Mechanisms involved in the sequestration and resistance of cadmium for a plant-associated Pseudomonas strain. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
881001.0000Mechanisms involved in the sequestration and resistance of cadmium for a plant-associated Pseudomonas strain. Understanding Cd-resistant bacterial cadmium (Cd) resistance systems is crucial for improving microremediation in Cd-contaminated environments. However, these mechanisms are not fully understood in plant-associated bacteria. In the present study, we investigated the mechanisms underlying Cd sequestration and resistance in the strain AN-B15. These results showed that extracellular Cd sequestration by complexation in strain AN-B15 was primarily responsible for the removal of Cd from the solution. Transcriptome analyses have shown that the mechanisms of Cd resistance at the transcriptional level involve collaborative processes involving multiple metabolic pathways. The AN-B15 strain upregulated the expression of genes related to exopolymeric substance synthesis, metal transport, Fe-S cluster biogenesis, iron recruitment, reactive oxygen species oxidative stress defense, and DNA and protein repair to resist Cd-induced stress. Furthermore, inoculation with AN-B15 alleviated Cd-induced toxicity and reduced Cd uptake in the shoots of wheat seedlings, indicating its potential for remediation. Overall, the results improve our understanding of the mechanisms involved in Cd resistance in bacteria and thus have important implications for improving microremediation.202337806135
881110.9997Mechanisms controlling the transformation of and resistance to mercury(II) for a plant-associated Pseudomonas sp. strain, AN-B15. Bioremediation using mercury (Hg)-volatilizing and immobilizing bacteria is an eco-friendly and cost-effective strategy for Hg-polluted farmland. However, the mechanisms controlling the transformation of and resistance to Hg(II) by these bacteria remain unknown. In this study, a plant-associated Pseudomonas sp. strain, AN-B15 was isolated and determined to effectively remove Hg(II) under both nutrient-poor and nutrient-rich conditions via volatilization by transforming Hg(II) to Hg(0) and immobilization by transforming Hg(II) to mercury sulfide and Hg-sulfhydryl. Genome and transcriptome analyses revealed that the molecular mechanisms involved in Hg(II) resistance in AN-B15 were a collaborative process involving multiple metabolic systems at the transcriptional level. Under Hg(II) stress, AN-B15 upregulated genes involved in the mer operon and producing the reducing power to rapidly volatilize Hg(II), thereby decreasing its toxicity. Hydroponic culture experiments also revealed that inoculation with strain AN-B15 alleviated Hg-induced toxicity and reduced the uptake of Hg(II) in the roots of wheat seedlings, as explained by the volatilization and immobilization of Hg(II) and plant growth-promoting traits of AN-B15. Overall, the results from the in vitro assays provided vital information that are essential for understanding the mechanism of Hg(II) resistance in plant-associated bacteria, which can also be applied for the bioremediation of Hg-contamination in future.202234915295
819620.9995The pentose phosphate pathway is essential for the resistance of Gluconacetobacter diazotrophicus PAL5 to zinc. Zinc (Zn) is an essential metal for the metabolism of bacteria, but in high concentrations, it may be toxic to cells. Gluconacetobacter diazotrophicus is a Gram-negative bacterium characterized by its ability to promote plant growth. Moreover, G. diazotrophicus can survive under challenging conditions, including metal stress. However, the mechanisms that control its resistance to metals require further investigation. This work investigated the main molecular mechanisms associated with the resistance of G. diazotrophicus PAL5 to Zn. Comparative proteomic analyses aimed to identify molecular pathways, and essential proteins were validated by mutagenesis. The main molecular pathways identified by proteomics included response to oxidative stress, sugar metabolism, nutrient uptake, cell envelope metabolism, protein quality control, and the efflux pump system. Mutagenesis showed that the absence of the genes ggt (response to oxidative stress), pgl (sugar metabolism), accC (cell envelope metabolism), tbdR (nutrient uptake), clpX and degP (protein quality control), and czcC (efflux pump system) increased the sensitivity of G. diazotrophicus mutants to Zn. Our results identified essential molecular mechanisms for Zn resistance in G. diazotrophicus, highlighting the essential role of the pentose phosphate pathway.202540999116
815230.9995Glutathione S-Transferase Enzymes in Plant-Pathogen Interactions. Plant glutathione S-transferases (GSTs) are ubiquitous and multifunctional enzymes encoded by large gene families. A characteristic feature of GST genes is their high inducibility by a wide range of stress conditions including biotic stress. Early studies on the role of GSTs in plant biotic stress showed that certain GST genes are specifically up-regulated by microbial infections. Later numerous transcriptome-wide investigations proved that distinct groups of GSTs are markedly induced in the early phase of bacterial, fungal and viral infections. Proteomic investigations also confirmed the accumulation of multiple GST proteins in infected plants. Furthermore, functional studies revealed that overexpression or silencing of specific GSTs can markedly modify disease symptoms and also pathogen multiplication rates. However, very limited information is available about the exact metabolic functions of disease-induced GST isoenzymes and about their endogenous substrates. The already recognized roles of GSTs are the detoxification of toxic substances by their conjugation with glutathione, the attenuation of oxidative stress and the participation in hormone transport. Some GSTs display glutathione peroxidase activity and these GSTs can detoxify toxic lipid hydroperoxides that accumulate during infections. GSTs can also possess ligandin functions and participate in the intracellular transport of auxins. Notably, the expression of multiple GSTs is massively activated by salicylic acid and some GST enzymes were demonstrated to be receptor proteins of salicylic acid. Furthermore, induction of GST genes or elevated GST activities have often been observed in plants treated with beneficial microbes (bacteria and fungi) that induce a systemic resistance response (ISR) to subsequent pathogen infections. Further research is needed to reveal the exact metabolic functions of GST isoenzymes in infected plants and to understand their contribution to disease resistance.201830622544
72140.9994Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Oxidative stress, through the production of reactive oxygen species, is a natural consequence of aerobic metabolism. Escherichia coli has several major regulators activated during oxidative stress, including OxyR, SoxRS, and RpoS. OxyR and SoxR undergo conformation changes when oxidized in the presence of hydrogen peroxide and superoxide radicals, respectively, and subsequently control the expression of cognate genes. In contrast, the RpoS regulon is induced by an increase in RpoS levels. Current knowledge regarding the activation and function of these regulators and their dependent genes in E. coli during oxidative stress forms the scope of this review. Despite the enormous genomic diversity of bacteria, oxidative stress response regulators in E. coli are functionally conserved in a wide range of bacterial groups, possibly reflecting positive selection of these regulators. SoxRS and RpoS homologs are present and respond to oxidative stress in Proteobacteria, and OxyR homologs are present and function in H(2)O(2) resistance in a range of bacteria, from gammaproteobacteria to Actinobacteria. Bacteria have developed complex, adapted gene regulatory responses to oxidative stress, perhaps due to the prevalence of reactive oxygen species produced endogenously through metabolism or due to the necessity of aerotolerance mechanisms in anaerobic bacteria exposed to oxygen.201222381957
881550.9994Phosphorus-Solubilizing Bacteria Enhance Cadmium Immobilization and Gene Expression in Wheat Roots to Reduce Cadmium Uptake. The application of phosphorus-solubilizing bacteria is an effective method for increasing the available phosphorus content and inhibiting wheat uptake of heavy metals. However, further research is needed on the mechanism by which phosphorus-solubilizing bacteria inhibit cadmium (Cd) uptake in wheat roots and its impact on the expression of root-related genes. Here, the effects of strain Klebsiella aerogenes M2 on Cd absorption in wheat and the expression of root-related Cd detoxification and immobilization genes were determined. Compared with the control, strain M2 reduced (64.1-64.6%) Cd uptake by wheat roots. Cd fluorescence staining revealed that strain M2 blocked the entry of exogenous Cd into the root interior and enhanced the immobilization of Cd by cell walls. Forty-seven genes related to Cd detoxification, including genes encoding peroxidase, chalcone synthase, and naringenin 3-dioxygenase, were upregulated in the Cd+M2 treatment. Strain M2 enhanced the Cd resistance and detoxification activity of wheat roots through the regulation of flavonoid biosynthesis and antioxidant enzyme activity. Moreover, strain M2 regulated the expression of genes related to phenylalanine metabolism and the MAPK signaling pathway to enhance Cd immobilization in roots. These results provide a theoretical basis for the use of phosphorus-solubilizing bacteria to remediate Cd-contaminated fields and reduce Cd uptake in wheat.202439065516
67060.9994ZntR is a critical regulator for zinc homeostasis and involved in pathogenicity in Riemerella anatipestifer. Zinc (Zn(2+)) is essential for all bacteria, but excessive Zn(2+) levels are toxic. Bacteria maintain zinc homeostasis through regulators, such as Zur, AdcR, and ZntR. Riemerella anatipestifer is a significant Flavobacteriales pathogen causing acute serositis in ducks and other birds. In this study, we identified a homolog of ZntR, a regulator for zinc homeostasis, and demonstrated its contribution to the pathogenicity of R. anatipestifer. Deletion of zntR makes the bacteria hypersensitive to excess Zn(2+) but not to other metals like manganese (Mn(2+)), copper (Cu(2+)), cobalt (Co(2+)), and nickel (Ni(2+)). Deletion of zntR also leads to intracellular zinc accumulation but not of other metals. Additionally, compared to the wild type, the deletion of zntR increases resistance to oxidants hydrogen peroxide (H(2)O(2)) and sodium hypochlorite (NaOCl), respectively. The deletion of zntR causes significant changes in transcriptional and protein expression levels, revealing 35 genes with potential zinc metabolism functions. Among them, zupT, which is inhibited by ZntR, is required for zinc transport and resistance to oxidative stress. Finally, deletion of zntR leads to attenuation of colonization in ducklings. In summary, ZntR is a crucial regulator for zinc homeostasis and contributes to the pathogenicity of R. anatipestifer.IMPORTANCEZinc homeostasis plays a critical role in the environmental adaptability of bacteria. Riemerella anatipestifer is a significant pathogen in poultry with the potential to encounter zinc-deficient or zinc-excess environment. The mechanism of zinc homeostasis in this bacterium remains largely unexplored. In this study, we showed that the transcriptional regulator ZntR of R. anatipestifer is critical for zinc homeostasis by altering the transcription and expression of a number of genes. Importantly, ZntR inhibits the transcription of zinc transporter ZupT and contributes to colonization in R. anatipestifer. The results are significant for understanding zinc homeostasis and the pathogenic mechanisms in R. anatipestifer.202540035565
814970.9994Genes related to antioxidant metabolism are involved in Methylobacterium mesophilicum-soybean interaction. The genus Methylobacterium is composed of pink-pigmented methylotrophic bacterial species that are widespread in natural environments, such as soils, stream water and plants. When in association with plants, this genus colonizes the host plant epiphytically and/or endophytically. This association is known to promote plant growth, induce plant systemic resistance and inhibit plant infection by phytopathogens. In the present study, we focused on evaluating the colonization of soybean seedling-roots by Methylobacterium mesophilicum strain SR1.6/6. We focused on the identification of the key genes involved in the initial step of soybean colonization by methylotrophic bacteria, which includes the plant exudate recognition and adaptation by planktonic bacteria. Visualization by scanning electron microscopy revealed that M. mesophilicum SR1.6/6 colonizes soybean roots surface effectively at 48 h after inoculation, suggesting a mechanism for root recognition and adaptation before this period. The colonization proceeds by the development of a mature biofilm on roots at 96 h after inoculation. Transcriptomic analysis of the planktonic bacteria (with plant) revealed the expression of several genes involved in membrane transport, thus confirming an initial metabolic activation of bacterial responses when in the presence of plant root exudates. Moreover, antioxidant genes were mostly expressed during the interaction with the plant exudates. Further evaluation of stress- and methylotrophic-related genes expression by qPCR showed that glutathione peroxidase and glutathione synthetase genes were up-regulated during the Methylobacterium-soybean interaction. These findings support that glutathione (GSH) is potentially a key molecule involved in cellular detoxification during plant root colonization. In addition to methylotrophic metabolism, antioxidant genes, mainly glutathione-related genes, play a key role during soybean exudate recognition and adaptation, the first step in bacterial colonization.201526238382
868180.9994The regulatory mechanism of Chryseobacterium sp. resistance mediated by montmorillonite upon cadmium stress. Cadmium (Cd) is a toxic heavy metal and its uptake by living organisms causes adverse effect, further resulting in cycle pollution of the biosphere. The specific regulatory mechanism between clays and microbes under Cd stress remains unclear. In this study, interface interactions among clays, microbes and Cd were confirmed. Comparative transcriptome was conducted to investigate how it regulated gene expression patterns of microbes (Chryseobacterium sp. WAL2), which exposed to a series of gradient concentrations of Cd (16, 32, 64 and 128 μg mL(-1)) for 12 d in the presence and absence of clay montmorillonite (Mt) (16 g L(-1)). Cd was highly enriched by the unique interface interactions between Mt and bacteria (67.6-82.1%), leading to a more hostile environment for bacterial cells. However, Mt ultimately enhanced bacterial resistance to Cd stress by stimulating the mechanism of bacterial resistance; namely: (i) Mt increased genes expression connected with ion transport, enhancing the uptake of Cd; (ii) Mt stimulated genes expression related to efflux pump and positively regulated cellular oxidative stress (e.g., glutathione) and Cd accumulation (e.g., cysteine) processes. Further, genes expression related to intracellular metabolic processes was enforced, which supplied a driving force and accelerated electron transfer; (iii) Mt improved genes expression involved in DNA replication and other biological processes (e.g., terpenoid backbone biosynthesis) to maintain bacterial vitality. Therefore, the study not only optimized a unique Cd resistance mechanism of Mt on Chryseobacterium sp., but also provided a novel insight for environmental mitigation of heavy metals from the perspective of molecular biology.202031546187
881790.9994Study on the estradiol degradation gene expression and resistance mechanism of Rhodococcus R-001 under low-temperature stress. Estradiol (E2), an endocrine disruptor, acts by mimicking or interfering with the normal physiological functions of natural hormones within organisms, leading to issues such as endocrine system disruption. Notably, seasonal fluctuations in environmental temperature may influence the degradation speed of estradiol (E2) in the natural environment, intensifying its potential health and ecological risks. Therefore, this study aims to explore how bacteria can degrade E2 under low-temperature conditions, unveiling their resistance mechanisms, with the goal of developing new strategies to mitigate the threat of E2 to health and ecological safety. In this paper, we found that Rhodococcus equi DSSKP-R-001 (R-001) can efficiently degrade E2 at 30 °C and 10 °C. Six genes in R-001 were shown to be involved in E2 degradation by heterologous expression at 30 °C. Among them, 17β-HSD, KstD2, and KstD3, were also involved in E2 degradation at 10 °C; KstD was not previously known to degrade E2. RNA-seq was used to characterize differentially expressed genes (DEGs) to explore the stress response of R-001 to low-temperature environments to elucidate the strain's adaptation mechanism. At the low temperature, R-001 cells changed from a round spherical shape to a long rod or irregular shape with elevated unsaturated fatty acids and were consistent with the corresponding genetic changes. Many differentially expressed genes linked to the cold stress response were observed. R-001 was found to upregulate genes encoding cold shock proteins, fatty acid metabolism proteins, the ABC transport system, DNA damage repair, energy metabolism and transcriptional regulators. In this study, we demonstrated six E2 degradation genes in R-001 and found for the first time that E2 degradation genes have different expression characteristics at 30 °C and 10 °C. Linking R-001 to cold acclimation provides new insights and a mechanistic basis for the simultaneous degradation of E2 under cold stress in Rhodococcus adaptation.202438677604
720100.9994Escherichia Coli Increases its ATP Concentration in Weakly Acidic Environments Principally through the Glycolytic Pathway. Acid resistance is an intrinsic characteristic of intestinal bacteria in order to survive passage through the stomach. Adenosine triphosphate (ATP), the ubiquitous chemical used to power metabolic reactions, activate signaling cascades, and form precursors of nucleic acids, was also found to be associated with the survival of Escherichia coli (E. coli) in acidic environments. The metabolic pathway responsible for elevating the level of ATP inside these bacteria during acid adaptation has been unclear. E. coli uses several mechanisms of ATP production, including oxidative phosphorylation, glycolysis and the oxidation of organic compounds. To uncover which is primarily used during adaptation to acidic conditions, we broadly analyzed the levels of gene transcription of multiple E. coli metabolic pathway components. Our findings confirmed that the primary producers of ATP in E. coli undergoing mild acidic stress are the glycolytic enzymes Glk, PykF and Pgk, which are also essential for survival under markedly acidic conditions. By contrast, the transcription of genes related to oxidative phosphorylation was downregulated, despite it being the major producer of ATP in neutral pH environments.202032854287
8302110.9994Auxin-mediated regulation of susceptibility to toxic metabolites, c-di-GMP levels, and phage infection in the rhizobacterium Serratia plymuthica. The communication between plants and their microbiota is highly dynamic and involves a complex network of signal molecules. Among them, the auxin indole-3-acetic acid (IAA) is a critical phytohormone that not only regulates plant growth and development, but is emerging as an important inter- and intra-kingdom signal that modulates many bacterial processes that are important during interaction with their plant hosts. However, the corresponding signaling cascades remain largely unknown. Here, we advance our understanding of the largely unknown mechanisms by which IAA carries out its regulatory functions in plant-associated bacteria. We showed that IAA caused important changes in the global transcriptome of the rhizobacterium Serratia plymuthica and multidisciplinary approaches revealed that IAA sensing interferes with the signaling mediated by other pivotal plant-derived signals such as amino acids and 4-hydroxybenzoic acid. Exposure to IAA caused large alterations in the transcript levels of genes involved in amino acid metabolism, resulting in significant metabolic alterations. IAA treatment also increased resistance to toxic aromatic compounds through the induction of the AaeXAB pump, which also confers resistance to IAA. Furthermore, IAA promoted motility and severely inhibited biofilm formation; phenotypes that were associated with decreased c-di-GMP levels and capsule production. IAA increased capsule gene expression and enhanced bacterial sensitivity to a capsule-dependent phage. Additionally, IAA induced the expression of several genes involved in antibiotic resistance and led to changes in the susceptibility and responses to antibiotics with different mechanisms of action. Collectively, our study illustrates the complexity of IAA-mediated signaling in plant-associated bacteria. IMPORTANCE: Signal sensing plays an important role in bacterial adaptation to ecological niches and hosts. This communication appears to be particularly important in plant-associated bacteria since they possess a large number of signal transduction systems that respond to a wide diversity of chemical, physical, and biological stimuli. IAA is emerging as a key inter- and intra-kingdom signal molecule that regulates a variety of bacterial processes. However, despite the extensive knowledge of the IAA-mediated regulatory mechanisms in plants, IAA signaling in bacteria remains largely unknown. Here, we provide insight into the diversity of mechanisms by which IAA regulates primary and secondary metabolism, biofilm formation, motility, antibiotic susceptibility, and phage sensitivity in a biocontrol rhizobacterium. This work has important implications for our understanding of bacterial ecology in plant environments and for the biotechnological and clinical applications of IAA, as well as related molecules.202438837409
8299120.9994Regulatory cross-talk supports resistance to Zn intoxication in Streptococcus. Metals such as copper (Cu) and zinc (Zn) are important trace elements that can affect bacterial cell physiology but can also intoxicate bacteria at high concentrations. Discrete genetic systems for management of Cu and Zn efflux have been described in several bacterial pathogens, including streptococci. However, insight into molecular cross-talk between systems for Cu and Zn management in bacteria that drive metal detoxification, is limited. Here, we describe a biologically consequential cross-system effect of metal management in group B Streptococcus (GBS) governed by the Cu-responsive copY regulator in response to Zn. RNAseq analysis of wild-type (WT) and copY-deficient GBS subjected to metal stress revealed unique transcriptional links between the systems for Cu and Zn detoxification. We show that the Cu-sensing role of CopY extends beyond Cu and enables CopY to regulate Cu and Zn stress responses that effect changes in gene function for central cellular processes, including riboflavin synthesis. CopY also supported GBS intracellular survival in human macrophages and virulence during disseminated infection in mice. In addition, we show a novel role for CovR in modulating GBS resistance to Zn intoxication. Identification of the Zn resistome of GBS using TraDIS revealed a suite of genes essential for GBS growth in metal stress. Several of the genes identified are novel to systems that support bacterial survival in metal stress and represent a diverse set of mechanisms that underpin microbial metal homeostasis during cell stress. Overall, this study reveals a new and important mechanism of cross-system complexity driven by CopY in bacteria to regulate cellular management of metal stress and survival.202235862444
667130.9993Increased intracellular H(2)S levels enhance iron uptake in Escherichia coli. We investigated the impact of intracellular hydrogen sulfide (H(2)S) hyperaccumulation on the transcriptome of Escherichia coli. The wild-type (WT) strain overexpressing mstA, encoding 3-mercaptopyruvate sulfur transferase, produced significantly higher H(2)S levels than the control WT strain. The mstA-overexpressing strain exhibited increased resistance to antibiotics, supporting the prior hypothesis that intracellular H(2)S contributes to oxidative stress responses and antibiotic resistance. RNA-seq analysis revealed that over 1,000 genes were significantly upregulated or downregulated upon mstA overexpression. The upregulated genes encompassed those associated with iron uptake, including siderophore synthesis and iron import transporters. The mstA-overexpressing strain showed increased levels of intracellular iron content, indicating that H(2)S hyperaccumulation affects iron availability within cells. We found that the H(2)S-/supersulfide-responsive transcription factor YgaV is required for the upregulated expression of iron uptake genes in the mstA-overexpression conditions. These findings indicate that the expression of iron uptake genes is regulated by intracellular H(2)S, which is crucial for oxidative stress responses and antibiotic resistance in E. coli. IMPORTANCE: H(2)S is recognized as a second messenger in bacteria, playing a vital role in diverse intracellular and extracellular activities, including oxidative stress responses and antibiotic resistance. Both H(2)S and iron serve as essential signaling molecules for gut bacteria. However, the intricate intracellular coordination between them, governing bacterial physiology, remains poorly understood. This study unveils a close relationship between intracellular H(2)S accumulation and iron uptake activity, a relationship critical for antibiotic resistance. We present additional evidence expanding the role of intracellular H(2)S synthesis in bacterial physiology.202439324809
8682140.9993Role of manganese superoxide dismutase (Mn-SOD) against Cr(III)-induced toxicity in bacteria. The toxicity of Cr(VI) was widely investigated, but the defense mechanism against Cr(III) in bacteria are seldom reported. Here, we found that Cr(III) inhibited bacterial growth and induced reactive oxygen species (ROS). After exposure to Cr(III), loss of sodA not only led to the excessive generation of ROS, but also enhanced the level of lipid peroxidation and reduced the GSH level, indicating that the deficiency of Mn-SOD decreased the bacterial resistance ability against Cr(III). The adverse effects of oxidative stress caused by Cr(III) could be recovered by the rescue of Mn-SOD in the sodA-deficient strain. Besides the oxidative stress, Cr(III) could cause the bacterial morphology variation, which was distinct between the wild-type and the sodA-deficient strains due to the differential expressions of Z-ring division genes. Moreover, Mn-SOD might prevent Cr(III) from oxidation on the bacterial surface by combining with Cr(III). Taken together, our results indicated that the Mn-SOD played a vital role in regulating the stress resistance, expression of cell division-related genes, bacterial morphology, and chemistry valence state of Cr. Our findings firstly provided a more in-depth understanding of Cr(III) toxicity and bacterial defense mechanism against Cr(III).202132781281
682150.9993Comparative transcriptome analysis of Brucella melitensis in an acidic environment: Identification of the two-component response regulator involved in the acid resistance and virulence of Brucella. Brucella melitensis, encounters a very stressful environment in phagosomes, especially low pH levels. So identifying the genes that contribute to the replication and survival within an acidic environment is critical in understanding the pathogenesis of the Brucella bacteria. In our research, comparative transcriptome with RNA-seq were used to analyze the changes of genes in normal-medium culture and in pH4.4-medium culture. The results reveal that 113 genes expressed with significant differences (|log2Ratio| ≥ 3); about 44% genes expressed as up-regulated. With GO term analysis, structural constituent of the ribosome, rRNA binding, structural molecule activity, and cation-transporting ATPase activity were significantly enriched (p-value ≤ 0.05). These genes distributed in 51 pathways, in which ribosome and photosynthesis pathways were significantly enriched. Six pathways (oxidative phosphorylation, iron-transporting, bacterial secretion system, transcriptional regulation, two-component system, and ABC transporters pathways) tightly related to the intracellular survival and virulence of Brucella were analyzed. A two-component response regulator gene in the transcriptional regulation pathway, identified through gene deletion and complementary technologies, played an important role in the resistance to the acid-resistance and virulence of Brucella.201626691825
8685160.9993Transcriptome analysis of an arsenite-/antimonite-oxidizer, Bosea sp. AS-1 reveals the importance of the type 4 secretion system in antimony resistance. Bosea sp. AS-1 is an arsenite [As(III)] and antimonite [Sb(III)] oxidizer previously isolated by our group from the Xikuangshan Antimony (Sb) Mine area. Our previous study showed that Bosea sp. AS-1 had a preference for oxidizing As(III) or Sb(III) with different carbon sources, which suggested that different metabolic mechanisms may be utilized by the bacteria to survive in As(III)- or Sb(III)-contaminated environments. Here, we conducted whole-genome and transcriptome sequencing to reveal the molecular mechanisms utilized by Bosea sp. AS-1 to resist As(III) or Sb(III). We discovered that AS-1 acquired various As- and Sb-resistant genes in its genome and might resist As(III) or Sb(III) through the regulation of multiple pathways, such as As and Sb metabolism, the bacterial secretion system, oxidative phosphorylation, the TCA cycle and bacterial flagellar motility. Interestingly, we discovered that genes of the type IV secretion system (T4SS) were activated in response to Sb(III), and inhibiting T4SS activity in AS-1 dramatically reduced its oxidation efficiency and tolerance to Sb(III). To our knowledge, this is the first study showing the activation of T4SS genes by Sb and a direct involvement of T4SS in bacterial Sb resistance. Our findings establish the T4SS as an important Sb resistance factor in bacteria and may help us understand the spread of Sb resistance genes in the environment.202235231521
8151170.9993Azospirillum: benefits that go far beyond biological nitrogen fixation. The genus Azospirillum comprises plant-growth-promoting bacteria (PGPB), which have been broadly studied. The benefits to plants by inoculation with Azospirillum have been primarily attributed to its capacity to fix atmospheric nitrogen, but also to its capacity to synthesize phytohormones, in particular indole-3-acetic acid. Recently, an increasing number of studies has attributed an important role of Azospirillum in conferring to plants tolerance of abiotic and biotic stresses, which may be mediated by phytohormones acting as signaling molecules. Tolerance of biotic stresses is controlled by mechanisms of induced systemic resistance, mediated by increased levels of phytohormones in the jasmonic acid/ethylene pathway, independent of salicylic acid (SA), whereas in the systemic acquired resistance-a mechanism previously studied with phytopathogens-it is controlled by intermediate levels of SA. Both mechanisms are related to the NPR1 protein, acting as a co-activator in the induction of defense genes. Azospirillum can also promote plant growth by mechanisms of tolerance of abiotic stresses, named as induced systemic tolerance, mediated by antioxidants, osmotic adjustment, production of phytohormones, and defense strategies such as the expression of pathogenesis-related genes. The study of the mechanisms triggered by Azospirillum in plants can help in the search for more-sustainable agricultural practices and possibly reveal the use of PGPB as a major strategy to mitigate the effects of biotic and abiotic stresses on agricultural productivity.201829728787
8300180.9993The Copper Resistome of Group B Streptococcus Reveals Insight into the Genetic Basis of Cellular Survival during Metal Ion Stress. In bacteria, copper (Cu) can support metabolic processes as an enzymatic cofactor but can also cause cell damage if present in excess, leading to intoxication. In group B Streptococcus (GBS), a system for control of Cu efflux based on the prototypical cop operon supports survival during Cu stress. In some other bacteria, genetic systems additional to the cop operon are engaged during Cu stress and also contribute to the management of cellular Cu homeostasis. Here, we examined genetic systems beyond the cop operon in GBS for regions that contribute to survival of GBS in Cu stress using a forward genetic screen and probe of the entire bacterial genome. A high-density mutant library, generated using pGh9-ISS1, was used to expose GBS to Cu stress and compare it to nonexposed controls en masse. Eight genes were identified as essential for GBS survival in Cu stress, whereas five genes constrained GBS growth in Cu stress. The genes encode varied factors including enzymes for metabolism, cell wall synthesis, transporters, and cell signaling factors. Targeted mutation of the genes validated their roles in GBS resistance to Cu stress. Excepting copA, the genes identified are new to the area of bacterial metal ion intoxication. We conclude that a discrete and limited suite of genes beyond the cop operon in GBS contributes to a repertoire of mechanisms used to survive Cu stress in vitro and achieve cellular homeostasis. IMPORTANCE Genetic systems for copper (Cu) homeostasis in bacteria, including streptococci, are vital to survive metal ion stress. Genetic systems that underpin survival of GBS during Cu stress, beyond the archetypal cop operon for Cu management, are undefined. We show that Streptococcus resists Cu intoxication by utilizing a discrete and limited suite of genes beyond the cop operon, including several genes that are new to the area of bacterial cell metal ion homeostasis. The Cu resistome of GBS defined here enhances our understanding of metal ion homeostasis in GBS.202235404113
664190.9993Ferric Uptake Regulator Provides a New Strategy for Acidophile Adaptation to Acidic Ecosystems. Acidophiles play a dominant role in driving elemental cycling in natural acid mine drainage (AMD) habitats and exhibit important application value in bioleaching and bioremediation. Acidity is an inevitable environmental stress and a key factor that affects the survival of acidophiles in their acidified natural habitats; however, the regulatory strategies applied by acidophilic bacteria to withstand low pH are unclear. We identified the significance of the ferric uptake regulator (Fur) in acidophiles adapting to acidic environments and discovered that Fur is ubiquitous as well as highly conserved in acidophilic bacteria. Mutagenesis of the fur gene of Acidithiobacillus caldus, a prototypical acidophilic sulfur-oxidizing bacterium found in AMD, revealed that Fur is required for the acid resistance of this acidophilic bacterium. Phenotypic characterization, transcriptome sequencing (RNA-seq), mutagenesis, and biochemical assays indicated that the Acidithiobacillus caldus ferric uptake regulator (AcFur) is involved in extreme acid resistance by regulating the expression of several key genes of certain cellular activities, such as iron transport, biofilm formation, sulfur metabolism, chemotaxis, and flagellar biosynthesis. Finally, a Fur-dependent acid resistance regulatory strategy in A. caldus was proposed to illustrate the ecological behavior of acidophilic bacteria under low pH. This study provides new insights into the adaptation strategies of acidophiles to AMD ecosystems and will promote the design and development of engineered biological systems for the environmental adaptation of acidophiles.IMPORTANCE This study advances our understanding of the acid tolerance mechanism of A. caldus, identifies the key fur gene responsible for acid resistance, and elucidates the correlation between fur and acid resistance, thus contributing to an understanding of the ecological behavior of acidophilic bacteria. These findings provide new insights into the acid resistance process in Acidithiobacillus species, thereby promoting the study of the environmental adaptation of acidophilic bacteria and the design of engineered biological systems.202032245756