Genome-wide association mapping for resistance to bacterial blight and bacterial leaf streak in rice. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
875801.0000Genome-wide association mapping for resistance to bacterial blight and bacterial leaf streak in rice. Using genome-wide SNP association mapping, a total of 77 and 7 loci were identified for rice bacterial blight and bacterial leaf streak resistance, respectively, which may facilitate rice resistance improvement. Bacterial blight (BB) and bacterial leaf streak (BLS) caused by Gram-negative bacteria Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), respectively, are two economically important diseases negatively affecting rice production. To mine new sources of resistance, a set of rice germplasm collection consisting of 895 re-sequenced accessions from the 3000 Rice Genomes Project (3 K RGP) were screened for BB and BLS resistance under field conditions. Higher levels of BB resistance were observed in aus/boro subgroup, whereas the japonica, temperate japonica and tropical japonica subgroups possessed comparatively high levels of resistance to BLS. A genome-wide association study (GWAS) mined 77 genomic loci significantly associated with BB and 7 with BLS resistance. The phenotypic variance (R(2)) explained by these loci ranged from 0.4 to 30.2%. Among the loci, 7 for BB resistance were co-localized with known BB resistance genes and one for BLS resistance overlapped with a previously reported BLS resistance QTL. A search for the candidates in other novel loci revealed several defense-related genes that may be involved in resistance to BB and BLS. High levels of phenotypic resistance to BB or BLS could be attributed to the accumulation of the resistance (R) alleles at the associated loci, indicating their potential value in rice resistance breeding via gene pyramiding. The GWAS analysis validated the known genes underlying BB and BLS resistance and identified novel loci that could enrich the current resistance gene pool. The resources with strong resistance and significant SNPs identified in this study are potentially useful in breeding for BB and BLS resistance.202133830376
845710.9994Molecular profiling of bacterial blight resistance in Malaysian rice cultivars. Bacteria blight is one of the most serious bacterial diseases of rice worldwide. The identification of genetic potential against bacterial blight in the existing rice resources is a prerequisite to develop multigenic resistance to combat the threat of climate change. This investigation was conducted to evaluate alleles variation in 38 Malaysian cultivars using thirteen Simple Sequences Repeats markers and one Sequence Tagged Sites (STS) marker which were reported to be linked with the resistance to bacterial blight. Based on molecular data, a dendrogram was constructed which classified the rice cultivars into seven major clusters at 0.0, 0.28 and 0.3 of similarity coefficient. Cluster 5 was the largest group comprised of ten rice cultivars where multiple genes were identified. However, xa13 could not be detected in the current rice germplasm, whereas xa2 was detected in 25 cultivars. Molecular analysis revealed that Malaysian rice cultivars possess multigenic resistance.202236541981
845420.9992Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus x domestica) with Erwinia amylovora. BACKGROUND: The necrogenic enterobacterium, Erwinia amylovora is the causal agent of the fire blight (FB) disease in many Rosaceae species, including apple and pear. During the infection process, the bacteria induce an oxidative stress response with kinetics similar to those induced in an incompatible bacteria-plant interaction. No resistance mechanism to E. amylovora in host plants has yet been characterized, recent work has identified some molecular events which occur in resistant and/or susceptible host interaction with E. amylovora: In order to understand the mechanisms that characterize responses to FB, differentially expressed genes were identified by cDNA-AFLP analysis in resistant and susceptible apple genotypes after inoculation with E. amylovora. RESULTS: cDNA were isolated from M.26 (susceptible) and G.41 (resistant) apple tissues collected 2 h and 48 h after challenge with a virulent E. amylovora strain or mock (buffer) inoculated. To identify differentially expressed transcripts, electrophoretic banding patterns were obtained from cDNAs. In the AFLP experiments, M.26 and G.41 showed different patterns of expression, including genes specifically induced, not induced, or repressed by E. amylovora. In total, 190 ESTs differentially expressed between M.26 and G.41 were identified using 42 pairs of AFLP primers. cDNA-AFLP analysis of global EST expression in a resistant and a susceptible apple genotype identified different major classes of genes. EST sequencing data showed that genes linked to resistance, encoding proteins involved in recognition, signaling, defense and apoptosis, were modulated by E. amylovora in its host plant. The expression time course of some of these ESTs selected via a bioinformatic analysis has been characterized. CONCLUSION: These data are being used to develop hypotheses of resistance or susceptibility mechanisms in Malus to E. amylovora and provide an initial categorization of genes possibly involved in recognition events, early signaling responses the subsequent development of resistance or susceptibility. These data also provided potential candidates for improving apple resistance to fire blight either by marker-assisted selection or genetic engineering.201020047654
25330.9992The Rxo1/ Rba1 locus of maize controls resistance reactions to pathogenic and non-host bacteria. Infiltration of different maize lines with a variety of bacterial pathogens of maize, rice and sorghum identified qualitative differences in resistant reactions. Isolates from two bacterial species induced rapid hypersensitive reactions (HR) in some maize lines, but not others. All isolates of the non-host pathogen Xanthomonas oryzae pv. oryzicola (bacterial leaf streak disease of rice) and some isolates of the pathogenic bacterium Burkholderia andropogonis induced HR when infiltrated into maize line B73, but not Mo17. Genetic control of the HR to both bacteria segregated as a single dominant gene. Surprisingly, both phenotypes mapped to the same locus, indicating they are either tightly linked or controlled by the same gene. The locus maps on the short arm of maize chromosome six near several other disease-resistance genes. Results indicate the same type of genes may contribute to both non-host resistance and resistance to pathogens.200415114472
32740.9992Natural variation in RPS2-mediated resistance among Arabidopsis accessions: correlation between gene expression profiles and phenotypic responses. Natural variation in gene expression (expression traits or e-traits) is increasingly used for the discovery of genes controlling traits. An important question is whether a particular e-trait is correlated with a phenotypic trait. Here, we examined the correlations between phenotypic traits and e-traits among 10 Arabidopsis thaliana accessions. We studied defense against Pseudomonas syringae pv tomato DC3000 (Pst), with a focus on resistance gene-mediated resistance triggered by the type III effector protein AvrRpt2. As phenotypic traits, we measured growth of the bacteria and extent of the hypersensitive response (HR) as measured by electrolyte leakage. Genetic variation among accessions affected growth of Pst both with (Pst avrRpt2) and without (Pst) the AvrRpt2 effector. Variation in HR was not correlated with variation in bacterial growth. We also collected gene expression profiles 6 h after mock and Pst avrRpt2 inoculation using a custom microarray. Clusters of genes whose expression levels are correlated with bacterial growth or electrolyte leakage were identified. Thus, we demonstrated that variation in gene expression profiles of Arabidopsis accessions collected at one time point under one experimental condition has the power to explain variation in phenotypic responses to pathogen attack.200718083910
845050.9992Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BACKGROUND: R genes are a key component of genetic interactions between plants and biotrophic bacteria and are known to regulate resistance against bacterial invasion. The most common R proteins contain a nucleotide-binding site and a leucine-rich repeat (NBS-LRR) domain. Some NBS-LRR genes in the soybean genome have also been reported to function in disease resistance. In this study, the number of NBS-LRR genes was found to correlate with the number of disease resistance quantitative trait loci (QTL) that flank these genes in each chromosome. NBS-LRR genes co-localized with disease resistance QTL. The study also addressed the functional redundancy of disease resistance on recently duplicated regions that harbor NBS-LRR genes and NBS-LRR gene expression in the bacterial leaf pustule (BLP)-induced soybean transcriptome. RESULTS: A total of 319 genes were determined to be putative NBS-LRR genes in the soybean genome. The number of NBS-LRR genes on each chromosome was highly correlated with the number of disease resistance QTL in the 2-Mb flanking regions of NBS-LRR genes. In addition, the recently duplicated regions contained duplicated NBS-LRR genes and duplicated disease resistance QTL, and possessed either an uneven or even number of NBS-LRR genes on each side. The significant difference in NBS-LRR gene expression between a resistant near-isogenic line (NIL) and a susceptible NIL after inoculation of Xanthomonas axonopodis pv. glycines supports the conjecture that NBS-LRR genes have disease resistance functions in the soybean genome. CONCLUSIONS: The number of NBS-LRR genes and disease resistance QTL in the 2-Mb flanking regions of each chromosome was significantly correlated, and several recently duplicated regions that contain NBS-LRR genes harbored disease resistance QTL for both sides. In addition, NBS-LRR gene expression was significantly different between the BLP-resistant NIL and the BLP-susceptible NIL in response to bacterial infection. From these observations, NBS-LRR genes are suggested to contribute to disease resistance in soybean. Moreover, we propose models for how NBS-LRR genes were duplicated, and apply Ks values for each NBS-LRR gene cluster.201222877146
845960.9991A physical map of traits of agronomic importance based on potato and tomato genome sequences. Potato, tomato, pepper, and eggplant are worldwide important crop and vegetable species of the Solanaceae family. Molecular linkage maps of these plants have been constructed and used to map qualitative and quantitative traits of agronomic importance. This research has been undertaken with the vision to identify the molecular basis of agronomic characters on the one hand, and on the other hand, to assist the selection of improved varieties in breeding programs by providing DNA-based markers that are diagnostic for specific agronomic characters. Since 2011, whole genome sequences of tomato and potato became available in public databases. They were used to combine the results of several hundred mapping and map-based cloning studies of phenotypic characters between 1988 and 2022 in physical maps of the twelve tomato and potato chromosomes. The traits evaluated were qualitative and quantitative resistance to pathogenic oomycetes, fungi, bacteria, viruses, nematodes, and insects. Furthermore, quantitative trait loci for yield and sugar content of tomato fruits and potato tubers and maturity or earliness were physically mapped. Cloned genes for pathogen resistance, a few genes underlying quantitative trait loci for yield, sugar content, and maturity, and several hundred candidate genes for these traits were included in the physical maps. The comparison between the physical chromosome maps revealed, in addition to known intrachromosomal inversions, several additional inversions and translocations between the otherwise highly collinear tomato and potato genomes. The integration of the positional information from independent mapping studies revealed the colocalization of qualitative and quantitative loci for resistance to different types of pathogens, called resistance hotspots, suggesting a similar molecular basis. Synteny between potato and tomato with respect to genomic positions of quantitative trait loci was frequently observed, indicating eventual similarity between the underlying genes.202337564870
875970.9991Genetic and transcriptomic dissection of host defense to Goss's bacterial wilt and leaf blight of maize. Goss's wilt, caused by the Gram-positive actinobacterium Clavibacter nebraskensis, is an important bacterial disease of maize. The molecular and genetic mechanisms of resistance to the bacterium, or, in general, Gram-positive bacteria causing plant diseases, remain poorly understood. Here, we examined the genetic basis of Goss's wilt through differential gene expression, standard genome-wide association mapping (GWAS), extreme phenotype (XP) GWAS using highly resistant (R) and highly susceptible (S) lines, and quantitative trait locus (QTL) mapping using 3 bi-parental populations, identifying 11 disease association loci. Three loci were validated using near-isogenic lines or recombinant inbred lines. Our analysis indicates that Goss's wilt resistance is highly complex and major resistance genes are not commonly present. RNA sequencing of samples separately pooled from R and S lines with or without bacterial inoculation was performed, enabling identification of common and differential gene responses in R and S lines. Based on expression, in both R and S lines, the photosynthesis pathway was silenced upon infection, while stress-responsive pathways and phytohormone pathways, namely, abscisic acid, auxin, ethylene, jasmonate, and gibberellin, were markedly activated. In addition, 65 genes showed differential responses (up- or down-regulated) to infection in R and S lines. Combining genetic mapping and transcriptional data, individual candidate genes conferring Goss's wilt resistance were identified. Collectively, aspects of the genetic architecture of Goss's wilt resistance were revealed, providing foundational data for mechanistic studies.202337652038
879480.9991The Enhancement of Potato (Solanum Tuberosum L. Cv. Odyssey) Resistance to Bacterial Soft Rot Disease Through Transformation of the Glyphosate-Resistant Gene from Dickeya Dadanti. OBJECTIVE: An efficient protocol was developed via the Agrobacterium-mediated transformation method with the plasmid, p485, harboring the aroA gene from the bacterial species Dickeya dadantii, to improve resistance to potato bacterial soft rot disease. The study aimed to investigate the relationship between glyphosate application and the enhancement of potatoes' resistance to two bacterial pathogens affecting the plants. MATERIALS AND METHODS: An optimal concentration of 1.8 mg.L(-1) of glyphosate was applied to transgenic potato varieties. The leaves of the Odyssey cultivar demonstrated resistance to two pathogenic strains, Pectobacterium atrosepticum 21A and D. dadantii ENA49. Polymerase chain reaction (PCR) and reverse transcription-PCR (RT-PCR) validation demonstrated the successful integration and heterologous expression of the aroA gene in the potato genome. Additionally, the transcriptional analysis revealed the expression of pathogenesis-related genes and genes associated with the potato defence response. RESULTS: The study revealed a significant increase in the expression of pathogenesis-related genes (PR-2, PR-3, and PR-5) and defence response genes (HSR-203j and HIN1 in transgenic potato leaves after glyphosate treatment and subsequent exposure to pathogenic bacterial infection, with a particular emphasis on the upregulation of HSR-203j. A comparative analysis assessed the average expression levels of these genes in both experimental and control samples. In contrast, minimal changes in gene expression were observed in plants infected with bacteria but not treated with glyphosate. CONCLUSION: The study suggests that glyphosate treatment in potatoes can enhance systemic acquired resistance to bacterial pathogens by upregulating pathogenesis-related and defence response genes. This approach shows potential for addressing bacterial diseases in potatoes, including soft bacterial rot.202440225297
840690.9991Available cloned genes and markers for genetic improvement of biotic stress resistance in rice. Biotic stress is one of the major threats to stable rice production. Climate change affects the shifting of pest outbreaks in time and space. Genetic improvement of biotic stress resistance in rice is a cost-effective and environment-friendly way to control diseases and pests compared to other methods such as chemical spraying. Fast deployment of the available and suitable genes/alleles in local elite varieties through marker-assisted selection (MAS) is crucial for stable high-yield rice production. In this review, we focused on consolidating all the available cloned genes/alleles conferring resistance against rice pathogens (virus, bacteria, and fungus) and insect pests, the corresponding donor materials, and the DNA markers linked to the identified genes. To date, 48 genes (independent loci) have been cloned for only major biotic stresses: seven genes for brown planthopper (BPH), 23 for blast, 13 for bacterial blight, and five for viruses. Physical locations of the 48 genes were graphically mapped on the 12 rice chromosomes so that breeders can easily find the locations of the target genes and distances among all the biotic stress resistance genes and any other target trait genes. For efficient use of the cloned genes, we collected all the publically available DNA markers (~500 markers) linked to the identified genes. In case of no available cloned genes yet for the other biotic stresses, we provided brief information such as donor germplasm, quantitative trait loci (QTLs), and the related papers. All the information described in this review can contribute to the fast genetic improvement of biotic stress resistance in rice for stable high-yield rice production.202337731986
8449100.9991Identification and Distribution of NBS-Encoding Resistance Genes of Dactylis glomerata L. and Its Expression Under Abiotic and Biotic Stress. Orchardgrass (Dactylis glomerata L.) is drought resistant and tolerant to barren landscapes, making it one of the most important forages for animal husbandry, as well as ecological restoration of rocky landscapes that are undergoing desertification. However, orchardgrass is susceptible to rust, which can significantly reduce its yield and quality. Therefore, understanding the genes that underlie resistance against rust in orchardgrass is critical. The evolution, cloning of plant disease resistance genes, and the analysis of pathogenic bacteria induced expression patterns are important contents in the study of interaction between microorganisms and plants. Genes with nucleotide binding site (NBS) structure are disease-resistant genes ubiquitous in plants and play an important role in plant attacks against various pathogens. Using sequence analysis and re-annotation, we identified 413 NBS resistance genes in orchardgrass. Similar to previous studies, NBS resistance genes containing TIR (toll/interleukin-1 receptor) domain were not found in orchardgrass. The NBS resistance genes can be divided into four types: NBS (up to 264 homologous genes, accounting for 64% of the total number of NBS genes in orchardgrass), NBS-LRR, CC-NBS, and CC-NBS-LRR (minimum of 26 homologous genes, only 6% of the total number of NBS genes in orchardgrass). These 413 NBS resistance genes were unevenly distributed across seven chromosomes where chromosome 5 had up to 99 NBS resistance genes. There were 224 (54%) NBS resistance genes expressed in different tissues (roots, stems, leaves, flowers, and spikes), and we did not detect expression for 45 genes (11%). The remaining 145 (35%) were expressed in some tissues. And we found that 11 NBS resistance genes were differentially expressed under waterlogging stress, 5 NBS resistance genes were differentially expressed under waterlogging and drought stress, and 1 NBS resistance was is differentially expressed under waterlogging and heat stress. Most importantly, we found that 65 NBS resistance genes were significantly expressed in different control groups. On the 7th day of inoculation, 23 NBS resistance genes were differentially expressed in high resistance materials alone, of which 7 NBS resistance genes regulate the "plant-pathogen interaction" pathway by encoding RPM1. At the same time, 2 NBS resistance genes that were differentially expressed in the high resistance material after inoculation were also differentially expressed in abiotic stress. In summary, the NBS resistance gene plays a crucial role in the resistance of orchardgrass to rust.202032506157
8479110.9991Identification and Genome Sequencing of Novel Virulent Strains of Xanthomonas oryzae pv. oryzae Causing Rice Bacterial Blight in Zhejiang, China. Xanthomonas oryzae pv. oryzae (Xoo) is the causative agent of rice bacterial blight (RBB), resulting in substantial harvest losses and posing a challenge to maintaining a stable global supply. In this study, Xoo strains isolated from Shaoxing, Quzhou, and Taizhou, where RBB occurred most frequently in Zhejiang Province in 2019, were selected as the subjects of research. Three isolated pathogenic bacteria of ZXooS (from Shaoxing), ZXooQ (from Quzhou), and ZXooT (from Taizhou) were all identified as novel Xoo strains. These novel strains demonstrate greater virulence compared to Zhe173, the previous epidemic Xoo strain from Zhejiang Province. Subsequent genomic sequencing and analysis revealed that there existed significant differences in the genome sequence, especially in effector genes corresponding to some known rice resistance (R) genes between the novel strains and Zhe173. The sequence alignment of avirulent genes (effector genes) indicated that nucleic and amino acid sequences of AvrXa5, AvrXa7, AvrXa10, and AvrXa23 in the novel strains varied prominently from those in Zhe173. Interestingly, it seemed that only the genome of ZXooQ might contain the AvrXa3 gene. In addition, the phylogenetic analysis of 61 Xoo strains revealed that the novel strains were situated in a distinct evolutionary clade separate from Zhe173. These results here suggest that the emergence of novel Xoo strains may lead to resistance loss of some R genes used in commercial rice varieties, potentially serving as one of the factors leading to RBB resurgence in Zhejiang Province, China.202439770343
8444120.9991Whole genome resequencing and complementation tests reveal candidate loci contributing to bacterial wilt (Ralstonia sp.) resistance in tomato. Tomato (Solanum lycopersicum) is one of the most economically important vegetable crops worldwide. Bacterial wilt (BW), caused by the Ralstonia solanacearum species complex, has been reported as the second most important plant pathogenic bacteria worldwide, and likely the most destructive. Extensive research has identified two major loci, Bwr-6 and Bwr-12, that contribute to resistance to BW in tomato; however, these loci do not completely explain resistance. Segregation of resistance in two populations that were homozygous dominant or heterozygous for all Bwr-6 and Bwr-12 associated molecular markers suggested the action of one or two resistance loci in addition to these two major QTLs. We utilized whole genome sequence data analysis and pairwise comparison of six BW resistant and nine BW susceptible tomato lines to identify candidate genes that, in addition to Bwr-6 and Bwr-12, contributed to resistance. Through this approach we found 27,046 SNPs and 5975 indels specific to the six resistant lines, affecting 385 genes. One sequence variant on chromosome 3 captured by marker Bwr3.2dCAPS located in the Asc (Solyc03g114600.4.1) gene had significant association with resistance, but it did not completely explain the resistance phenotype. The SNP associated with Bwr3.2dCAPS was located within the resistance gene Asc which was inside the previously identified Bwr-3 locus. This study provides a foundation for further investigations into new loci distributed throughout the tomato genome that could contribute to BW resistance and into the role of resistance genes that may act against multiple pathogens.202235589778
8448130.9990Genome-Wide Association Analysis for Resistance to Coniothyrium glycines Causing Red Leaf Blotch Disease in Soybean. Soybean is a high oil and protein-rich legume with several production constraints. Globally, several fungi, viruses, nematodes, and bacteria cause significant yield losses in soybean. Coniothyrium glycines (CG), the causal pathogen for red leaf blotch disease, is the least researched and causes severe damage to soybean. The identification of resistant soybean genotypes and mapping of genomic regions associated with resistance to CG is critical for developing improved cultivars for sustainable soybean production. This study used single nucleotide polymorphism (SNP) markers generated from a Diversity Arrays Technology (DArT) platform to conduct a genome-wide association (GWAS) analysis of resistance to CG using 279 soybean genotypes grown in three environments. A total of 6395 SNPs was used to perform the GWAS applying a multilocus model Fixed and random model Circulating Probability Unification (FarmCPU) with correction of the population structure and a statistical test p-value threshold of 5%. A total of 19 significant marker-trait associations for resistance to CG were identified on chromosomes 1, 5, 6, 9, 10, 12, 13, 15, 16, 17, 19, and 20. Approximately 113 putative genes associated with significant markers for resistance to red leaf blotch disease were identified across soybean genome. Positional candidate genes associated with significant SNP loci-encoding proteins involved in plant defense responses and that could be associated with soybean defenses against CG infection were identified. The results of this study provide valuable insight for further dissection of the genetic architecture of resistance to CG in soybean. They also highlight SNP variants and genes useful for genomics-informed selection decisions in the breeding process for improving resistance traits in soybean.202337372451
8783140.9990Characterization and potential of plant growth promoting rhizobacteria isolated from native Andean crops. Bacteria isolated from soil and rhizosphere samples collected in Peru from Andean crops were tested in vitro and in vivo to determine their potential as plant growth promoters and their ability to induce systemic resistance to Alternaria alternata in tomato plants. The isolates were identified by sequencing their 16S ribosomal RNA gene. Test for phosphate solubilization, and indolacetic acid were also carried out, together with in vitro antagonism assays in dual cultures towards the plant pathogens Fusarium solani, A. alternata and Curvularia lunata. The three most promising isolates (Pa15, Ps155, Ps168) belonged to the genus Pseudomonas. Further assays were carried out with tomato plants to assess their plant protection effect towards A. alternata and as growth promoters. Inoculation of tomato seeds with all isolates significantly enhanced seed germination, plantlets emergence and plant development. Bacterial inoculation also reduce damage level caused by A. alternata. The expression levels of three tomato genes involved in the jasmonate (AOS), ethylene responsive (ERF-2) and pathogenesis related (PR-P2) pathways were determined in plants challenged with A. alternata, alone or with each bacterial isolate, respectively. Results showed that at 24 h after infection, in absence of the pathogen, the expression level of the tested genes was very low. The presence of A. alternata alone and in combination with bacteria increased the transcripts of all genes. Data showed a potential of best performing isolate Ps168 to sustain tomato plants nutrition and activate defense-related genes for protection by pathogenic fungi.201729079927
4617150.9990A maximum likelihood QTL analysis reveals common genome regions controlling resistance to Salmonella colonization and carrier-state. BACKGROUND: The serovars Enteritidis and Typhimurium of the Gram-negative bacterium Salmonella enterica are significant causes of human food poisoning. Fowl carrying these bacteria often show no clinical disease, with detection only established post-mortem. Increased resistance to the carrier state in commercial poultry could be a way to improve food safety by reducing the spread of these bacteria in poultry flocks. Previous studies identified QTLs for both resistance to carrier state and resistance to Salmonella colonization in the same White Leghorn inbred lines. Until now, none of the QTLs identified was common to the two types of resistance. All these analyses were performed using the F2 inbred or backcross option of the QTLExpress software based on linear regression. In the present study, QTL analysis was achieved using Maximum Likelihood with QTLMap software, in order to test the effect of the QTL analysis method on QTL detection. We analyzed the same phenotypic and genotypic data as those used in previous studies, which were collected on 378 animals genotyped with 480 genome-wide SNP markers. To enrich these data, we added eleven SNP markers located within QTLs controlling resistance to colonization and we looked for potential candidate genes co-localizing with QTLs. RESULTS: In our case the QTL analysis method had an important impact on QTL detection. We were able to identify new genomic regions controlling resistance to carrier-state, in particular by testing the existence of two segregating QTLs. But some of the previously identified QTLs were not confirmed. Interestingly, two QTLs were detected on chromosomes 2 and 3, close to the locations of the major QTLs controlling resistance to colonization and to candidate genes involved in the immune response identified in other, independent studies. CONCLUSIONS: Due to the lack of stability of the QTLs detected, we suggest that interesting regions for further studies are those that were identified in several independent studies, which is the case of the QTL regions on chromosomes 2 and 3, involved in resistance to both Salmonella colonization and carrier state. These observations provide evidence of common genes controlling S. Typhimurium colonization and S. Enteritidis carrier-state in chickens.201222613937
8784160.9990Bacillus firmus Strain I-1582, a Nematode Antagonist by Itself and Through the Plant. Bacillus firmus I-1582 is approved in Europe for the management of Meloidogyne on vegetable crops. However, little information about its modes of action and temperature requirements is available, despite the effect of these parameters in its efficacy. The cardinal temperatures for bacterial growth and biofilm formation were determined. The bacteria was transformed with GFP to study its effect on nematode eggs and root colonization of tomato (Solanum lycopersicum) and cucumber (Cucumis sativus) by laser-scanning confocal microscopy. Induction of plant resistance was determined in split-root experiments and the dynamic regulation of genes related to jasmonic acid (JA) and salicylic acid (SA) by RT-qPCR at three different times after nematode inoculation. The bacteria was able to grow and form biofilms between 15 and 45°C; it degraded egg-shells and colonized eggs; it colonized tomato roots more extensively than cucumber roots; it induced systemic resistance in tomato, but not in cucumber; SA and JA related genes were primed at different times after nematode inoculation in tomato, but only the SA-related gene was up-regulated at 7 days after nematode inoculation in cucumber. In conclusion, B. firmus I-1582 is active at a wide range of temperatures; its optimal growth temperature is 35°C; it is able to degrade Meloidogyne eggs, and to colonize plant roots, inducing systemic resistance in a plant dependent species manner.202032765537
326170.9990Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. We performed large-scale mRNA expression profiling using an Affymetrix GeneChip to study Arabidopsis responses to the bacterial pathogen Pseudomonas syringae. The interactions were compatible (virulent bacteria) or incompatible (avirulent bacteria), including a nonhost interaction and interactions mediated by two different avirulence gene-resistance (R) gene combinations. Approximately 2000 of the approximately 8000 genes monitored showed reproducible significant expression level changes in at least one of the interactions. Analysis of biological variation suggested that the system behavior of the plant response in an incompatible interaction was robust but that of a compatible interaction was not. A large part of the difference between incompatible and compatible interactions can be explained quantitatively. Despite high similarity between responses mediated by the R genes RPS2 and RPM1 in wild-type plants, RPS2-mediated responses were strongly suppressed by the ndr1 mutation and the NahG transgene, whereas RPM1-mediated responses were not. This finding is consistent with the resistance phenotypes of these plants. We propose a simple quantitative model with a saturating response curve that approximates the overall behavior of this plant-pathogen system.200312566575
8458180.9990A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Plant genes for pathogen resistance can be used to engineer disease resistant crops. Oligonucleotides were designed from sequence motifs conserved between resistance genes of tobacco and Arabidopsis thaliana and used as PCR primers in potato DNA. Amplification products were obtained that were homologous to known resistance genes and linked without recombination with the nematode resistance locus Gro1 and the Phytophthora infestans resistance locus R7 of potato. Map positions of PCR-derived potato gene fragments were also correlated with resistance loci of the related tomato and tobacco genomes. Our results indicate that plant resistance genes that are effective against nematodes, fungi, viruses and bacteria may be isolated based on common sequence motifs and PCR methodology.19968944022
8762190.9990Resistance Genes and their Interactions with Bacterial Blight/Leaf Streak Pathogens (Xanthomonas oryzae) in Rice (Oryza sativa L.)-an Updated Review. Rice (Oryza sativa L.) is a staple food crop, feeding more than 50% of the world's population. Diseases caused by bacterial, fungal, and viral pathogens constantly threaten the rice production and lead to enormous yield losses. Bacterial blight (BB) and bacterial leaf streak (BLS), caused respectively by gram-negative bacteria Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), are two important diseases affecting rice production worldwide. Due to the economic importance, extensive genetic and genomic studies have been conducted to elucidate the molecular mechanism of rice response to Xoo and Xoc in the last two decades. A series of resistance (R) genes and their cognate avirulence and virulence effector genes have been characterized. Here, we summarize the recent advances in studies on interactions between rice and the two pathogens through these R genes or their products and effectors. Breeding strategies to develop varieties with durable and broad-spectrum resistance to Xanthomonas oryzae based on the published studies are also discussed.202031915945