important roles in virulence and stress adaptation in Cronobacter sakazakii ATCC 29544. Cronobacter spp. are opportunistic pathogens that cause neonatal meningitis and sepsis with high mortality in neonates. Despite the peril associated with Cronobacter infection, the mechanisms of pathogenesis are still being unraveled. Hfq, which is known as an RNA chaperone, participates in the interaction with bacterial small RNAs (sRNAs) to regulate posttranscriptionally the expression of various genes. Recent studies have demonstrated that Hfq contributes to the pathogenesis of numerous species of bacteria, and its roles are varied between bacterial species. Here, we tried to elucidate the role of Hfq in C. sakazakii virulence. In the absence of hfq, C. sakazakii was highly attenuated in dissemination in vivo, showed defects in invasion (3-fold) into animal cells and survival (10(3)-fold) within host cells, and exhibited low resistance to hydrogen peroxide (10(2)-fold). Remarkably, the loss of hfq led to hypermotility on soft agar, which is contrary to what has been observed in other pathogenic bacteria. The hyperflagellated bacteria were likely to be attributable to the increased transcription of genes associated with flagellar biosynthesis in a strain lacking hfq. Together, these data strongly suggest that hfq plays important roles in the virulence of C. sakazakii by participating in the regulation of multiple genes. | 2015 | 25754196 |
| 603 | 17 | 0.9982 | Transcriptomic Analysis Reveals Adaptive Responses of an Enterobacteriaceae Strain LSJC7 to Arsenic Exposure. Arsenic (As) resistance determinant ars operon is present in many bacteria and has been demonstrated to enhance As(V) resistance of bacteria. However, whole molecular mechanism adaptations of bacteria in response to As(V) stress remain largely unknown. In this study, transcriptional profiles of Enterobacteriaceae strain LSJC7 responding to As(V) stress were analyzed using RNA-seq and qRT-PCR. As expected, genes involved in As(V) uptake were down-regulated, those involved in As(V) reduction and As(III) efflux were up-regulated, which avoided cellular As accumulation. Reactive oxygen species and nitric oxide (NO) were induced, which caused cellular damages including DNA, protein, and Fe-S cluster damage in LSJC7. The expression of specific genes encoding transcriptional regulators, such as nsrR and soxRS were also induced. NsrR and SoxRS modulated many critical metabolic activities in As(V) stressed LSJC7 cells, including reactive species scavenging and repairing damaged DNA, proteins, and Fe-S clusters. Therefore, besides As uptake, reduction, and efflux; oxidative stress defense and damage repair were the main cellular adaptive responses of LSJC7 to As(V) stress. | 2016 | 27199962 |
| 683 | 18 | 0.9982 | Integrative Multiomics Analysis of the Heat Stress Response of Enterococcus faecium. A continuous heat-adaptation test was conducted for one Enterococcus faecium (E. faecium) strain wild-type (WT) RS047 to obtain a high-temperature-resistant strain. After domestication, the strain was screened with a significantly higher ability of heat resistance. which is named RS047-wl. Then a multi-omics analysis of transcriptomics and metabolomics was used to analyze the mechanism of the heat resistance of the mutant. A total of 98 differentially expressed genes (DEGs) and 115 differential metabolites covering multiple metabolic processes were detected in the mutant, which indicated that the tolerance of heat resistance was regulated by multiple mechanisms. The changes in AgrB, AgrC, and AgrA gene expressions were involved in quorum-sensing (QS) system pathways, which regulate biofilm formation. Second, highly soluble osmotic substances such as putrescine, spermidine, glycine betaine (GB), and trehalose-6P were accumulated for the membrane transport system. Third, organic acids metabolism and purine metabolism were down-regulated. The findings can provide target genes for subsequent genetic modification of E. faecium, and provide indications for screening heat-resistant bacteria, so as to improve the heat-resistant ability of E. faecium for production. | 2023 | 36979372 |
| 690 | 19 | 0.9981 | Characterization of oxidative stress-resistant mutants of Streptococcus thermophilus CNRZ368. During industrial processes, the dairy organism Streptococcus thermophilus is exposed to stress conditions. Its ability to survive and grow in an aerobic environment indicates that it must possess defensive mechanisms against reactive oxygen species. To identify the genes involved in oxidative stress defence, a collection of mutants was generated by random insertional mutagenesis and screened for menadione sensitivity and resistance. Results obtained for resistant clones allowed the identification of eight loci. The insertions affected genes whose homologues in other bacteria were previously identified as being involved in stress response(deoB, gst) or transcription regulation (rggC) and five ORFs of unknown function. The tolerance of the eight mutants to air-exposure, methyl viologen and H2O2 was studied. Real-time quantitative PCR was used to analyse the transcript level of mutated genes and revealed that most were down-regulated during oxidative stress. | 2004 | 15378231 |